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Background: Osteoporosis is becoming more common worldwide, imposing 
a substantial burden on individuals and society. The onset of osteoporosis 
is subtle, early detection is challenging, and population-wide screening is 
infeasible. Thus, there is a need to develop a method to identify those at high 
risk for osteoporosis.

Objective: This study aimed to develop a machine learning algorithm to 
effectively identify people with low bone density, using readily available 
demographic and blood biochemical data.

Methods: Using NHANES 2017–2020 data, participants over 50  years old with 
complete femoral neck BMD data were selected. This cohort was randomly 
divided into training (70%) and test (30%) sets. Lasso regression selected variables 
for inclusion in six machine learning models built on the training data: logistic 
regression (LR), support vector machine (SVM), gradient boosting machine 
(GBM), naive Bayes (NB), artificial neural network (ANN) and random forest (RF). 
NHANES data from the 2013–2014 cycle was used as an external validation 
set input into the models to verify their generalizability. Model discrimination 
was assessed via AUC, accuracy, sensitivity, specificity, precision and F1 score. 
Calibration curves evaluated goodness-of-fit. Decision curves determined 
clinical utility. The SHAP framework analyzed variable importance.

Results: A total of 3,545 participants were included in the internal validation set 
of this study, of whom 1870 had normal bone density and 1,675 had low bone 
density Lasso regression selected 19 variables. In the test set, AUC was 0.785 (LR), 
0.780 (SVM), 0.775 (GBM), 0.729 (NB), 0.771 (ANN), and 0.768 (RF). The LR model 
has the best discrimination and a better calibration curve fit, the best clinical net 
benefit for the decision curve, and it also reflects good predictive power in the 
external validation dataset The top variables in the LR model were: age, BMI, 
gender, creatine phosphokinase, total cholesterol and alkaline phosphatase.

Conclusion: The machine learning model demonstrated effective classification 
of low BMD using blood biomarkers. This could aid clinical decision making for 
osteoporosis prevention and management.
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1 Introduction

Osteoporosis, the most prevalent metabolic bone disorder, is 
characterized by low bone mass, microarchitectural deterioration, 
fragility, and increased fracture risk (1–3). The growing older adult/
adults population has contributed to rising osteoporosis prevalence 
globally - currently estimated at 19.7% (4–6). Fractures in six EU 
nations may increase from 2.7 million in 2017 to 3.3 million by 2030, 
with costs rising by 27% to $37.5 billion (7). Thus osteoporosis 
imposes substantial socioeconomic burdens worldwide. However, its 
subtle onset often delays diagnosis until fractures occur (8). Effective 
screening and early interventions are critical for prevention. In other 
words, it is important to screen for osteopenia and osteoporosis in the 
general population, in order to enable timely interventions to prevent 
fragility fractures. Dual-energy X-ray absorptiometry remains the 
gold standard for measuring BMD (9). However, the need for skilled 
technicians and radiation exposure limit its widespread use (10, 11). 
Since some blood biomarkers have shown modest correlations with 
osteoporosis and are easily obtained, this study aimed to develop 
biomarker-based models to identify those with low BMD (12–14). 
Machine learning, an important artificial intelligence tool, discovers 
patterns in big datasets via complex algorithms (15). Advancements 
in healthcare big data have expanded ML applications (16). The 
purpose of this study is to utilize the data from the National Health 
and Nutrition Examination Survey (NHANES) database to build 
models and test them using six machine learning algorithms, namely, 
logistic regression (LR), support vector machine (SVM), gradient 
boosting machine (GBM), naive Bayesian (NB), artificial neural 
network (ANN), and random forest (RF), which were modeled and 
tested to compare the accuracy of several methods in predicting low 
bone density in the test set, and to explore the application value of 
machine learning algorithms in low bone density prediction and 
auxiliary diagnosis.

2 Materials and methods

2.1 Dataset source

The National Health and Nutrition Examination Survey 
(NHANES) database was selected for this study. The NHANES is a 
program designed by the National Center for Health Statistics (NCHS) 
to assess the health and nutritional status of the U.S. population by 
surveying a national sample of 5,000 citizens annually since 1999. 
NHANES protocols were approved by the NCHS Research Ethics 
Review Board with written informed consent obtained from all 
participants (17).

2.2 Participants

In this study, NHANES data for the cycle 2017–2020 was selected 
as the internal validation set, and NHANES data for the cycle 2013–
2014 was used as the external validation set, excluding participants 
younger than 50 years of age and participants with missing or invalid 
Femoral neck BMD data in Dual-Energy X-ray Absorptiometry –  
Femur.

