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Objective: This research investigates the role of human factors of all hierarchical

levels in radiotherapy safety incidents and examines their interconnections.

Methods: Utilizing the human factor analysis and classification system (HFACS)

and Bayesian network (BN) methodologies, we created a BN-HFACS model to

comprehensively analyze human factors, integrating the hierarchical structure.

We examined 81 radiotherapy incidents from the radiation oncology incident

learning system (RO-ILS), conducting a qualitative analysis using HFACS.

Subsequently, parametric learning was applied to the derived data, and the prior

probabilities of human factors were calculated at each BN-HFACS model level.

Finally, a sensitivity analysis was conducted to identify the human factors with

the greatest influence on unsafe acts.

Results: Themajority of safety incidents reported on RO-ILS were traced back to

the treatment planning phase, with skill errors and habitual violations being the

primary unsafe acts causing these incidents. The sensitivity analysis highlighted

that the condition of the operators, personnel factors, and environmental factors

significantly influenced the occurrence of incidents. Additionally, it underscored

the importance of organizational climate and organizational process in triggering

unsafe acts.

Conclusion: Our findings suggest a strong association between upper-level

human factors and unsafe acts among radiotherapy incidents in RO-ILS. To

enhance radiation therapy safety and reduce incidents, interventions targeting

these key factors are recommended.

KEYWORDS

human factors analysis and classification system, Bayesian network, human factors,

radiotherapy incidents, patient safety

1 Introduction

Radiotherapy, recognized as one of the safest practices in modern medicine, boasts a

remarkably low incidence of procedural errors, approximately 0.2% per fraction delivered

(1–3). Nevertheless, the complex nature of radiotherapy, involving intricate interplay and

transitions among individuals, leaves room for accidents and radiation errors. These risks

threaten the health and safety of both patients and medical staff. The International Atomic

Energy Agency categorizes such radiotherapy errors and accidents as “incidents” (4).
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Incident learning systems, developed internationally, facilitate the

reporting of radiotherapy incidents, fostering improvements in

radiotherapy quality and patient safety through lessons derived

from these incidents.

The concept of incident learning, tracing its origins back to

the aviation industry, indicates that 70%−80% of aviation incidents

are human factor-related. Intriguingly, a similar trend is seen in

radiotherapy safety incidents, with 90% attributed to human factors

(5). The human factors analysis and classification system (HFACS)

provides a useful framework for examining such incidents. Based

on systems theory, HFACS considers unsafe behavior as an

initiating point for retrospective incident cause analysis. This

approach aids in identifying root causes of incidents and helps

in directing safety countermeasures to appropriate levels. HFACS,

initially designed for identifying and analyzing aviation accidents

(6), has since demonstrated its utility in other areas, including

maritime incidents (7), medical errors (8, 9), and transportation

mishaps (10, 11), due to its efficacy.

The application of HFACS to radiotherapy is a more recent

development. Mosaly et al. (12) compared experts and novices

(resident physicians, 2–4 postgraduate years) on 30 radiotherapy

incidents after approximately 1 h of training, the results showed

that no significant differences were found between novices

and experts in the HFACS main heading levels, although the

agreement was poorer at the sub-levels. Judy et al. (13), on the

other hand, evaluated the consistency of qualitative analytical

results amongst radiation oncology professionals, with participants

showing 85% and 73% agreement on HFACS main levels and sub-

levels in eight incidents. These studies showcased the consistent

and reliable implementation of HFACS across various users. In

2009, HFACS model was used in clinical radiotherapy incidents

analysis, the study retrospectively analyzed 34 incidents in their

radiotherapy center, establishing that recurrent radiation incidents

were primarily linked to inattention and mental fatigue (14).

Another study (15) expanded beyond assessing the frequency of

human factors in 141 incidents, they elucidated the relationship

between human factors and different types of radiotherapy errors,

finding that skill-based errors can lead to radiotherapy treatment

planning errors and decision errors are often associated with quality

control errors. This work provides a cornerstone for developing

safety precautions for all stages of the radiotherapy process.

