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Introduction: The COVID-19 pandemic has profoundly impacted global health 
systems, requiring the monitoring of infection waves and strategies to control 
transmission. Estimating the time-varying reproduction number is crucial for 
understanding the epidemic and guiding interventions.

Methods: Probability distributions of serial interval are estimated for Pre-Delta 
and Delta periods. We conducted a comparative analysis of time-varying 
reproduction numbers, taking into account population immunity and variant 
differences. We incorporated the regional heterogeneity and age distribution of 
the population, as well as the evolving variants and vaccination rates over time. 
COVID-19 transmission dynamics were analyzed with variants and vaccination.

Results: The reproduction number is computed with and without considering 
variant-based immunity. In addition, values of reproduction number significantly 
differed by variants, emphasizing immunity’s importance. Enhanced vaccination 
efforts and stringent control measures were effective in reducing the transmission 
of the Delta variant. Conversely, Pre-Delta variant appeared less influenced by 
immunity levels, due to lower vaccination rates. Furthermore, during the Pre-
Delta period, there was a significant difference between the region-specific and 
the non-region-specific reproduction numbers, with particularly distinct pattern 
differences observed in Gangwon, Gyeongbuk, and Jeju in Korea.

Discussion: This research elucidates the dynamics of COVID-19 transmission 
concerning the dominance of the Delta variant, the efficacy of vaccinations, 
and the influence of immunity levels. It highlights the necessity for targeted 
interventions and extensive vaccination coverage. This study makes a significant 
contribution to the understanding of disease transmission mechanisms and 
informs public health strategies.

KEYWORDS

COVID-19, time-varying reproduction number, serial interval, variant, public health 
intervention, vaccination

OPEN ACCESS

EDITED BY

Deepak Y. Patil,  
National Institute of Virology (ICMR), India

REVIEWED BY

Akimasa Hirata,  
Nagoya Institute of Technology, Japan
Galal Metwally,  
Zagazig University, Egypt

*CORRESPONDENCE

Hyojung Lee  
 hjlee@knu.ac.kr

RECEIVED 10 December 2023
ACCEPTED 07 June 2024
PUBLISHED 03 July 2024

CITATION

Jang G, Kim J, Lee Y, Son C, Ko KT and 
Lee H (2024) Analysis of the impact of 
COVID-19 variants and vaccination on the 
time-varying reproduction number: statistical 
methods.
Front. Public Health 12:1353441.
doi: 10.3389/fpubh.2024.1353441

COPYRIGHT

© 2024 Jang, Kim, Lee, Son, Ko and Lee. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 03 July 2024
DOI 10.3389/fpubh.2024.1353441

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2024.1353441&domain=pdf&date_stamp=2024-07-03
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1353441/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1353441/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1353441/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1353441/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1353441/full
mailto:hjlee@knu.ac.kr
https://doi.org/10.3389/fpubh.2024.1353441
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2024.1353441


Jang et al. 10.3389/fpubh.2024.1353441

Frontiers in Public Health 02 frontiersin.org

1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pandemic represents the most significant global health crisis 
in recent memory, inflicting an enormous burden on healthcare 
systems. Since the COVID-19 patient was first reported in December 
2019, decisions to tighten or relax restrictions have become a crucial 
aspect of policymaking. Instead of lockdowns, the Korean government 
implemented social distancing measures, recommending remote 
learning for schools, and telecommuting for work (1, 2).

As COVID-19 has spread globally, nations have adopted a range of 
strategies of non-pharmaceutical (NPIs) and pharmaceutical 
interventions such as vaccination (3–5). It is crucial to evaluate how these 
political approaches have influenced the spread of the disease and to 
forecast the potential impacts of alternative strategies. Numerous studies 
forecasted the number of COVID-19 cases using the mathematical 
modeling or stochastic approaches (6, 7). Moreover, several studies 
incorporated factors like sex, age, and race in predicting COVID-19 
cases (8, 9). The characteristics of the two reproduction numbers were 
simulated using the Susceptible-Exposed-Infectious-Recovered (SEIR) 
model for countries with similar profiles. Rozhnova et al. (10) utilized an 
age-structured model for SARS-CoV-2 to analyze hospital admissions 
and seroprevalence data from spring 2020. Implementing measures 
focusing on reducing contact outside school was proved to be more 
effective in reducing time-varying reproduction number (Rt).

The value of Rt  is defined as the expected number of secondary 
cases arising from a primary case infected at time t  (11, 12), 
summarizes the potential transmissibility of a disease, and indicates 
controllability of the epidemic. Rt  is an important parameter in public 
health because it determines the extent of an epidemic. It is a proven, 
powerful tool for monitoring and tracking epidemics and guiding 
public health restriction adjustments. This study posits that Rt  
provides an effective way to understand epidemic dynamics during its 
evolution, as demonstrated in (13), thus aiding the formation of 
national policies and public health interventions.

Typically, Rt  changes during an epidemic because of various factors 
such as the depletion of susceptible individuals, alterations in contact 
behavior, seasonal patterns of pathogens, and control interventions 
(3–5). Depending on the country and timing, some studies suggest a 
significant correlation between climate conditions and the spread (14, 
15), while others report minimal or no impact (16, 17). In addition, 
Alpha, Delta, and Omicron variants have emerged as globally 
dominant strains of the virus (18, 19). Although non-pharmaceuticals 
and vaccinations have been implemented, the impact of virus variants 
is important for understanding the rapid increase in outbreaks. 
Vaccination was found to be a key tool against serious diseases and 
deaths, which reduced the burden on medical systems as hospitalization 
rates among the older adult decreased sharply (20, 21).