2.3 Variable selection and definition

Based on previous literature (18, 19) and the purpose of the study, 
the following four components of variables were included: (a) 
Demographic information: age, gender, race and education, marital 
status, poverty index. (b) Examination data: Dual-Energy X-ray 
Absorptiometry  - Femur (Femoral neck BMD), body mass index 
(BMI). (c) Laboratory data: Standard Biochemical Profile, Plasma 
Fasting Glucose, HDL, LDL & Triglycerides, Total Cholesterol, 
Complete Blood Count, Glycohemoglobin. (d) Questionnaire 
information: Osteoporosis, Alcohol Use, Blood Pressure &Cholesterol, 
Diabetes, Smoking-Cigarette Use. Alcohol use was defined as having 
ever had 4/5 drinks or more per day; smoking was defined as having 
smoked at least 100 cigarettes in one’s lifetime; having ever been told 
that one has high blood pressure or is on prescription medication for 
high blood pressure was defined as high blood pressure; having ever 
been told that one has diabetes or is on insulin or glucose-lowering 
medication was defined as diabetes; and history of personal 
osteoporosis or fracture is defined as having at least one of the 
following: ever had a hip, wrist, spine or other fracture; been told by a 
doctor that you have osteoporosis. Parental history of osteoporosis or 
fracture was defined as having at least one of the following: self-
reported fracture of a parent; parent had been told that he or she 
had osteoporosis.

2.4 Evaluation of low bone density

Bone mineral density (BMD) measurements in the NHANES 
database were primarily determined using dual-energy X-ray 
absorptiometry (DXA). In 2017–18, the femur scans were acquired on 
Hologic Discovery model A densitometers (Hologic, Inc., Bedford, 
Massachusetts), using software version Apex 3.2. Bedford, 
Massachusetts, using software version Apex 3.2. In 2019-March 2020, 
the femur scans were acquired on Hologic Horizon model A 
densitometers (Hologic, Inc., Bedford, Massachusetts), using software 
version Apex version 5.6.0.5. The 2013–2014 femur scans were 
acquired on Hologic QDR-4500A fan-beam densitometers (Hologic, 
Inc., Bedford, Massachusetts) using software version Apex 3.2. All 
scans were analyzed with Hologic APEX version 4.0 software. In this 
study, the BMD of the femoral neck was chosen as a criterion because 
it has been proposed as a reference skeletal site for defining 
osteoporosis in several epidemiologic studies (11). The diagnosis of 
primary osteoporosis and osteopenia is mainly based on the T-value 
obtained after the calculation of BMD measurements (20). 
T-value = bone mineral density of the study population – mean value 
of bone mineral density of the reference group (age group of peak 
bone mineral density)/standard deviation of that reference age group 
(World Health Organization recommendations use bone mineral 
density data of non-Hispanic white women aged 20–29 years from 
NHANES III as the reference group).

T-value ≥ −1: healthy  −2.5 < T-value < −1: osteopenia  
T-value ≤ −2.5: osteoporosis

Both conditions, osteopenia and osteoporosis, are considered to 
be low bone mineral density (21), and are therefore defined as low 
bone mineral density when either of the following is met: (1) femoral 
neck T-score < −1 (2) patient said “yes” to the question: Has a doctor 
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ever told you that you had osteoporosis, sometimes called thin or 
brittle bones?

2.5 Statistical analysis

2.5.1 Data cleaning
Participants aged ≥50 years with complete femoral neck BMD 

data were included. Due to substantial missingness and outliers, data 
preprocessing was performed. We assigned “NA” to the data with “7, 
9, 77, 99,” deleted the variables with more than 30% missing values 
(22, 23), and used the MI package in the R software to perform 
multiple interpolation for the variables with less than 30% missing 
values. Summary statistics were calculated following imputation. 
Normally or near-normally distributed continuous variables were 
presented as mean ± standard deviation and compared between 
groups by independent t-tests. Non-normally distributed continuous 
data were expressed as median (interquartile range) and compared 
using non-parametric tests. Categorical variables were presented as n 
(%) and compared via chi-squared tests.

