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Respiratory system cancer, encompassing lung, trachea and bronchus cancer,

constitute a substantial and evolving public health challenge. Since pollution

plays a prominent cause in the development of this disease, identifying which

substances are most harmful is fundamental for implementing policies aimed

at reducing exposure to these substances. We propose an approach based on

explainable artificial intelligence (XAI) based on remote sensing data to identify

the factors that most influence the prediction of the standard mortality ratio

(SMR) for respiratory system cancer in the Italian provinces using environment

and socio-economic data. First of all, we identified 10 clusters of provinces

through the study of the SMR variogram. Then, a RandomForest regressor is used

for learning a compact representation of data. Finally, we used XAI to identify

which features were most important in predicting SMR values. Our machine

learning analysis shows that NO, income and O3 are the first three relevant

features for the mortality of this type of cancer, and provides a guideline on

intervention priorities in reducing risk factors.

KEYWORDS

explainable artificial intelligence, air pollution, lung cancer, respiratory disease, socio-
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1 Introduction

This study aims to investigate the relationship between air pollution and respiratory

system cancer mortality in Italian provinces. Air pollution is a pressing issue of the modern

world, impacting human health and the environment in numerous ways (1). One of

its significant consequences is its link to respiratory system cancer, a malignancy that

claims millions of lives globally each year (2). Air pollution, which mainly consists of fine

particulate matter and toxic gases, can enter the lung tissue and trigger a series of chronic

inflammatory and oxidative damage to the cells, leading to malignant transformation.

Respiratory system cancer is a type of cancer that affects the lungs, bronchi and trachea.

Themost common types of respiratory system cancer are lung cancer and bronchial cancer.

(3). While smoking is a primary risk factor, there are other important contributing factors,

such as secondhand smoke, occupational exposure, and air pollution. This sets the stage

for the focus of the study (3). It is estimated that 14% of lung cancer deaths are attributable
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to environmental air pollution (4). Symptoms of respiratory system

cancer can include persistent cough, chest pain, shortness of breath,

hoarseness, fatigue, and weight loss.

A number of works have dealt with long and short-term effect

of air pollution and cancer (5, 6), highlighting a multitude of

contributing factors such as the type of pollutant, exposure time

and frequency, and individual susceptibility (7): an increase of

10 µg/m3 in PM10 concentration raises the average likelihood of

developing lung cancer by 20%, whereas a 5 µg/m3 rise in PM2.5

elevates the risk by 30% (8). Recognizing and addressing the link

between air pollution and respiratory system cancer is critical for

protecting public health on a global scale. It informs evidence-based

policies, encourages international collaboration, and empowers

individuals and communities to take actions that can mitigate the

impact of air pollution on respiratory health.

The goal of this work was to implement a Machine Learning

(ML) algorithm predicting the standard mortality ratio (SMR)

for lung, bronchi and trachea cancer of the Italian provinces by

using air pollution data downloaded from Copernicus Atmosphere

Monitoring Service (CAMS) and socio-economic data downloaded

from ISTAT. ML is the discipline dealing with the replication

of the learning mechanisms of the human brain through

statistical algorithms (9). Random forest is a machine learning

algorithm used for both classification and regression tasks. It

is an ensemble learning method that creates several decision

trees and combines their predictions to make a final decision

or prediction. Recent advancements in ML techniques resulted

in the introduction of eXplainable Artificial Intelligence (XAI)

which allows for the identification of the crucial attributes

for each instance (10–12). Explainable AI provides clarity and

understanding into the decision-making processes of AI models. It

helps improve transparency, trust, accountability, and compliance

with regulations. XAI methods has been applied to ML algorithms

to provide a clear picture of the relevant features affecting the

performance of the models, their relations with the outcomes,

with each other’s and both their local and global effects. The main

intent of our study was to present a framework to determine which

pollution indices, based on remote sensing data, aremost associated

to the mortality from cancer of the respiratory system. We studied

the mortality in the Italian provinces given its heterogeneity in

terms of ecological and environmental features. In order to do this,

we evaluated to what extentmortality from cancer of the respiratory

system can be predicted based on environmental pollution and

socio-economic indices.

2 Materials

The study was conducted using mortality data from ISTAT,

that is the Italian Institute of Statistics, responsible for collecting,

analyzing, and disseminating official statistics on the country’s

population, economy, and society.1 ISTAT’s main functions include

conducting population censuses, compiling and publishing official

statistics on topics such as, employment, and economic indicators,

and providing support and expertise to other public institutions

and organizations in the field of statistics. In particular, the

1 Available online at: https://www.istat.it/it/archivio/222527.

respiratory system cancer mortality at the provinces level in 2019

has been considered.