Notwithstanding, the application of HFACS in radiotherapy

remains relatively nascent and is generally confined to qualitative

analysis or basic frequency analysis (5, 14, 16). There is still a

lack of integration of HFACS with quantitative analysis methods,

and the correlation of human factors in the different levels of

the HFACS model remains unclear, which limits the application

of HFACS in radiotherapy clinically. To enhance the ability

of HFACS to assess human factors in detail during incident

investigations, many studies have combined quantitative analysis

with the HFACS framework. For example, the HFACS framework

has been combined with Bayesian network (BN) (17), fuzzy

cognitive mapping (18), analytical network process (19), structural

equation model (20), and others. Remarkably, BN is considered to

be the most effective method for analyzing dependencies between

factors in uncertain research environments and is widely used in

the field of safety (17), with previous studies demonstrating the

usefulness of integrating BN with HFACS for analyzing accidents

and system failures to identify effective control measures (21,

22), which unfortunately has not yet been used in the field of

radiotherapy. Therefore, this study seeks to integrate HFACS with

BN, explore relationships among contributing human factors in

radiotherapy incidents, and to evaluate the impact of upper-

level human factors on lower-level human factors. These upper-

level factors are commonly perceived as latent factors leading

to incident occurrences and are often overlooked in traditional

incident analysis. We believe that investigating latent security

breaches is key to developing targeted security precautions for

radiotherapy procedures.

2 Methods

2.1 HFACS framework

Inspired by Reason’s “Swiss Cheese” model, the HFACS model,

developed by Shappell and Wiegmann, categorizes accident causes

into four levels, likening failures to “vulnerabilities” within each

level (6). The HFACS distinguishes between overt and latent human

factors based on Reason’s model. The overt factors align with

the first level of Reason’s model—unsafe acts, the active elements

directly resulting in accidents. The latent factors correspond to

the remaining three levels: preconditions for unsafe acts, unsafe

supervision, and organizational influence, respectively. Figure 1

presents a schematic representation of the HFACS, outlining

the sub-levels and elucidating the hierarchical relationships

among them.

2.2 Data source

This study utilized radiotherapy safety incidents sourced from

the RO-ILS. The RO-ILS, developed by the American Society

for Radiation Oncology (ASTRO) and the American Association

of Medical Physicists (AAPM), currently houses a substantial

collection of radiotherapy incidents (23). Since 2014, RO-ILS has

conducted regular radiotherapy incident sharing with the aim of

facilitating knowledge sharing and learning experiences, enabling

practitioners in the field of radiotherapy to learn from the incidents

of others to improve the quality and safety of patient care. Our

study used all the radiotherapy incidents publicly posted by RO-

ILS. Indeed, the formulation of error reporting in the RO-ILS

system bears a striking resemblance to the HFACS approach (12).

Given the absence of brachytherapy at our center, we excluded

such incidents to prevent any potential analytical inaccuracies

stemming from unfamiliarity. Moreover, incidents lacking discrete

cause descriptions (e.g., detailing who was involved and the specific

process leading to the incident) were also excluded. This selection

process yielded a total of 81 incidents for our study.

2.3 Qualitative analysis

In the qualitative analysis process, two experienced physicists,

both trained with systematic training in HFACS-related theory
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FIGURE 1

Human factors analysis and classification system framework.

and practice, collaboratively evaluated the radiotherapy incidents.

Employing a layered indexing approach, the physicists assessed

the incident reports to determine the presence or absence of all

sub-factors in each of the HFACS model. Notably, the qualitative

analysis was a collective effort, with both physicists actively

engaging in discussions to achieve consensus on the classification

of factors.

In instances where divergent classifications emerged, we

engaged additional physicists, all possessing expertise in safety

quality assurance of radiotherapy clinical process to participate

in collaborative discussions. Through these collaborative efforts,

disagreements were thoroughly examined to achieve consensus. By

leveraging the collective expertise of a team, we aimed to fortify

the accuracy and credibility of our findings, ultimately mitigating

concerns related to potential biases or oversights in the qualitative

analysis process.

2.4 Bayesian network

BN is a model used for characterizing variable dependencies,

facilitating quantitative analysis of causal relationships between

incident factors and aiding intervention selection (24). The

composition of the BN is divided into a qualitative part and a

quantitative part. At the qualitative level, a directed acyclic graph

(DAG) is used to represent the dependence and independence

between two sets of variables; at the quantitative level, a conditional

probability table (CPT) is used to describe the dependence between

variables (18). A BN is mathematically represented as N = <G,

P>, where G signifies a directed acyclic graph DAG. The DAG can

be further described as G = <V, E>, with V = {x1, x2, . . . , xn},

representing the set of nodes in the network and E denoting the

set of directed edges. The nodes symbolize random variables, while

the directed edges depict the relationships between these nodes. P

represents the CPT, indicating the strength of logical relationships

between nodes. Utilizing the logical node relationships and Bayes’

formula, the BN enables probabilistic inferences for uncertainty.