2.5.2 Feature selection
In this study, Lasso (Least Absolute Shrinkage and Selection 

Operator) feature selection was performed using the ‘glmnet’ package 
in the R software. By adding an L1 regularization term to the least 
squares function, LASSO forces some coefficients to zero, effectively 
removing those variables from the model. An important tuning 
parameter in LASSO is λ (λ ≥ 0), controlling the degree of coefficient 
shrinkage. When λ = 0, LASSO is equivalent to ordinary linear 
regression. This study performs 10-fold cross-validation through the 
‘cv.glmnet’ function, that is, the data are randomly divided into 10 
groups, nine of which are used as the training set and one as the test 
set, and one extreme value of λ is generally selected for the training 
set, and then the parameters obtained from the training set are used 
for the prediction of the remaining set of data, and this process is 
repeated for 10 times, and the optimal value of λ is finally determined 
by the mean-square error obtained from the calculation of the results 
of the 10 predictions. Under this function, there are usually two 
choices for the optimal λ value, one is λ.min, the value of λ that 
minimizes the cross-validation error; the other is λ.1se, which keeps 
the cross-validation error within one standard error. The choice of the 
optimal λ varies from study to study depending on the specifics of the 
study and the purpose of the study. In addition, Lasso performs well 
in coping with the problem of the existence of multiple covariates 
among variables, and the independent variables in this study are 
mainly common blood biochemical indexes in clinics, and there is 
often the effect of multiple covariates among these variables, while 
Lasso regression can effectively deal with the problem of covariates by 
forcing some of the coefficients to be  contracted to zero, which 
improves the stability and interpretability of the models (24).

2.5.3 Modeling and evaluation
In machine learning, there are four main methods: supervised 

learning, unsupervised learning, semi-supervised learning and 
reinforcement learning. The goal of this study is to categorize the 
population with normal bone density and the population with low 
bone density. Since this is a classification problem, the use of 
supervised learning algorithms is most appropriate (25). Therefore, six 

commonly used supervised learning algorithms, logistic regression 
(LR), support vector machine (SVM), gradient boosting machine 
(GBM), naive Bayes (NB), artificial neural network (ANN), and 
random forest (RF), were used to construct the model in this study. 
The internal validation dataset was randomly divided into training set 
and test set according to the ratio of 7:3. During the model training 
process, 10-fold cross-validation was used to select and adjust the 
model parameters. Then, 30% of the test dataset was input into the 
trained model for prediction. Additionally, NHANES data from 2013 
to 2014 was entered into the model for external validation. The model 
performance was evaluated in terms of model differentiation ability, 
calibration ability and clinical application value. The area under the 
receiver operating characteristic curve (ROC) (AUC), accuracy, 
sensitivity, specificity, precision and F1 score were utilized to assess the 
discriminative ability of the model. Calibration ability of the model 
was assessed using calibration curves. The clinical applicability of the 
models was assessed by decision curve (DCA), and the confusion 
matrices of several models were visualized to provide a more intuitive 
understanding of the classification ability of the models.

2.5.4 Evaluation of the importance of variables
SHAP (SHapley Additive exPlanation) is a post-hoc explanation 

framework for machine learning models based on game theory (26). 
It quantifies the importance of each feature in the model by calculating 
the contribution value, known as the Shapley value, for each feature 
towards the predicted outcome. This study utilizes the SHAP method 
to enhance the interpretability and transparency of the model. The 
data analysis process was conducted using R 4.3.1 and Python 3.11.3, 
and a significance level of p < 0.05 was considered statistically  
significant.

3 Results

3.1 Baseline characteristics

Based on the inclusion and exclusion criteria, a total of 3,545 study 
participants who were ≥50 years of age and had complete femoral 
neck BMD data were included in the internal validation set of this 
study (Figure 1). The baseline information of the study subjects is 
shown in Table 1, of which 1870 were in the normal BMD group and 
1,675 in the low BMD group, and a total of 60 initial variables were 
included after deletion of variables with more than 30% of missing 
values (Fasting Glucose, LDL-Cholesterol, and Triglyceride); among 
the demographic factors, lifestyle factors and past medical history, it 
can be seen that compared to the normal BMD group, the low BMD 
group was more likely to be older, female, non-Hispanic white or 
other race, widowed/divorced/separated, no history of smoking and 
alcohol consumption, lower BMI, no diabetes, and have a personal 
and parental history of osteoporosis and fracture; among the blood 
biochemical indexes, the mean values of direct HDL-Cholesterol, 
Total Cholesterol, Segmented neutrophils percent, Mean cell volume, 
Mean cell hemoglobin, Alkaline Phosphatase (ALP) were greater in 
the low bone density group than in the normal bone density group, 
while the mean values of Red blood cell count, Hemoglobin, 
Hematocrit, Glycohemoglobin, Alanine Aminotransferase (ALT), 
Creatine Phosphokinase (CPK), Creatinine, Globulin, Glucose, 
Gamma Glutamyl Transferase (GGT), Total Protein, Uric acid were 
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smaller than those of the normal BMD group (p < 0.001). The external 
validation set screened 3,127 study participants, of whom 1,796 were 
in the normal BMD group and 1,331 in the reduced BMD group, and 
the baseline information table is shown in Supplementary Table S1.