In this work, we mainly exploited pollutants’ concentration

from the Copernicus Air Monitoring Service (CAMS). An outline

of the data preparation workflow is presented in Figure 1. In

order to get an analysis-ready data table we firstly collected

daily air quality maps from the Copernicus Data Store for the

year 2019.2

2.1 Input data preparation

The pollution data of year 2019 has been downloaded

from Copernicus Atmosphere Monitoring Service (CAMS). It

is a European Union program that provides comprehensive

information on air quality and the Earth’s atmosphere.

It aims to improve air quality forecasts and support decision-

making related to air quality management and environmental

policy-making in Europe and around the world. CAMS uses a

wide range of independent monitoring and modeling systems

to collect and analyze data on atmospheric composition, air

quality, and weather patterns. CAMS provides annual air quality

reanalyzes for Europe based on both unvalidated and validated

observations.3 Since the downloaded data covered a larger

area than that of interest, only pollution data of the Italian

peninsula were extracted using the Python library GeoPandas.4

Then, for each selected pollutant, both annual average and

standard deviation were computed. The polluting substances

considered were: carbon monoxide (CO), nitrogen monoxide

(NO), nitrogen dioxide (NO2), ozone (O3), particulate matter

10 (pm10), particulate matter 2.5 (pm2.5) and sulfur dioxide

(SO2). Pollutant values are the result of an ensemble median

of 11 state-of-the-art numerical air quality models developed in

Europe: CHIMERE from INERIS (France) (13), EMEP from MET

Norway (Norway) (14), EURAD-IM from Jülich IEK (Germany)

(15), LOTOS-EUROS from KNMI and TNO (Netherlands)

(16), MATCH from SMHI (Sweden) (17), MOCAGE from

METEO-FRANCE (France) (18), SILAM from FMI (Finland)

(19), DEHM from AARHUS UNIVERSITY (Denmark) (20),

GEM-AQ from IEP-NRI (Poland) (21), MONARCH from BSC

(Spain) (22) and MINNI from ENEA (Italy) (23). The yearly

ensemble reanalyzes are available with a time resolution of

1 h from step 1st January to the 31st of December, while the

horizontal resolution of ensemble reanalyzes is on a 0.1◦×

0.1◦ regular latitude-longitude grid. The analysis was conducted

using 2019 data since pollution data available on the CAMS

platform starts from April 2018. Additionally, years following

2019 were not considered due to the COVID epidemic that

2 Available online at: https://atmosphere.copernicus.eu/.

3 Available online at: https://ads.atmosphere.copernicus.eu/#!/

search?text=andtype$=$datasetandkeywords$=$((%20%22Product

%20type:%20Reanalysis%22%20)%20AND%20(%20%22Variable%20domain:

%20Atmosphere%20(composition)%22%20)%20AND%20(%20%22Spatial

%20coverage:%20Europe%22%20)%20AND%20(%20%22Temporal

%20coverage:%20Past%~22%20)).

4 Available online at: https://geopandas.org/en/stable/.
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FIGURE 1

Data preparation workflow.

TABLE 1 Mean and standard deviation values of air pollution data by

province and pollutant.

Pollutants Northern
Italy

Center Italy Southern
Italy

Pm2.5
( µg

m3

)

15.55± 5.42 10.94± 1.11 11.37± 2.15

pm10
( µg

m3

)

19.09± 6.03 15.56± 1.37 16.33± 2.29

CO
( µg

m3

)

194.04± 45.17 156.58± 9.24 150.85± 20.63

NO
( µg

m3

)

1.23± 1.21 0.34± 0.16 0.33± 0.3

NO2

( µg

m3

)

13.15± 6.49 7.32± 2.55 6.17± 3.5

SO2
( µg

m3

)

1.56± 0.66 1.01± 0.27 1.33± 0.51

O3
( µg

m3

)

58.88± 7.79 67.82± 5.88 69.63± 7.29

began in the early months of 2020, a disease that increased

deaths from respiratory illnesses. The average values and standard

deviations of pollutants for the provinces of Northern, Central,

and Southern Italy are reported in Table 1. Subsequently, in

order to get a structured data table to be added to socio-

demographic descriptors, a spatial average of these intermediary

maps have been computed within the boundaries of each Italian

province. Other pollution-related and socio-economic variables

were considered to enrich the data set, in particular: cultivated

areas, urban areas, benzene, temperature, N fertilizer, P4010

fertilizer, microelement fertilizer, organic fertilizer, bed number,

which represents the number of hospital beds available, lifetime,

income, life quality, instruction, vehicles total, urban traffic,

photovoltaic panel, green urban, electric consumption, noise and

wastes (24).