In the present study, we considered immune individuals who have 
experienced the infection from COVID-19 or received a vaccination. 
The number of individuals with immunity can change over time. Herd 
immunity may appear temporarily at the peak of the number of cases 
in the early stages of an epidemic, which can help suppress the epidemic. 
Due to a significant number of infections and primary and booster 
vaccination drives in Malaysia, herd immunity has been achieved within 

the population. Consequently, the value of Rt in Malaysia is considerably 
lower than that in other countries (22). However, this condition does 
not mean that herd immunity will continue indefinitely. Determining 
the level of immunity required for group-level inhibition is crucial. 
Social measures such as social distancing may help contain future waves 
of the pandemic, but the temporary stability will eventually weaken (23).

To estimate Rt , different approaches have been developed and are 
broadly categorized into two groups: those based on compartmental 
models (3, 24) and those that directly infer the number of secondary 
infections per infected individual using a time series of infection 
incidence (25–27). For the latter category, Cori et al. (26) proposed the 
EpiEstim method in 2013 using renewal equations, which has now 
been adopted by numerous studies (12, 27–29).

Serial interval (SI), which refers to the duration between the onset 
of symptoms in an infected individual and that in a person they infect, 
is a crucial measure for estimating epidemiological parameters, such as 
reproduction number, generation time, and attack rate. These 
parameters are essential for predicting disease trends and assessing 
healthcare requirements. SI is fundamental for calculating the basic 
reproduction number (R0), which signifies the number of secondary 
infections resulting from a single infector throughout the entire 
infectious period (30). These measures are used to forecast disease 
trajectories and healthcare requirements. Previous studies estimated that 
the serial intervals of COVID-19 ranged from 3.96 to 5.2 days (30–32).

Previously, Rt  was estimated using data on the number of reported 
cases (26). Existing studies estimated Rt  by assuming SI to follow 
specific set of values (33, 34). However, in this study, we aim to analyze 
Rt  by considering virus variants and vaccinations using SI estimated 
from data collected from the Republic of Korea.

2 Methods

We computed the probability distributions of SI using 
epidemiological data from Korea. We calculated Rt  of the COVID-19 
variants using the EpiEstim method (26) to understand the impact of 
vaccination and the effectiveness of control interventions. Additionally, 
we  developed a new time-varying reproductive number without 
considering immunity (Rv). Finally, we compared the two types of 
reproduction numbers; Rt  as the baseline, including immunity, and Rv
, without considering immunity. It expands while considering variants 
(x) or regional characteristics (g ) for each Rv and Rt .

2.1 Epidemiological data

We analyzed epidemiological data on 30,413,435 reported cases 
of COVID-19 in the Republic of Korea from February 26, 2021 to 
March 6, 2023, provided by the Korea Disease Control and Prevention 
Agency (KDCA) (18). The proportions of the Delta and Omicron 
variants among all COVID-19 reported cases were obtained from the 
covariance data (35). The time intervals used for our analysis were 
categorized into three periods, based on the globally dominant 
variants, which are Delta and Omicron, observed (18, 19), summarized 
in Supplementary Table S1. In the Republic of Korea, the emergence 
of COVID-19 cases with the Delta variant began in April 2021, and by 
11 July, 2021, it accounted for more than 50% of the total cases (36, 
37). Subsequently, from January 11, 2022, the Omicron variant was 
the predominant strain, representing more than 50% of the cases, 

Abbreviations: COVID-19, coronavirus disease; WHO, World Health Organization; 

CrIs, Credible intervals; Eqs, Equations; Eq, Equation; Figs, Figures; Fig, Figure.
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resulting in a rapid increase in the number of COVID-19 cases (38). 
Therefore, we designated the three periods as “Pre-Delta” (February 
26, 2021–July 10, 2021), “Delta” (July 11, 2021–January 10, 2022), and 
“Omicron” (January 11, 2022–March 6, 2023), and the time intervals 
were labeled as TPre-Delta, TDelta, and TOmicron, respectively.

We divided the total population into 17 age groups with interval of 
5 years, ranging from 0–4 years to 80 years and older. Weekly vaccination 
data were extracted for the first, second, and third dose vaccinations 
administered to different age groups, as provided by the KDCA (35). 
Details on the Korean population size, segregated by age group and 
region for the year 2021, were obtained from Statistics Korea (39).

2.2 Estimation of probability distribution of 
serial interval

For estimating the probability distributions of the SIs, we first 
calculated the number of transmission pairs in the data based on 
infector onset dates. To account for the data reported daily, the 
discretized probability density function f t,θ( ) was defined at time t  
for the parameter of the distribution θ . For example, in gamma 
distribution, the parameter θ  represents a vector of mean (μ) and 
standard deviation (SD) (σ) of the probability distribution, such that 
θ µ σ= ( ), . Then, the likelihood function for an SI is defined as

 
L f d i

i

m
θ θ; ;d( ) = ( )( )

=
∏

1

,

 
(1)

where m  is the total number of pairs and d  indicates the serial 
intervals for time period (i.e., d = ( ) … ( ){ }d d m1 , , ). We used 70,414 
infector–infectee pairs to estimate the SI distribution, while four 
commonly used distributions for epidemiological periods: gamma, 
log-normal, normal, and Weibull (40, 41) were employed to estimate 
the time period. The performance of each statistical model was 
compared by calculating the Akaike information criterion (AIC).