3.2 Feature selection

Variable selection was performed by Lasso (Least Absolute 
Shrinkage and Selection Operator), as shown in Figure 2, and 10-fold 
cross-validation was used to select λ. Due to the large number of 
characteristic variables in this study, if λ.min is used as the optimal λ 
value, there will be 41 variables included in the final model, which 
makes the model too complex and may have the risk of overfitting. On 
the other hand, when λ.1se is chosen as the optimal λ value, 19 
variables will be included in the model, which is more concise and has 
a good prediction performance. Therefore, λ.1se is finally chosen as 
the optimal λ value in this study. The 19 variables included in the 
machine learning model were Age, Gender, Ratio of family income to 

poverty, BMI, Diabetes, and History of personal osteoporosis and 
fracture, Parental history of osteoporosis and fracture, Total 
Cholesterol, Monocyte percent, Segmented neutrophils percent, Mean 
cell volume, Red cell distribution width, Glycohemoglobin, Alkaline 
Phosphatase (ALP), Creatine Phosphokinase (CPK), Globulin, 
Osmolality, Total Protein, Uric acid.

3.3 Evaluation of model performance

Six machine learning models were constructed in this study, 
Figure 3 shows the ROC curves for the training and test sets of the 
model in the internal validation set, in the test set, LR (AUC = 0.785) 
has the highest AUC value and the best model discrimination, 
followed by SVM (AUC = 0.78), GBM (AUC = 0.775), ANN 
(AUC = 0.771), RF (AUC = 0.761), and NB (AUC = 0.729); LR also had 
higher accuracy (0.733), specificity (0.829), and precision (0.766) than 
the remaining five models; RF had the highest sensitivity (0.684); and 
GBM had a higher F1 score (0.693) than the other models (Table 2). 

FIGURE 1

Flow chart of this study. LR, logistic regression; SVM, support vector machine; GBM, gradient boosting machine; NB, naive Bayesian; ANN, artificial 
neural network; RF, random forest; Lasso, Least Absolute Shrinkage and Selection Operator.
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TABLE 1 Comparison of general characteristics of the group with normal bone mineral density and the group with low bone mineral density.

Normal bone density
N =  1870

Low bone density
N =  1,675

P

Age(year) 62.5 (8.49) 66.6 (9.09) <0.001

Gender (n, %) <0.001

Male 1,234 (66.0%) 642 (38.3%)

Female 636 (34.0%) 1,033 (61.7%)

Race (n, %) <0.001

Mexican American 192 (10.3%) 141 (8.42%)

Other Hispanic 214 (11.4%) 173 (10.3%)

Non-Hispanic White 599 (32.0%) 773 (46.1%)

Non-Hispanic Black 630 (33.7%) 280 (16.7%)

Other Race 235 (12.6%) 308 (18.4%)

Education level (n, %) 0.641

Less than 9th grade 172 (9.20%) 156 (9.31%)

9–11th grade 190 (10.2%) 173 (10.3%)

High school graduate/GED or equivalent 473 (25.3%) 426 (25.4%)

Some college or AA degree 590 (31.6%) 492 (29.4%)

College graduate or above 445 (23.8%) 428 (25.6%)

Marital status (n, %) <0.001

Married/Living with Partner 1,182 (63.2%) 939 (56.1%)

Widowed/Divorced/Separated 519 (27.8%) 616 (36.8%)

Never married 169 (9.04%) 120 (7.16%)

Ratio of family income to poverty (n, %) 0.011

≤1 298 (15.9%) 313 (18.7%)

1 ~ 3 791 (42.3%) 738 (44.1%)

>3 781 (41.8%) 624 (37.3%)

Smoke (n, %) <0.001

Yes 927 (49.6%) 723 (43.2%)

No 943 (50.4%) 952 (56.8%)

Drinking alcohol (n, %) <0.001

Yes 368 (19.7%) 240 (14.3%)

No 1,502 (80.3%) 1,435 (85.7%)

BMI (n, %) <0.001

<25 303 (16.2%) 580 (34.6%)

25 ~ 30 680 (36.4%) 647 (38.6%)

≥30 887 (47.4%) 448 (26.7%)

Diabetes (n, %) <0.001

Yes 489 (26.1%) 310 (18.5%)

No 1,381 (73.9%) 1,365 (81.5%)

Hypertension (n, %) 0.319

Yes 1,017 (54.4%) 882 (52.7%)