The complete list of the selected descriptors is reported in

Table 2.

2.2 Output data preparation: the indirect
standardization

Indirect standardization is a statistical method used to compare

the rates of events or conditions in two or more populations

while controlling for differences in population characteristics

such as age, sex or socioeconomic status. This method calculates

expected rates for each population by applying the distribution

of a particular population characteristic (for example age) to a

reference population with known rates (25). The observed rates

of a particular outcome in each population are then compared to

the expected rates, which have been adjusted for any differences in

population characteristics. In this work we computed the standard

mortality ratio (SMR), the ratio between the deaths observed in

a territory and those expected in the same. The expected deaths

were calculated by applying the corresponding specific mortality

ratios of the population assumed as standard (the national one

in this case) to the average annual population by age classes of

each territorial unit. The average standardizedmortality ratio (SMR

for cancer of the respiratory system) distribution within Italian

provinces is shown in Figure 2A.Moreover, the province of Sondrio

was removed from our analysis since it appears to be an outlier in

the SMR distribution, as shown in the Figure 2B.

3 Methods

Themain goal of this work is to find through an XAI algorithm,

which air pollutants and/or socio-economic index contribute most

to mortality from lung, trachea and bronchial cancer in Italian

provinces. A cross-validation framework has been implemented to

train a Random Forest regressor (RF) (26) of the standardmortality

ratio for respiratory cancer in Italian provinces; then, by using

SHapley Additive exPlanations (27), amethod based on cooperative

game theory and used, we performed an explain ability analysis
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TABLE 2 Overview of the variables selected for this study.

Data Type Source Value Coding

Pollutant Time series
( µg

m3

)

CAMS Mean
( µg

m3

)

, Standard

deviation
( µg

m3

)

mean pm2.5, std pm2.5, mean pm10, std pm10, mean CO,

std CO, mean NO, std NO, mean NO2 , std NO2 , mean O3 ,

std O3 , mean SO2 , std SO2

Anthropogenic ISTAT Mean N fertilizer, P410 fertilizer, Microelement fertilizer, Organic

fertilizer, bed number, life time, income, life quality,

instruction, Vehicles total, urban traffic, Electric

Consumption, noise, wastes

Environment ISTAT Mean cultivated areas, urban areas, benzene, temperature,

photovoltaic panel, green urban

FIGURE 2

(A) Standardized mortality ratio distribution in 2019 within Italian provinces. (B) Boxplot of standardized mortality ratio for cancer of the respiratory

system of the Italian provinces in 2019.

to increase transparency and interpretability of machine learning

model. The Figure 3 shows a schematic overview of the methods

adopted in the present work.

3.1 Random forest regressor of standard
mortality ratio

Random Forest (RF) operates as an ensemble learning classifier

rooted in the concept of classification trees. RF essentially creates

a collection of classification trees, wherein each tree is trained on

a bootstrapped sample from the available data. To prevent biased

estimations, one-third of the available examples are excluded and

utilized for the out-of-bag error estimation.

In the process of tree growth, the ideal split at each node relies

on a random selection of M/3 descriptors where M represents the

total available descriptors. It has been shown that the classification

error is influenced by two primary factors: the interdependence

among trees in the forest and the individual predictive power of

each tree. Managing these factors involves adjusting the number of

trees in the forest and the quantity of features sampled per split. The

accuracy of RF models substantially depends on two parameters,

the number of sampled features f and the number of the forest

trees T.

In this study, RF was implemented using the random Forest

routine from the scikit-learn package (v 1.2.1) (28) with its

default configuration.

3.2 Hierarchical spatial clustering and
model performance assessment

In order to avoid information leakage between spatially

dependent observations, we preliminary found a partition of

clusters of adjacent provinces to keep apart during the training and

validation steps.

The spatial clusters of provinces adopted in the cross-

validation scheme were found through a combined use of a

hierarchical clustering algorithm applied to the matrix of the

euclidean distances between provinces, and the semivariogram

plot of the SMRs. A semivariogram plot is a tool used in

geostatistics to assess the spatial dependence of a variable. It

is usually plotted on a graph where the x-axis corresponds to

the distance between a pair of selected locations (also known

as spatial lag), while the y-axis corresponds to the average
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squared difference of the variable values computed for those

pairs of location within a given distance interval. In this work,

we estimated the spatial range of the semivariogram, i.e., the

distance after which the observations are supposed to be no

longer correlated, using a discretionary approach by a visual

identification of the plateau (i.e., when no further increase in

variance is observed).