 AIC L K= − ( ) +2 2ln

where K is the number of parameters used. Among the four 
commonly used statistical models, the best-fitted distribution was 
selected based on the minimum AIC values. h τ( ) indicates the 
probability distributions of the SIs estimated from February 18, 2020 
to March 6, 2023 during the total period. We defined the best-fitted 
distribution as hPre Delta−  and hDelta  for the Pre-Delta period and for 
the Delta period, respectively.

To consider non-positive values in the SI data, the analysis involved 
two approaches: fitting the distributions to positive values only (truncated), 
and fitting the distributions to shifted data with 11-day delays added to 
each observation (shifted) (42). Thus, we assumed that pre-symptomatic 
transmissions could be accounted by adding delays to each observation. 
Hence, a more accurate representation of the underlying distribution 
was captured and meaningful insights from the data were derived.

2.3 Time-varying reproduction number by 
variants and vaccination

We assessed Rt  to quantify the time-dependent variations in the 
average number of secondary cases generated per case during the 

course of the outbreak due to intrinsic (decline in susceptible 
individuals) and extrinsic factors, such as behavioral changes and 
implementation of public health measures (43–45) In Korea, the 
reported cases vary throughout the week, with notably lower counts 
observed on Saturday and Sunday. We applied a moving window using 
a 21-day window to address this variability. By using the smoothed 
data on COVID-19 cases, we  estimated the evolution of Rt  for 
COVID-19 in the Republic of Korea.

Several studies estimated the most recent Rt  by simulating the 
progression of incident cases and applying the discretized 
probability distribution of the generated interval using renewal 
equations (13, 26, 43, 46). In a model study conducted across 131 
countries, the impact of implementing and easing eight different 
NPIs on Rt  was examined (47). The reopening of schools; lifting of 
bans on public events, gatherings of 10 or more people, and stay-at-
home orders; and easing of internal movement restrictions were 
found to increase Rt . However, the effects of NPI implementation 
and easing were not immediate. Using maximum likelihood 
estimation (MLE) and sequential Bayesian methods, R0 and Rt  were 
estimated (48).

R t( ) was defined as the total number of incident cases I t( ) arising 
at time t, divided by the discretized probability function h t( ), which 
was defined at time t with the lowest value of AIC for truncated 
distributions, as shown in Table 1.

 

R t
I t

I t ht( ) = ( )
−( ) ( )=∑τ τ τ1  

(2)

To compute 95% credible intervals (95% CrIs) of R t( ) , the 
bootstrapping method was applied to generate 100 samples from the 
Gamma distributions (26).

2.3.1 Time-varying reproduction number by 
variants

The time intervals were categorized as TPre-Delta, TDelta, and TOmicron. 
A reproduction number method was suggested considering Alpha, 
Beta, Gamma, and Delta multiple variants (49). We computed the 
number of Pre-Delta, Delta, and Omicron by multiplying the daily 
COVID-19 cases with proportional data. The proportion of x variant 
at time t was defined as φx t( ). I tx ( ) indicated the number of 
COVID-19 cases caused by x variant at time t, expressed as 
I t t I tx x( ) = ( ) ( )φ , where x X X∈ = −{ }; Pre Delta,Delta,Omicron . 
Due to the lack of data for infector–infectee pairs during Omicron, 
the probability distribution of the SI for both Delta and Omicron was 
assumed as h hDelta Omicron= , such that

 

R t
I t

I t h
x

x
t

x x
( ) = ( )

−( ) ( )=∑τ τ τ1  

(3)

2.3.2 Time-varying reproduction number by 
immunity

For our analysis, we considered the evolving nature of the disease 
based on the number of immune individuals, including those who 
covered from COVID-19 or received a vaccination. As of June 2023, 
over 94% of individuals aged 12 years and older were fully vaccinated 
with the required dose, while more than 60% of the total population 
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was infected. Therefore, for this study, we considered the remaining 
population who were yet to develop immunity and were susceptible. 
Several studies suggested estimation of time-varying reproductive 
number by immunity (50), such that the effect of the k-th vaccination 
against for the dominant x variant was represented by σ k

x, 
where x X X∈ = −{ }; Pre Delta,Delta,Omicron .

The patients were divided into 17 age groups at 5-year intervals, 
such that na =17 indicated the number of age groups, Na represented 
the population size of age group a, P tk a, ( ) defined the population size 
of the k-th vaccination in age group a at time t, and V tk a, ( ) represented 
the k-th vaccination rate in age group a at time t. Thus, 

V P t Nk a k a a, , /t( ) = ( ) . V t V tk
a

n
k a

a

( ) = ( )
=
∑

1

,  presented the k-th 

vaccination rate at time t. For each variant x, the proportion of 
individuals with immunity at time t (ρTx t( )), during period Tx was 
defined as

 
ρ σ σ σT if t

x
t V t V t V t Tx x x

x( ) = ( ) + ( ) + ( ) ∈
1 1 2 2 3 3 .