No 853 (45.6%) 793 (47.3%)

History of personal osteoporosis and fracture (n, %) <0.001

Yes 560 (29.9%) 612 (36.5%)

No 1,310 (70.1%) 1,063 (63.5%)

(Continued)
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TABLE 1 (Continued)

Normal bone density
N =  1870

Low bone density
N =  1,675

P

Parental history of osteoporosis and fracture (n, %) <0.001

Yes 315 (16.8%) 410 (24.5%)

No 1,555 (83.2%) 1,265 (75.5%)

Direct HDL-Cholesterol (mmol/L) 1.36 (0.40) 1.50 (0.45) <0.001

Total Cholesterol (mmol/L) 4.84 (1.13) 5.01 (1.14) <0.001

White blood cell count (1000 cells/uL) 7.21 (9.31) 6.91 (2.20) 0.181

Lymphocyte percent (%) 30.9 (9.27) 30.0 (9.10) 0.003

Monocyte percent (%) 8.60 (2.59) 8.37 (2.12) 0.003

Segmented neutrophils percent (%) 56.8 (9.92) 58.1 (9.62) <0.001

Eosinophils percent (%) 2.96 (2.22) 2.84 (2.04) 0.079

Basophils percent (%) 0.83 (0.34) 0.84 (0.35) 0.464

Lymphocyte number (1,000 cells/uL) 2.35 (8.55) 2.12 (3.41) 0.303

Monocyte number (1,000 cells/uL) 0.59 (0.25) 0.56 (0.20) 0.001

Segmented neutrophils num (1,000 cell/uL) 4.08 (1.74) 4.08 (1.63) 0.948

Eosinophils number (1,000 cells/uL) 0.21 (0.18) 0.19 (0.16) 0.013

Basophils number (1,000 cells/uL) 0.05 (0.05) 0.05 (0.05) 0.696

Red blood cell count (million cells/uL) 4.76 (0.50) 4.59 (0.49) <0.001

Hemoglobin (g/dL) 14.2 (1.53) 13.9 (1.41) <0.001

Hematocrit (%) 42.2 (4.16) 41.3 (3.92) <0.001

Mean cell volume (fL) 89.0 (6.06) 90.1 (5.51) <0.001

Mean cell hemoglobin concentration (g/dL) 33.6 (0.95) 33.5 (0.85) 0.229

Mean cell hemoglobin (pg) 29.9 (2.47) 30.2 (2.18) <0.001

Red cell distribution width (%) 14.0 (1.26) 13.9 (1.27) 0.003

Platelet count (1,000 cells/uL) 230 (61.4) 236 (65.5) 0.006

Mean platelet volume (fL) 8.32 (0.93) 8.24 (0.91) 0.012

Nucleated red blood cells 0.09 (0.09) 0.08 (0.08) 0.036

Glycohemoglobin (%) 6.22 (1.26) 6.00 (1.13) <0.001

Alanine aminotransferase (ALT) (U/L) 22.9 (16.3) 20.4 (20.8) <0.001

Albumin, refrigerated serum (g/L) 40.5 (3.22) 40.3 (3.27) 0.321

Alkaline phosphatase (ALP) (IU/L) 79.6 (26.1) 83.8 (27.3) <0.001

Aspartate aminotransferase (AST) (U/L) 22.5 (12.9) 22.0 (15.7) 0.346

Bicarbonate (mmol/L) 25.6 (2.47) 25.8 (2.52) 0.028

Blood urea nitrogen (mmol/L) 5.91 (2.26) 5.94 (2.27) 0.741

Chloride (mmol/L) 101 (3.06) 101 (3.21) 0.045

Creatine phosphokinase (CPK) (IU/L) 175 (232) 117 (116) <0.001

Creatinine, refrigerated serum (umol/L) 85.5 (43.4) 79.3 (41.4) <0.001

Globulin (g/L) 31.0 (4.43) 30.4 (4.58) <0.001

Glucose, refrigerated serum (mmol/L) 6.13 (2.51) 5.84 (2.15) <0.001

Gamma glutamyl transferase (GGT) (IU/L) 37.5 (46.9) 30.5 (40.4) <0.001

Iron, refrigerated serum (umol/L) 15.9 (6.12) 16.1 (6.16) 0.384

Lactate dehydrogenase (LDH) (IU/L) 163 (36.3) 167 (36.1) 0.009

Osmolality (mmol/Kg) 283 (5.42) 282 (6.08) 0.069

Phosphorus (mmol/L) 1.14 (0.18) 1.15 (0.16) 0.011

Potassium (mmol/L) 4.12 (0.40) 4.13 (0.39) 0.660

(Continued)

https://doi.org/10.3389/fpubh.2024.1347219
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Xu et al. 10.3389/fpubh.2024.1347219