The joint probability for any random variable x in the BN can be

expressed as (Equation 1):

P (x1, x2, . . . , xn) =

n
∏

i=1

P (xi|Pa (xi)) (1)

Pa (xi) symbolizes the parent node of xi. P (xi|Pa (xi))

represents the probability of occurrence of the child node xi
given the occurrence of its parent node. The joint probability

denotes the expected likelihood of the observed variable

x’s occurrence when multiple random variables satisfy their

respective conditions, forming the foundation for prediction

and inference.

2.5 Design of BN-HFACS

Based on the qualitative part of BN, we can combine

it with HFACS. The human factors at each level of HFACS

can be regarded as multiple variables in BN, and the

relationship between the human factors at each level can

be represented by directed edges in BN. The HFACS

model’s 4-level structure posits that all variables located in

the higher level directly affect all variables located in the

immediately lower level, which supports the construction of

the BN.
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(1) Designing the DAG: Our study is more concerned with the

effect between the upper-level factors on the lower-level factors,

so we assumed that sub-level factors in each HFACS level were

independent and had no effect on each other. The organizational

influence factor was considered the root node, while unsafe acts

were treated as the leaf node. The model has been constructed

following the progression of “organizational influences → unsafe

supervision→ preconditions for unsafe acts→ unsafe acts.”

(2) Node state definition: In this study, all nodes were

assigned two states- yes and no (representing the presence or

absence of a factor in an accident). However, the error-type

node had four states (skill, decision, perception, and none), and

the violation-type node had three states (routine, exceptional,

and none).

(3) Calculation of the CPT: A common approach for

determining the CPT is parameter estimation based on a

case database. In this study, we employed Netica 5.18 for

calculations and analysis. Parameter learning was accomplished

using a built-in case-learning algorithm. The case-learning database

was constructed from the qualitative analysis results of 81

incident cases. This step enabled the calculation of the network

node probability.

2.6 Sensitivity analysis

Sensitivity analysis is used to determine which upper-level

factor contributesmost significantly when a failure in an underlying

factor occurs. This can be computed using the following equation

(25), where xi represents the upper-level factor, xj denotes lower-

level factor.

Sensitivityij =

{

P(xj=1|xi=1)−P(xj=1|xi=0)
P(xj=1|xi=0)

, 1P ≥ 0

0,1P < 0
(2)

P
(

xj = 1
∣

∣xi = 1
)

represents the probability of occurrence of a

lower-level factor xj under the conditions of 100% existence (BN

state= “yes”) of an upper-level factor. P
(

xj = 1
∣

∣xi = 0
)

represents

the probability of occurrence of a lower-level factor xj under the

conditions of 100% non-existence (BN state = “no”) of an upper-

level factor. 1P is P
(

xj = 1
∣

∣xi = 1
)

− P
(

xj = 1
∣

∣xi = 0
)

.

3 Results

3.1 Qualitative analysis of incidents

Safety incidents can manifest at every stage of radiotherapy,

from the initial patient assessment to the final delivery of

treatment (Table 1). During the pre-treatment phase, errors

in treatment planning constitute the largest proportion,

especially “wrong data transfer or setting.” Incorrect patient

setup, incorrect delivery, and delineation also demonstrated

a higher likelihood of error, while simulation presented the

lowest error incidence. Qualitative analysis utilizing the HFACS

model revealed that among the four HFACS levels, unsafe acts

made up 29.3% of reported human factors, preconditions for

TABLE 1 Statistics on the number of incidents in radiotherapy treatment

phases and types of error.