The proportion of individuals with immunity at time t was 
expressed by ρ ρt tx x( ) = ( )U T . Therefore, R tv ( ) without immunity 
was defined as

 

R t
I t

t I t h
v t( ) = ( )

− ( )( ) −( ) ( )=∑1 1ρ τ ττ  

(4)

Accounting for the dominant variant x  without immunity in 
Eq. (4), R tv x, ( ) was defined as

 

R t
I t

T t I t h
v x

x

x
t

x x
, ( ) = ( )

− ( )( ) −( ) ( )=∑1
1

ρ τ ττ  

(5)

2.3.3 Time-varying reproduction number by 
regions

We grouped the seven geographical regions of Korea as Seoul 
Metropolitan Area, Gangwon, Chungcheong, Honam, Gyeongbuk, 
Gyeongnam, and Jeju, such that (g = { }1 2 7, , , ) shown in 

Supplementary Figure S1. Na  represented the population size of age 
group a, while Na g,  defined the population size of age group a in 
region g . V tk g, ( ) represented the k-th vaccination rate in region g  at 
time t, and was defined as

 
V t

V t N
Nk g

a

n
k a a g

a

a

,
, ,

.( ) = ( )
=
∑

1

For each variant x, the proportion of individuals with immunity 
(ρTx g t, ( )) in region g , at time t, during period Tx was defined as

 
ρ σ σ σT if 

x g
x

g
x

g
x

g xt V t V t V t t T, , , , ,( ) = ( ) + ( ) + ( ) ∈
1 1 2 2 3 3

where the proportion of susceptible individuals in region g  at time 
t 

was expressed as
 ρ ρg x gx gt t I t( ) = ( ) ( )T , . . I tg ( ) indicated the number 

of COVID-19 cases in region g  at time t, and I t t I tx g x g, ( ) = ( ) ( )φ  
indicated the number of COVID-19 cases in region g , by variant x, at time 
t. Therefore, the time-varying reproduction number without considering 
the immunity in region g  by variant x was defined as

 

R t
I t

I t h
x g

x g
t

x g x
,

,

,

( ) = ( )
−( ) ( )=∑τ τ τ

1  

(6)

Accounting for immunity by the dominant variant x  without 
immunity in Eq. (6), R tv x g, , ( ) was defined as

 

R t
I t

t I t h
v x g

x g

g
t

x g xx

, ,
,

, ,

( ) = ( )
− ( )( ) −( ) ( )=∑1

1
ρ τ ττT  

(7)

All Equations (2)–(7) are summarized in Table 2. Rt  refers to the 
time-varying reproduction numbers with immunity such as 
R t R t R tx x g( ) ( ) ( ), , , . Rv  refers to the time-varying reproduction 
numbers without immunity such as R t R t R tv v x v x g( ) ( ) ( ), ,, , , . To 
compare Rt  and Rv, we employ various statistical measures including 
maximum, mean, median, minimum, SD, proportion of R >1, 
coefficient of variation (CV), which is defined as the ratio of the 
standard deviation (σ ) to the mean ( µ ) (i.e., CV =

σ
µ

). The proportion 

TABLE 1 Estimation of probability distribution of serial interval by variants.

Period distribution Total (n  =  70,414)
Jan 9, 2020–Jan 10, 2022

Pre-Delta (n  =  29,945)
Jan 9, 2020–Jul 10, 2021

Delta (n  =  40,469)
Jul 11, 2021–Jan 10, 2022

Mean SD AIC Mean SD AIC Mean SD AIC

Truncated

Gamma 3.86 3.48 258,570.53 4.29 3.94 108,318.66 3.57 3.15 149,652.12

Weibull 3.85 3.41 258,449.04 4.29 3.84 108,247.39 3.56 3.08 149,571.72

Normal 3.87 3.34 290,269.11 4.30 3.70 120,746.96 3.58 3.03 167,844.64

Lognormal 4.12 5.02 262,484.48 4.63 5.94 110,149.37 3.79 4.41 151,935.65

Shifted 

(+11 days)

Gamma 14.61 4.05 393,957.91 14.79 4.59 167,328.05 14.48 3.64 225,008.07

Weibull 14.53 4.26 397,562.67 14.74 4.65 167,779.40 14.39 3.94 228,278.10

Normal 14.61 3.93 393,047.72 14.79 4.41 166,698.10 14.48 3.56 224,705.94

Lognormal 14.67 4.39 400,335.77 14.88 5.06 170,311.35 14.52 3.90 228,298.24

n indicates the number of observed serial intervals.
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of R >1 indicates the number of time points that satisfy when the 
reproduction number is greater than 1.

3 Results

3.1 Transmission dynamics of COVID-19 
epidemic with variants and vaccination

Data on the number of COVID-19 cases, proportion of variants, 
and vaccination coverage are presented in Figure 1. Figures 1A,B 
present the number of confirmed cases caused by Delta and Omicron 
variants. The number of cases increased with the emergence of new 
mutations, with the Delta variant causing the highest number of cases, 
reaching over 8,000. During Omicron, the number of cases peaked at 
approximately 600,000 before decreasing. The proportion of the 
variants are shown in Figure 1C, where the dashed lines indicate the 
start points of the time periods, TDelta and TOmicron during which the 
proportion of each variant exceeded 50%. The vaccination coverage is 
shown in Figure  1D. The first and second vaccine doses were 
administered during Pre-Delta, with the majority receiving the second 
dose during Delta. The third doses of booster shots were administered 
2 months prior to the emergence of the Omicron variant. The 
vaccination coverage for each period is shown in Figure 1E. During 
Pre-Delta, the first dose accounted for about 40% of the total 

population, whereas the second dose accounted for only 10%. During 
Delta, the first and second doses were administered to 80% of the 
population. The third dose was administered to 40% of the population 
during Delta, while 70% were covered during Omicron.