Frontiers in Public Health 07 frontiersin.org

Figure 4 shows the confusion matrix for the model test set, from 
which it can also be  seen that LR has the strongest ability to 
discriminate between people with normal bone density and those with 
low bone density among the six models. The calibration curves of the 
six model training and validation sets are shown in Figure 5, and in 
the test set, the calibration curve of RF fits the ideal curve to the 
highest degree, and the calibration curves of the rest of the models fit 
the ideal curve reasonably well except for NB, which has a worse fit, 
suggesting a better match between the predicted probabilities of the 
models and the actual observed incidence rates. The results of 
Decision Curve Analysis (DCA) on the training and test sets of the 
models are shown in Figure 6, which shows that when the predictive 
probability threshold is certain, LR has the largest net gain compared 
to the other five models, indicating that LR has better clinical utility. 
In the external validation of the model, the AUC value (0.78), accuracy 
(0.718), specificity (0.752), and precision (0.667) of LR were higher 
than those of the other models, and good robustness and extrapolation 
ability could also be seen from the confusion matrix, ROC curve, 
calibration curve, and decision curve of the model 
(Supplementary Figures S3, S4 and Supplementary Table S3). 

Therefore, from the comprehensive evaluation of model differentiation, 
calibration, and clinical gain, LR is the optimal model for predicting 
low BMD population.

3.4 Evaluation of the importance of 
variables

We interpreted the importance of predictor variables based on the 
SHAP algorithm for the LR model with the best predictive 
performance (Figure 7). The extent to which a variable contributes to 
the model is reflected by the SHAP value. A higher SHAP value of a 
variable means a higher degree of its contribution to the model (26). 
As shown in Figure 7A, the top-down ordering of the variables means 
that their contribution to low BMD is in ascending order, with the line 
with a SHAP value of 0 as the vertical axis, the variables with red color 
on the right side of the line represent the positive contribution of the 
variable to the predicted outcome, while the variables with blue color 
on the right side of the line have a negative contribution. Therefore, 
the top six variables in terms of importance for predicting low bone 

TABLE 1 (Continued)

Normal bone density
N =  1870

Low bone density
N =  1,675

P

Sodium (mmol/L) 141 (2.63) 141 (2.98) 0.597

Total bilirubin (umol/L) 8.44 (5.00) 7.99 (4.93) 0.007

Total calcium (mmol/L) 2.32 (0.09) 2.33 (0.10) 0.017

Total protein (g/L) 71.5 (4.37) 70.8 (4.65) <0.001

Uric acid (umol/L) 344 (88.6) 312 (85.7) <0.001

BMI, body mass index.

FIGURE 2

(A) Lasso coefficient path plots for 59 variables. (B) Cross-validation curves (10-fold cross validation). The left dashed line represents lambda.min and 
the right dashed line represents lambda.1se.
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mass in the population were: age > BMI > gender > creatine 
phosphokinase > total cholesterol > alkaline phosphatase, in which 
age, total cholesterol, and alkaline phosphatase were positively 
correlated with the occurrence of low bone mineral density, i.e., the 
older the age, the higher the indexes of total cholesterol and alkaline 
phosphatase, and the higher the probability of developing low bone 
mineral density. BMI, gender, and creatine phosphokinase were 
negatively correlated with the occurrence of low BMD, i.e., the lower 
the BMI, the female, and the lower the creatine phosphokinase index, 
the higher the probability of low BMD. Given that age was the variable 
with the highest variable importance in the model of this study, 
we explored the effect of age on the occurrence of low BMD as well as 
other blood biochemical indices. Comparison of the study subjects 
divided into groups with a cutoff of 5 years of age revealed that most 
of the blood biochemical indices were significantly associated with age 
(Supplementary Table S2). Their associations were further explored 
by applying restricted cubic spline (RCS), and age was found to 
be linearly related to the occurrence of low BMD, with the older the 
age, the higher the risk of low BMD (Supplementary Figure S1). 
Among the blood biochemical indices, except for Alkaline 
Phosphatase (ALP), Mean cell volume, Segmented neutrophils 

percent, and Total Cholesterol, all of them showed a linear trend with 
age (Supplementary Figure S2).