Phase Error type Description Ratio

Pre-treatment

phase

Assessment of

patient

ICD implantation is not

considered

3/81

Simulation Wrong treatment field size 1/81

Machine breakdown 1/81

Delineation Wrong definition 9/81

Wrong CT image used 2/81

Wrong registration 1/81

Treatment

planning

Wrong data transfer or

setting

17/81

Treatment history not

considered

4/81

Organ at risk dose out of

limits

4/81

Wrong structure copy 2/81

Planning

approval

The wrong treatment plan

passed

4/81

Treatment

phase

Patient

exchange

Patient ID not verified 3/81

Wrong patient

set-up

Markers not correctly

identified or wrong

verification

15/81

Wrong

delivery

Repeated irradiation/missed

irradiation

12/81

No attention

to the

treatment

room

Collision of gantry and

couch

2/81

Patient status

was not

observed

Patient has difficulty

breathing

1/81

ICD, Implantable Cardioverter Defibrillators; CT, Computed Tomography.

unsafe acts 33.3% unsafe supervision 24.3%, and organizational

influences 13.1% (Figure 2A). In these 81 incident reports, 321

human factors were identified, with each report containing

a minimum of one human factor and a maximum of six

(Figure 2B).

3.2 BN-HFACS and priori probability of
human factors

The BN-HFACS was developed using Netica 5.18. Figure 3

illustrates the prior probability of each variable following the

parameter learning process. At the level of unsafe acts, the highest

prior probability (37.5%) was associated with skill-based errors.

Interestingly, routine violations displayed a higher prior probability

than exceptional violations. Condition of operators (49.6%) and

personnel factors (59.8%) made up a large portion of preconditions

for unsafe acts, whereas environmental factors demonstrated a

smaller prior probability. Among factors at the unsafe supervision

level, inadequate supervision had the highest prior probability
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FIGURE 2

Results of qualitative analysis of incidents based on HFACS. (A) Frequency distribution of individual human factor subcategories involved in 650

incidents. (B) Frequency distribution of the number of human factors contained in a single incident.

(57.6%), followed by planned inappropriate operations. At the

highest level, organizational climate had the most substantial prior

probability (25.3%), largely reflecting issues such as safety culture

awareness and the working atmosphere within the organization.

3.3 Sensitivity analysis of BN-HFACS

The sensitivity of a lower node to an upper node can be

calculated using Equation (2) by altering the state of each node in

the BN-HFACS. For instance, Figure 4 demonstrates the change in

the state probability of lower nodes following the control of the state

of the resourcemanagement node state. To illustrate the calculation

process, sensitivity calculation for inadequate supervision is used as

an example. As the state of resource management switched from

“yes” to “no,” the probability of inadequate supervision shifted

from 0.624 to 0.571. According to Equation (2), the sensitivity

of inadequate supervision to resource management is (0.624–

0.571)/0.571= 0.09.

Sensitivity analysis demonstrated that different levels and

human factors in the BN-HFACS had varying impacts on the

individual types of errors and violations at Level 1 (Table 2).

Among them, human factors at Level 2 exerted the most significant

influence. Skill-based errors (SBE) were mainly influenced by

conditions of operators (CO), with a sensitivity of 1.70. Decision

errors (DE) and routine violations (RV) were primarily influenced

by personnel factors (PF), with sensitivities of 0.74 and 0.46,

respectively. Perceptual errors (PE) and exceptional violations

(EV) were mainly influenced by environmental factors (EF), with

sensitivities of 0.70 and 1.29, respectively.

Human factors at Level 2 were prominently influenced by

organizational climate (OC) at Level 4, particularly the heightened

sensitivity of PF, which attained a value of 3.37. Among the three

factors at Level 2, EF exhibited notable sensitivity not only to

factors at Level 4 but also to the contributions of failure to correct

known problems (FCP) and supervisory violations (SV) at Level 3.

Conversely, CO and PF were nearly unaffected by Level 3.

Regarding human factors at Level 3, inadequate supervision

(IS) and planned inappropriate operators (PIO) were mainly

influenced by OC, with sensitivities of 3.87 and 1.81, respectively;

FCP and SV were mostly affected by resource management (RM),

with sensitivities of 2.55 and 4.70, respectively. Although the impact

of organizational process (OP) on individual human factors at Level

3 may not be the most pronounced, it is noteworthy that PIO,

FCP, and SV exhibited substantial sensitivity to OP, suggesting a

non-negligible influence of OP on these factors.

To identify the most influential factors affecting overall errors

and violations to prioritize control strategies, the absolute mean of

each factor was computed across three states for overall errors (SBE,

DE, and PE) and two states for overall violations (RV and EV). As

depicted in Figure 5, it is evident that human factors at Level 2 still

exert a more prominent influence. The errors and violations were

primarily influenced by CO and EF, respectively. Additionally, we

observed that the influence of OP on errors at the highest level is

noteworthy and should not be overlooked.