3.2 Estimation of probability distribution of 
serial interval

Out of 30,413,435 COVID-19 cases, we  reconstructed 70,414 
transmission pairs from the known onset dates for the infectors and 
infected population. The SIs ranged from −11 to 17 days, and were 
estimated using truncated and shifted distributions for the entire 
period, as shown in Figure 2. Based on the AIC values, the truncated 
Weibull distribution provided the best fit for all three periods. The 
estimated mean SI for the total period was 3.85 days, with an SD of 
3.41 days, as shown in Figure 2A. To compute Rt , we employed the 
estimated SI using the truncated Weibull distribution for each period 
(Pre-Delta, Delta), as presented in Table 1. For Pre-Delta and Delta, 
the estimated mean SIs were 4.29 and 3.56 days, with SDs of 3.84 and 
3.08 days, respectively. The estimated SIs for Pre-Delta and Delta from 
the truncated and shifted distributions are shown in 
Supplementary Figure S2. The different values of Rt  obtained from 
truncated and shifted distributions using the Gamma, Weibull, 
Lognormal methods are presented in Supplementary Figure S3.

TABLE 2 Summary of time-varying reproduction numbers.

Formula Description Eq.

Rt

R t
I t

I t ht( ) = ( )
−( ) ( )=∑τ τ τ1

 • Time-varying reproduction number with immunity

 • R t( ) represents the average number of secondary cases 

at time t.

(2)

R t
I t

I t h
x

x
t

x x
( ) = ( )

−( ) ( )=∑τ τ τ1

 • (2) by variants

 • R tx ( ) represents the average number of secondary cases 

caused by variant x  at time t.

(3)

R t
I t

I t h
x g

x g
t

x g x
,

,

,

( ) =
( )
−( ) ( )=∑τ τ τ

1

 • (3) by regions

 • R tx g, ( ) represents the average number of secondary cases 

caused by variant x  in region g at time t.

(6)

Rv

R t
I t

t I t h
v t( ) = ( )

− ( )( ) −( ) ( )=∑1 1ρ τ ττ

 • Time-varying reproduction number without immunity

 • R tv ( ) represents the average number of secondary cases 

without immunity at time t.

(4)

Rv x x
t

x x
t

I t

x I t hT t
, ( ) = ( )

−( ) ( )
=

− ( )( )∑τρ τ τ
1

1

 • (4) by variants

 • R tv x, ( ) represents the average number of secondary cases 

caused by variant x  without immunity at time t.

(5)

R t
I t

T t I t h
v x g

x g

x g
t

x g x
, ,

,

, ,( ( ))

( ) =
( )

− −( ) ( )=∑1
1

ρ τ ττ

 • (5) by regions

 • R tv x g, , ( )  represents the average number of secondary cases 

caused by variant x  in region g without immunity at time t

(7)

Eq. refers to the equation.
Rt is the time-varying reproduction number with the immunity as baseline.
Rv is the time-varying reproduction number without considering the immunity.
I t( )  is the number of cases at time t.
I tx ( )  is the number of cases at time t by variant x .
I tx g, ( ) is the number of cases at time t by variant x  and region g.
1− ( )ρ t  is proportion of susceptible individuals.
1− ( )ρT tx  is proportion of susceptible individuals of variant x .
1− ( )ρT tx g,  is proportion of susceptible individuals of variant x  and region g.
h τ( ) is probability distribution of SI.
hx τ( ) is probability distribution of SI of variant x .
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The values of Rt  calculated using Eqs. (2) and (3), distinguished 
as R t( )  and R tx ( ) , respectively, were compared, as presented in 
Figure 3. When R t( )  was calculated based on the total number of 
cases, significant differences in values for each variant were 

observed. Calculated R t( ) values using data from February 26, 2021 
to January 10, 2022 and from January 11, 2022 to March 6, 2023 are 
presented in Figures 3A,B, respectively. Supplementary Table S2 
summarized the NPI levels implemented in Korea. It is shown in 

FIGURE 1

Number of COVID-19 cases by variants and vaccination. The vertical lines indicate the start points of the time periods, TDelta and TOmicron. (A,B) Number 
of COVID-19 cases by Pre-Delta, Delta, and Omicron variants over time from February 2021 to April 2022 in Korea. (C) Proportion of COVID-19 
variation. (D) Weekly doses of 1st, 2nd, and 3rd vaccination. (E) Vaccination coverage during three periods: 1st (yellow), 2nd (blue), and 3rd (magenta) 
vaccination.