4 Discussion

With the aging of the population worldwide in recent years, the 
incidence of osteoporosis in older adult/adults men and women 
remains high, and fractures caused by osteoporosis can lead to 
disability, prolonged bed rest, impaired function, and even death, 
bringing serious economic and physical and psychological burdens to 
the affected families as well as to individuals (27). Some studies have 
shown that early diagnosis and intervention for patients with 
osteopenia and osteoporosis can effectively reduce their fracture 
incidence (28), so we developed several machine learning algorithms 
to identify abnormal bone density in the population with osteopenia 
and osteoporosis. In medical research, the collection of clinical data is 
difficult and the collected data are heterogeneous and 
non-standardized, while public databases such as SEER, MIMIC, and 
NHANES have the advantages of large amount of data and richness of 
the information contained in them, and thus they are widely favored 

FIGURE 3

ROC curves for the six models in the training set (A) and test set (B). LR, logistic regression; SVM, support vector machine; GBM, gradient boosting 
machine; NB, naive Bayesian; ANN, artificial neural network; RF, random forest.

TABLE 2 Comparison of the predictive power of several models in the test set.

Model AUC Accuracy Sensitivity Specificity Precision F1

LR 0.785 0.733 0.626 0.829 0.766 0.689

SVM 0.78 0.718 0.628 0.799 0.737 0.678

GBM 0.775 0.725 0.658 0.784 0.732 0.693

NB 0.729 0.685 0.66 0.708 0.669 0.665

ANN 0.771 0.712 0.642 0.775 0.719 0.679

RF 0.768 0.712 0.684 0.738 0.701 0.692
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FIGURE 4

Confusion matrix of the six models in the test set. (A) LR, logistic regression. (B) SVM, support vector machine. (C) GBM, gradient boosting machine. 
(D) NB, naive Bayesian. (E) ANN, artificial neural network. (F) RF, random forest.

FIGURE 5

Calibration curve for the six models in the training set (A) and test set (B).
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FIGURE 6

Decision curves for the six models in the training set (A) and test set (B).

FIGURE 7

(A) Beeswarm plots of the LR Model. Generate SHAP values for each variable and reveal its relationship with low bone density. (B) Importance ranking 
plot of variables for LR model.

by researchers (29). Many previous studies (30–32) have applied 
machine learning algorithms to mine public databases and achieved 
good prediction results. Our study included 3,545 participants with 
complete femoral neck BMD measurements from 2017 to 2020 from 
the National Household Nutrition and Exercise Survey (NHANES) 
database, which were divided into a training set and a test set 
according to the ratio of 7:3, with 2,841 participants in the training set 
and 1,064 participants in the test set, and the data from the training 
set were analyzed by using demographic factors, blood biochemical 
indices, and questionnaire information, which are clinically readily 

available variables, six common supervised machine learning models 
were built using the training set data and the model performance was 
tested with the test set data, and the model with the best predictive 
performance, LR, was finally selected based on the ROC curves, 
calibration curves, decision curves, confusion matrices, as well as 
model performance evaluation indexes, such as accuracy and 
sensitivity, etc. It is worth noting that the performances of the three 
models, GBM, SVM, and ANN, are also very well. Especially in the 
training set (Table 3), the AUC values of SVM (AUC = 0.804), GBM 
(AUC = 0.799), and ANN (AUC = 0.784) even exceed that of LR 
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(AUC = 0.775), and it can be seen from the calibration curves and the 
decision curves of the training set that the fit of the calibration curves 
of GBM and SVM is better than that of LR, and ANN is on a par with 
LR. The decision curve performance of GBM, SVM and ANN is also 
better than that of LR. The ability of two models, RF and NB, to 
predict the population with low bone density is relatively weak. RF has 
an overfitting problem in the training set, and in the test set, although 
the calibration curves fit the ideal curves better, the AUC value is low, 
and the model’s differentiation is average. Several model evaluation 
indexes of NB are lower in the training set and the test set. The model’s 
ROC curve, calibration curve, and decision curve are poor compared 
to the rest of the models, and the predictive ability is the weakest 
among the six models.

We analyzed the variable importance of the 19 independent 
variables included in the model through the SHAP framework, and 
found that the top three variables in terms of importance were age, 
BMI, and gender, and that older age, lower BMI, and female gender 
were risk factors for lower BMD. In previous studies, age and gender 
have been recognized as established risk factors for osteoporosis (33, 
34), especially in women, after menopause, the level of estrogen in 
the body decreases, and BMD decreases, and the prevalence of 
osteoporosis rises dramatically, so that women over the age of 
50 years are often a priority population for osteoporosis screening 
(35). Whereas the relationship between BMI and BMD is unclear, a 
two-sample Mendelian randomization study showed a positive 
causal association between BMI and BMD levels (36); a meta-
analysis that included 108 studies showed that the risk of 
osteoporosis in people with low BMI was 2.76 times higher than that 
in people with high BMI (6), which are in keeping with the 
conclusions we have drawn. However, a prospective study concluded 
that the contribution of BMI to fragility fractures varies by gender 
and by skeletal site, with a more complex association between the 
two (37). Therefore, further exploration of the relationship between 
BMI and BMD is warranted.