4 Discussion

Radiotherapy-related incidents present a substantial risk to

patient safety, making retrospective analysis of such incidents

vital to improving safety measures (26, 27). In this study,

we integrated HFACS with BN to create a potent quantitative

tool capable of identifying key causal factors of unsafe acts in

radiotherapy incidents. Employing the BN-HFACS model and

sensitivity analysis, we identified specific relationships of different

human factors within the RO-ILS publicly posted incidents, aiding

the development of appropriate preventive measures.

Our qualitative analysis indicated that the most frequent

errors across different clinical stages were in treatment planning,
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FIGURE 3

BN-HFACS network for analyzing human factors after the case-learning process. Based on this network, we can know the prior probability of

di�erent levels of human factors in radiotherapy safety incidents. For each factor, the greater the proportion of “yes,” the greater the a priori

probability of that human factor.

FIGURE 4

Change in probability of each node when there is a change in the state of resource management. (A) Assume a 100% probability of resource

management issues being present in radiotherapy incidents. (B) Assume radiotherapy incidents are not at all relevant to resource management.

patient setup, and target delineation. During treatment planning,

poor communication and incomplete documentation of policies

and procedures can significantly impede organizational efficiency

and contribute to planning errors (28–30). The most common

issues within treatment planning were data transfer and parameter

settings, indicating a need for standardization of process and

written information to minimize verbal communication errors.

Implementing systematic peer verification of information transfer

is crucial to ensure accuracy in planning prior to approval.

To our knowledge, this study marks the first successful

application of the BN-HFACS model in radiotherapy. While

proactive risk assessment methods, such as failure modes and

effects analysis, are widely used in radiotherapy (31, 32), they are

often subjective. The BN-HFACS offers a systematic approach,

helping to reduce the process’s incompleteness when categorizing

human factors due to limited expert knowledge or lack of

information (33). BN allows for predictive or diagnostic reasoning

(34), adding a significant advantage to this approach.
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TABLE 2 Sensitivity of nodes in BN-HFACS.

Level Factors RM OC OP IS PIO FCP SV CO PF EF

Level 3 IS 0.09 3.87 0.00

PIO 0.79 1.81 0.00

FCP 2.55 0.00 0.98

SV 4.70 0.00 2.18

Level 2 CO 0.03 0.33 0.02 0.02 0.14 0.10 0.05

PF 0.00 3.37 0.00 0.00 0.00 0.00 0.00

EF 0.35 1.62 0.17 0.00 0.00 0.97 0.95

Level 1 SBE 0.01 0.01 0.37 0.01 0.05 0.03 0.00 1.70 0.08 0.00

DE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.00

PE 0.11 0.05 0.05 0.02 0.10 0.15 0.27 0.10 0.00 0.70

RV 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.46 0.00

EV 0.08 0.06 0.04 0.00 0.00 0.21 0.21 0.00 0.00 1.29

RM, Resource management; OC, Organizational climate; OP, Organizational process; IS, Inadequate supervision; PIO, Planned inappropriate operators; FCP, Failure to correct known problems;

SV, Supervisory violations; CO, Condition of operators; PF, Personnel factors; EF, Environment factors; SBE, skill-based errors; DE, decision errors; PE, perceptual errors; RV, routine errors;

EV, exceptional errors. Columns indicate cause factors, and rows indicate result factors. The sensitivity index represents the degree of influence of the cause factors on the result factors, and the

larger its value, the greater the influence of changes in the state of the cause factors on the result factors.

FIGURE 5

Sensitivity of overall errors and violations to upper-level factors, columns indicate cause factors, and rows indicate the degree of sensitivity. Size of

the area of the circle reflects the degree of sensitivity.

Although HFACS has been employed in the realm of

radiotherapy in recent years, most studies have primarily used it to

qualitatively analyze incidents, rarely examining the extent to which

human factors at different levels contribute to incidents (5, 14, 16).

Typically, during routine incident learning and analysis, the focus

tends to be on the immediate causes leading to the incident and

the individuals involved, while underlying factors are frequently

overlooked (35). Our research effectively addressed this issue using

the BN-HFACS model, facilitating the creation of targeted safety

enhancements at the root level.

In the case-learning results of the BN-HFACS, skill-based

errors, often resulting from the thoughtless execution of familiar

tasks, had the highest prior probability of occurrence among

various unsafe acts of workers. This finding aligns with previous

studies in aviation, mining, and railways (6, 33, 36). Despite these

industries being considerably different from radiation therapy, the

human factors leading to safety incidents are interconnected and

lessons can be learned from each other.