FIGURE 2

Estimated serial interval distribution of COVID-19 in Korea. Bars indicate the observed data of serial interval from January 9, 2020 to January 29, 2022. 
The colored lines indicate the estimated serial interval. (A) Truncated and (B) shifted distributions over 11  days.
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Figures 3A,B, along with the COVID-19 confirmed cases. During 
the Pre-Delta period with NPI level 2, R t( ) was consistently around 
1. Subsequently, a point where R t( )  exceed 1, we could interpret 
that it is closely related to the emergence of the Delta variant. This 
relationship is evident from the discrepancies between R t( )  and 
R tx ( )  shown in Figure 3C. Furthermore, during this period, the 
reduction of the NPI level to 1 led to an increase in R t( )  to 1.2. 
From July 11, 2021 onwards, R t( )  decreased and remained at 
approximately 1. It believed that this was a consequence of the NPI 
level being intensified to 4. After the spread of the Omicron variant 
in 2022, R t( ) increased to 1.4. On July 11, 2021, R tx ( ) for Pre-Delta 
was lower than R t( )  calculated using the total number of cases, 
while R tx ( )  for Delta was higher. Starting from January 11, 2022, 
when the Omicron variant accounted for more than 50% of the total 
cases, R tx ( )  for Delta showed a significant decrease compared to 
R t( ) calculated based on the total number of cases using Eq. (2), as 
shown in Figure 3D. Although the overall value of R t( ) increased, 
analysis of R tx ( ) , specifically for Delta, revealed a decrease. Thus, 
despite the overall increase in transmission of the virus in the 
population, the measures implemented to control the Delta variant 
were effective in reducing its spread. The NPI intensity was 
gradually reduced in a phased restoration of daily life, leading to the 
lifting of social distancing after April 18, 2022. During the Omicron 
period, R t( ), exhibited higher volatility than other periods, shown 
in Figure 3E.

3.3 Time-varying reproduction number by 
variants

The values of Rt  and Rv  calculated for with and without 
immunity from variant x using Eqs. (3) and (5), distinguished as 
R tx ( ) and R tv x, ( ), respectively, are shown in Figure 4. The monthly 
mean, SD, and CV of R tx ( )  and R tv x, ( )  are presented in 
Supplementary Table S3, while the statistics of their estimated values 
are summarized in Supplementary Table S4. The difference between 
R tx ( )  and R tv x, ( )  was not large because the vaccination coverage 
was not high during Pre-Delta period, as shown in Figure 4A. R tx ( ) 
considering immunity remained approximately 1, as shown in 
Figure  4B, and after December 31, 2021, it decreased to a value 
below 1. However, R tv x, ( )  without immunity, always remained 
greater than 1 during Delta. As shown in Figure 4C, R tx ( ) was less 
than 1 for some data points, whereas R tv x, ( )  always remained 
greater than 1, during Omicron. The boxplot of R tx ( )  and R tv x, ( ) 
for each variant is shown in Figure 4D. During Pre-Delta, a small 
difference existed between R tx ( )  and R tv x, ( ) , while a significant 
difference was observed during Delta and Omicron. Thus, a large 
variability existed for each variant, such that a high variability was 
observed during Delta, which subsequently decreased 
during Omicron.

CV was calculated from the monthly mean and SD of R tx ( ) and 
R tv x, ( ) and presented in Figure 4E. A small difference was observed 

FIGURE 3

Time-varying reproduction number by variants considering immunity. (A,B) Total number of COVID-19 cases (blue) along with the reproduction 
number using Eq. (2) (magenta line) and NPI levels implemented in Korea. (C–E) Total number of COVID-19 cases (blue) along with reproduction 
number obtained using Eqs. (1) and (2) for Pre-Delta, Delta, and Omicron. The shaded area indicates 95% CrIs and the vertical line represents the start 
of Delta (TDelta).
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between the CV calculated during Pre-Delta and Omicron, but a 
notable difference was observed during Delta. We defined 2 months 
with significant differences as “a” and “b,” which were calculated 
from the shaded area in Figure 4B. During “a,” R tv x, ( )  exhibited 
higher variability compared to R tx ( ), accompanied by a substantial 
increase in R tv x, ( ) . Conversely, during “b,” R tx ( )  showed higher 
variability compared to R tv x, ( ) . Although the magnitudes of the 
changes were similar, smaller values of R tx ( )  resulted in larger 
variability. This period corresponded to the initiation of a third-dose 
vaccination campaign. Overall, the variability between R tx ( )  and 
R tv x, ( )  differed across the variants, with Delta characterized by 
significant differences and the start of the third-dose 
vaccination campaign.

3.4 Impact of variants on time-varying 
reproduction number by regions

We conducted a comparison of R t( )  using Eq. (2) and R tx g, ( ) 
using Eq. (6) with the results illustrated in Figure 5. The location of 
each region in Korea is illustrated in Supplementary Figure S1. 
Figures  5A–G presents the results for Seoul Metropolitan Area, 
Gangwon, Chungcheong, Honam, Gyeongbuk, Gyeongnam, and Jeju. 
Figure 5H shows a regional box plot comparing R t( ) and R tx g, ( ). The 
discrepancy between R t( ) and R tx g, ( ) is the largest in Jeju, while it is 
almost negligible in Seoul Metropolitan Area. In all regions, a 
difference between R t( ) and R tx g, ( ) is observed around July 11, 2021, 
coinciding with the transition from the Pre-Delta to the Delta variant. 
During this period, Seoul Metropolitan Area, Chungcheong, Honam, 
and Gyeongnam exhibited similar patterns in R t( )  and R tx g, ( ), 
whereas Gangwon, Gyeongbuk, and Jeju displayed divergent patterns. 
Particularly in Jeju, R tx g, ( ) exhibits significant volatility during the 

Pre-Delta period, which is likely attributed to the small number of 
cases, and Gangwon and Gyeongbuk require additional analysis.