Among the blood biochemical indices, the three variables that 
contribute most to low BMD are creatine phosphokinase, total 
cholesterol, and alkaline phosphatase, where the higher the two 
indices of total cholesterol and alkaline phosphatase, the higher the 
likelihood of lower BMD, and the opposite is true of creatine 
phosphokinase, where the lower the value, the higher the likelihood 
of lower BMD. Creatine phosphokinase (CPK), also known as creatine 
kinase (CK), plays an important role in cellular energy metabolism, 
and fewer studies have been conducted on the association between CK 
and BMD. A retrospective and prospective cohort study found that 
the group with a history of previous fracture had a higher level of CK 
values than the group without a history of fracture, and the group that 

presented with a new fracture also had a higher level than the group 
that did not present with a fracture, which is contrary to our opinion, 
but the study was only conducted on young female athletes, which has 
some limitations, and the number of subjects was small, so this 
conclusion also needs to be  further confirmed (38). Alkaline 
phosphatase is a bone turnover marker that is widely found in bone, 
liver, and intestine and plays an important role in bone growth and 
metabolism (39). Previous studies have shown that higher ALP levels 
are positively associated with low BMD or osteoporosis, which is 
consistent with the conclusions we have drawn, probably because 
alkaline phosphatase activity is increased when skeletal disease is 
present to meet the demands of bone growth and reconstruction (40, 
41). There is no clear consensus on the relationship between total 
cholesterol and BMD, and most studies agree with us (42–44) that 
there is a negative correlation between the two, however, there are also 
studies that take the opposite view (40), and a cross-sectional study 
from China found that the associations were very different in men and 
women, with TC positively correlated with BMD in men and In 
women, the association was U-shaped, with curve inflection points 
varying by age and BMI (45). Therefore, the association and 
mechanisms between TC and BMD need to be  explored in 
further studies.

The present study also has some limitations. First, in the 
NHANES database, those who participated in BMD measurement 
by dual-energy X-ray absorptiometry were older than 50 years, and 
nowadays there is a trend of younger age for both osteoporosis and 
bone loss (46), so screening should not be limited to the middle-
aged and older population. Second, our study is based on the 
U.S. NHANES database, which, although covering multiple races in 
the U.S., may have limitations when applied to other racial or 
national populations. Therefore, data from different countries and 
regions will be collected and analyzed in the future to increase the 
generalizability of the model. Third, although several variables such 
as demographic and blood biochemical indicators were included in 
this study, there are many factors that were not included in the 
study, such as lifestyle, dietary habits, genomic data, and imaging 
data, which are also closely related to BMD. It is hoped that more 
data such as these will be  included in future studies to further 
improve the accuracy of the model and expand its scope of 
application. Fourth, with the rapid development of the field of 
artificial intelligence, new algorithms such as deep learning 
algorithms (47, 48) and image recognition technology (49) are 
constantly emerging. In addition, more and more research tends to 
explore diseases from the perspective of pathogenic mechanisms 
(50) and drug development (51), and we are looking forward to 
making more progress in these areas in the future.

TABLE 3 Comparison of the predictive ability of several models in the training set.

Model AUC Accuracy Sensitivity Specificity Precision F1

LR 0.775 0.712 0.657 0.761 0.711 0.683

SVM 0.804 0.734 0.728 0.739 0.714 0.721

GBM 0.799 0.728 0.687 0.765 0.724 0.705

NB 0.741 0.697 0.619 0.767 0.704 0.659

ANN 0.784 0.721 0.677 0.76 0.716 0.696

RF 1 1 1 1 1 1
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5 Conclusion

In this study, we  applied six machine learning algorithms to 
construct a prediction model for low bone mass based on clinically 
accessible metrics in the NHANES database, and used 10-fold cross-
validation to internally validate the model and NHANES data from 
different time periods to input into the model as an external validation, 
applying multiple metrics to evaluate the model performance, and 
finally selecting the best predictive performance of the ML model, 
LR. The model can screen out people osteopenia and osteoporosis, 
and assist clinicians in making decisions to better realize the primary 
and secondary prevention of osteoporosis.
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