The preconditions for unsafe acts (Level 2) had the most

significant influence on unsafe acts (Level 1). This correlation

was confirmed for the first time in the field of radiotherapy. As

unsafe acts are the most direct causes of incidents in radiotherapy,

understanding their link with implicit factors is crucial for making

substantial improvements. The condition of operators had the
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most substantial effect on skill-based errors, with factors such as

inattention, mental fatigue, physical fatigue, and time pressure

playing a role. One potential solution could be to rationalize the

workload to alleviate these issues. This area certainly warrants

our attention as we strive for long-term improvements. Our

findings also indicate that personnel factors primarily influenced

decision errors and habitual violations, while environmental

factors predominantly affected perceptual errors and exceptional

errors. Personnel factors generally stem from inadequate team

communication and teamwork (15). In the context of radiotherapy,

this is often attributable to doctors, physicists, and therapists

operating in relatively independent roles, creating an environment

where misinterpretations of intent and information bias can

emerge, leading to errors (37). As for environmental factors,

poor physical or technological environments, such as noise,

insufficient lighting, and poorly designed equipment interfaces,

can compromise staff attention and memory. Two incidents

included in this study were caused by inadequate lighting in the

treatment room, which led to incorrect positioning using the

patient’s tattoo as a reference line. Therefore, increasing the budget

for maintenance or renovation of treatment rooms used for a

prolonged period may enhance the treatment environment.

Simultaneously, we found that Level 2 factors were influenced

by higher-level factors. Notably, the organizational climate has

a significant impact, underlining the importance of cultivating a

robust organizational safety culture to mitigate safety incidents.

A positive climate includes staff awareness of radiotherapy’s high-

risk nature and a strong commitment to safety. It also indicates

a blame-free work environment that encourages error reporting

without fear of repercussions (38). To fortify an organization’s

safety culture, regular safety education is imperative.

Observing the upper-level factors and their impact on

overall errors and violations, the importance of Level 2 factors

remains evident. Additionally, organizational process exerts a

notable influence on overall errors. Consequently, enhancing

organizational policies and procedures is vital for reducing

safety incidents.

Indeed, the unique structural configuration and operational

arrangements of individual radiotherapy facilities inherently

possess distinct characteristics, which could potentially result

in the varying occurrence of safety incidents and contributing

factors. However, this paper presents a methodological framework

for incident analysis, empowering each facility to conduct a

thorough evaluation of both qualitative and quantitative facets,

and the process of analyzing RO-ILS incidents can also be used

as a reference for independent agencies using the BN-HFACS

model. By doing so, it enables the identification of particularly

vulnerable aspects within the clinical radiotherapy process and the

discernment of the most significant contributing factors. Therefore,

this approach supports the development of focused preventive

measures in each treatment center, customized to effectively tackle

these identified weaknesses.

However, this study does have some limitations. Firstly, the

sample size is relatively small. While a sample of 40 cases

was deemed sufficient for accurate BN parameter learning (25),

a larger sample size could improve the generalizability of the

findings. Owing to the sample size limitations, this study did not

specifically address the severity of the included incidents. Further

segmentation and analysis might potentially yield more unique

insights. Additionally, safety incidents have been reported by a

range of institutions, and the completeness of incident reporting

cannot be fully assured. Moreover, retrospective analysis can

present challenges in determining the origins of events and HFACS

factors. Nevertheless, these limitations are acceptable considering

the inherent nature of large international incident learning systems

(15). Last but not the least, our analysis only targeted incidents

reported in the RO-ILS, which may not represent the actual errors

occurring worldwide. In order to enhance the generalizability of

our findings, larger and more database in multiple regions is

required in the future.

5 Conclusion

In conclusion, the analysis of 81 radiotherapy incidents

utilizing the BN-HFACS model brought to light significant

associations between the implicit factors and unsafe acts in

radiotherapy incidents. Sensitivity analysis demonstrated that the

preconditions for unsafe acts (Level 2) had the most considerable

impact on unsafe acts (Level 1). Organizational climate and process

surfaced as the profound potential factors contributing to final

incidents. To enhance radiotherapy safety, it is crucial to implement

measures that focus on four-levels human factors of HFACS,

thereby reducing the likelihood of unsafe acts originating from their

root causes.
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