We computed R tx g, ( ) with immunity using Eq. (6) and R tv x g, , ( ) 
without immunity using Eq. (7) in seven regions of Korea, as 
aforementioned for Pre-Delta, Delta, and Omicron is shown in 
Supplementary Figures S4–S6, respectively. A comparison between 
the calculated maximum value of R tx g, ( ) and R tv x g, , ( ) by region g  
is presented in Figure 6. While comparing the R tx g, ( ) results for 
Pre-Delta, Delta, and Omicron, the severity of the variant viruses was 
difficult to determine. However, while examining the R tv x g, , ( ) results, 
the overall R tv x g, , ( ) values were higher during Delta, particularly in 
Gyeongnam and Gangwon. During Omicron, the R tv x g, , ( )  values 
were higher than those during Pre-Delta. The mean values of R tx g, ( ) 
and R tv x g, , ( ) are shown in Supplementary Figure S7.

The results for three regions, Seoul Metropolitan Area (Region A), 
Gangwon (Region B), and Gyeongbuk (Region E), were compared, as 
shown in Figure 7. Variations in the magnitudes of R tv x g, , ( )  across 
different variant periods were observed. Without considering 
immunity, the mean of R tv x g, , ( ) consistently increased over time in 
all regions. However, a significantly higher value of maximum 
R tv x g, , ( )  compared to an average value of R tv x g, , ( )  in each variant 
period suggested the occurrence of an event that led to a spike in cases 
in that region. During Pre-Delta, when the increase in the number of 
cases was relatively smaller compared to that during Delta and 
Omicron, the difference between the average and maximum values of 
R tv x g, , ( )  was relatively small. Supplementary Table S5 summarizes 
the maximum, mean, and minimum reproduction numbers for each 
period by region.

The values of monthly CV of R tx g, ( ) and R tv x g, , ( )  and 
vaccination coverage for the three regions are shown in 
Supplementary Figure S9. Supplementary Table S6 provides a 
summary of the monthly CV for the two indicators of reproduction 

FIGURE 4

Comparison of variability of time-varying reproduction number by variants considering immunity. (A–C) Comparison of time-varying reproduction 
number with immunity (R tx ( )) and without immunity (R tv x, ( )), for each variant x. (D) Box plot of R tx ( ) and R tv x, ( ). (E) Monthly coefficient of variation 
(CV) of R tx ( ) and R tv x, ( ) “a” and “b” represents the points with large differences in CV between R tx ( ) and R tv x, ( ). The shaded area in panel 
(B) presents months “a” and ‘b’. The values of “a” and “b” in panel (E) indicate estimation from the data within the shaded regions in panel (B). Vertical 
lines indicate the start Delta and Omicron.
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number. Supplementary Table S7, on the other hand, outlines 
Distribution of age population size and vaccination coverage by 
region. During Pre-Delta, R tx g, ( ) and R tv x g, , ( )  exhibited similar 
patterns. However, during the second phase, when the Delta variant 
spread, a significant variability in R tv x g, , ( ) was observed. This period 
coincided with a rapid increase in the administration of the second 
and third vaccine doses, indicating an increase in immunity. In the 
third phase, a consistent pattern in CV across regions was observed, 
suggesting a similar trend. The number of individuals receiving the 
third vaccine dose significantly decreased, and owing to an already 
high number of infected individuals, the difference between R tx g, ( ) 
and R tv x g, , ( )  was reduced. In Seoul Metropolitan Area and 
Gyeongbuk, shown in Supplementary Figure S9, a rapid increase in 
the number of COVID infected individuals was observed in 
mid-September 2021. Thus, the variability in CV increased to 
approximately 0.2.

4 Discussion

During outbreak of infectious diseases such as SARS-CoV-2, 
authorities must accurately monitor the situation to make effective 
decisions. Factors such as the scale of the epidemic and its 
spatiotemporal dynamics determine the risk of exposure, pressurize 
crucial infrastructure, and burden society with diseases. As 
COVID-19 spread globally, countries adopted various strategies, 
often following more relaxed measures. Assessing the influence of 
unique political strategies on disease spread and predicting the 
outcomes of potential alternative measures are important.

In this study, we  investigated the transmission dynamics of 
COVID-19 by considering its variants and the impact of vaccination 
coverage on immunity. Our findings aligned with those of previous 
studies (2, 51, 52), confirming that the Delta variant had the highest 
number of cases, followed by the Omicron variant. Additionally, the 

FIGURE 5

R t( ) and R tx g, ( ) in regions during Pre-Delta and Delta (A–G) Seoul Metropolitan Area, Gangwon, Chungcheong, Honam, Gyeongbuk, Gyeongnam, 
and Jeju, respectively.
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estimated SIs were 3.85, 4.29, 3.56 days for the total period, Pre-Delta, 
and Delta, respectively, as shown in Figure 2. The estimated SI of the 
Delta variant further supported the results. Our predictions aligned 
with the findings of our previous study, as the estimated mean SI of 
3.56 days was similar to 3.5 days of our previous finding, 3.7 days of 
(2) and 3.00 days of (51). This consistency in estimated values of SI 
further supported the robustness and reliability of the analysis. By 
understanding the duration between symptom onset in infectors and 
infectees, we can gain insight into the transmission dynamics of the 
COVID-19 epidemic and improve public health interventions aimed 
at controlling the spread of the virus.

The decreasing value of R tx ( )  for the Delta variant indicated 
successful mitigation of virus transmission by interventions, such as 
increased vaccination coverage and other control measures 
(Figure  3). This finding underscored the importance of targeted 
efforts to curb the spread of specific variants, as distinct transmission 
dynamics exist when compared with the overall epidemic. During 
Delta, if the vaccination coverage was low (Figure 4), R tv x, ( ) would 
likely have remained above 2. Conversely, the significant decrease in 
R tx ( )  could be  attributed to the immunity gained through 
vaccination. This finding highlighted the substantial benefit of 

vaccination in reducing the transmission potential of the Delta 
variant. On comparison of time-varying reproduction numbers by 
region (Figure  7), the immunity in R tx g, ( ) provided a better 
explanation for the characteristics of the variants and regional 
differences. If there was no immunity, a significant increase in 
R tv x g, , ( ) could be interpreted.

However, during Pre-Delta period, the gap between the R tx ( ) and 
R tv x, ( ) values was minimum, attributed to the low vaccination coverage. 
Furthermore, though additional vaccinations were administered 
infrequently during the Omicron period, the impact of immunity 
persisted due to the high vaccination coverage achieved during the Delta 
period. These findings underscored the crucial role of vaccination in 
reducing the spread of COVID-19, and the significance of achieving 
high vaccination coverage to maximize the benefits of immunity in 
controlling variant-driven epidemics. Thus, in this study, we emphasize 
the critical role of vaccination in reducing the risk of infection.

We incorporated the regional heterogeneity and age distribution 
of the population, as well as the evolving variants and vaccination 
rates over time, into our calculations of the reproduction number. 
However, the broader applicability of our results is constrained. The 
diversity in spatial heterogeneity and human behaviors, which are 

FIGURE 6

Maximum time-varying reproduction number with the immunity (R tx g, ( )) and without immunity (R tv x g, , ( )) by regions and variations. Regions A, B, 
and E indicate Seoul Metropolitan Area, Gangwon, and Gyeongbuk areas of Korea.
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pivotal to the transmission dynamics of COVID-19, vary across 
different areas. Therefore, including a variety of populations and 
environments is crucial to deepen the understanding of the 
transmission dynamics on a global scale (53–56). Badr et al. (57) 
identified a statistically significant positive correlation between 
human mobility patterns and COVID-19 case trends, with a 
5–6 days lag reflecting in the reproduction number (Rt). 
Additionally, several studies have addressed the effect of spatial 
heterogeneity (55, 56). For instance, Ogwara et al. (55) estimated 
the time-dependent Rt for SARS-CoV-2 within Georgia and its 
health districts using daily case data, akin to our methodology. 
However, other investigations have estimated Rt  by accounting for 
movement and mobility between regions (58). Beyond these 
methods, the reproductive number can also be determined using 
various other techniques, such as machine learning algorithms or 
multi-agent simulations (59, 60).

In addition, the availability of SI data during Omicron was limited 
due to the rapid and widespread transmission of COVID-19. 
Therefore, we assumed that the distribution of the SIs during Delta 
was similar to that during Omicron. Although this assumption 
introduces some uncertainty, it is essential for the estimation of SI for 
the entire study period. If the data of infector–infectee pairs were 
available during Omicron, a more accurate understanding of 
transmission dynamics during that time could have been provided.

However, despite these limitations, our study is significant as it 
provides a novel analysis of the impact of variants, immunity, age, 
and geographical factors on the time-varying reproduction number. 
In previous studies (27, 55, 61), reproduction numbers were 
computed using variants or regions. However, the effects of immunity 
are yet to be considered. To the best of our knowledge, our study is a 
first to comprehensively examine the influence of such variables on 
time-varying reproduction numbers at a granular level. Considering 
the differential effects of variants and immunity across age groups 
and regions, our study offers valuable insights into the complex 
dynamics of the COVID-19 pandemic. Overall, this study provides 
valuable insights into the transmission dynamics of COVID-19 by 
considering the variants and vaccination.

5 Conclusion

Considering the well-established concept of Rt  (25–27), we have 
proposed a modified reproduction number that takes into account 
various data sets: (i) variant-specific R tx ( ) , and (ii) R tv ( ), which 
does not consider immunity, compared with the traditional Rt  to 
analyze the effects of immunity. Rather than evaluating those 
several formulas for Rt , our study emphasizes the capability of the 
proposed reproduction numbers to capture important factors like 

FIGURE 7

Comparison of time-varying reproduction numbers by variants with or without immunity in three regions. The bars represent the number of COVID-19 
cases over time in each region. The line colors correspond to the variants: (A-C) Seoul Metropolitan Area, (D-F) Gangwon area, (G-I) Gyeongbuk area.
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vaccination and variants, by introducing the several reproductions, 
namely R t R tv x( ) ( )and . Our study highlights the dominance of the 
Delta variant, effectiveness of vaccination in reducing transmission, 
and significance of targeted interventions and high vaccination 
coverage in controlling COVID-19. Despite limitations, our findings 
improve our understanding of the transmission dynamics of 
this disease.
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