Establishing the range of the empirical semivariogram

of the SMRs allowed us to delineate ten clusters after

thresholding the dendrogram obtained by the hierarchical

clustering of the geographical distances of the Italian provinces

(Figure 4).

We utilized a leave-one-cluster-out cross-validation approach

to mitigate spatial data bias when assessing the regression

performance of an ensemble Random Forest regressor. This

validation scheme was implemented to prevent overestimation

of performance. In fact, spatial autocorrelation in two adjacent

provinces, one selected in the training set and the other in

validation, may lead to overoptimistic results.

Finally, we evaluated the performance of our machine

learning model, by computing the coefficient of determination

r2 (Equation 1) and the mean absolute error MAE (Equation 2),

whose definition is provided in the following:

Coefficient of determination:

r2 = 1−

∑

n
i=1(yi − ŷi)

2

∑

n
i=1(yi − ȳ)2

(1)

Mean absolute error:

MAE =
1

n

n
∑

i−1

∣

∣(yi − ŷi)
∣

∣ (2)

where ŷi are the predicted values, ȳ is their average, while yi are the

observed values of the SMR in the validation set.

3.3 Features explain ability

Epidemiological studies are crucial in understanding and

controlling the spread of diseases, but often require large sets

of data that are difficult for humans to analyze efficiently.

Artificial intelligence (AI) has emerged as a useful tool in

epidemiological studies, with promising applications in predicting

disease outbreaks, identifying risk factors, and developing targeted

interventions. However, as AI becomes more prevalent in the field,

there is a growing concern about its lack of transparency and

explain ability, which can limit its utility and undermine the trust in

its results. Explainable artificial intelligence (XAI) can address these

concerns by providing interpretable models, transparent decision-

making processes, and clear explanations of the AI’s predictions

and recommendations. In this work, we used SHapley Additive

exPlanations (SHAP) method, a XAI algorithm borrowed from

game theory (29, 30). The SHapley Additive exPlanations (SHAP)

method is a model-agnostic approach to interpret the output of

any machine learning model. It provides a unified framework for

interpreting the predictions of any model by assigning a feature

importance value to each input feature (Equation 3).

SHAP method values how a feature affects the performance of

the model on the validation set by including and removing it from

the model:

8j(x) =
∑

F⊆S−{j}

|F|! (|S| − |F| − 1)!

|S|!

[

fx(F ∪ j)− fx(F)
]

(3)

where x is an instance, the sum is over all the subsets S of features

which include the feature j, |F|!(|S|−|F|−1)!
|S|! is a weight parameter

that multiplies all of the permutations of S! by the potential

permutations of the remaining class that doesn’t belong to S, while

fx(F∪ j) and fx(F) denote respectively the regression score obtained

by including and non-including feature j.

4 Results

The goal of this work was to evaluate, through explainable

machine learningmodels, whether and to what extent air pollutants

and socio-economic descriptors are associated with mortality due

to respiratory cancer.

Following the procedures described in the methods section,

we delineated 10 clusters when using the spatial range value

from the semivariogram plot to split the dendrogram of the

geographical distances between the Italian provinces. Then, a leave-

one cluster-out validation scheme was adopted in order to get a

robust assessment of the model performance. We quantitatively

assessed the model performance in terms of the average metrics

obtained on the validation set; our model achieved an r2 value of

0.28 and a mean absolute error (M AE) value of 0.10. Moreover,

the importance of all available variables included in the analysis

was computed by exploiting the permutation feature importance

algorithm and plotted in Figure 5A. Finally, a scatter plot displaying

the mutual agreement between the actual and predicted Standard

Mortality Ratios is shown in Figure 5B. The provinces characterized

by the highest SMR in the 2019 are located in the right-most

part of the scatterplot; these are the provinces of Napoli, Caserta,

Viterbo, Roma, Piacenza, Imperia, Ravenna, Cagliari, Alessandria

and Ferrara.

Figure 6 shows the most important features for regression

according to the SHAP algorithm. This summary plot offers an

overview of the varying degrees of influence of every feature

on the model’s predictions, thereby enabling a better grasp of

the comprehensive significance and effect of distinct features in

the analysis.

According to the SHAP summary plot, the top 5 most

important variables include three related to pollution (std NO,

mean O3, mean NO2), one associated with climate (temperature),

and another tied to social factors (income).

5 Discussion

The performances obtained in terms of r2 and MAE are

respectively 0.28 and 0.10. This result shows that environmental

pollution is associated to the considered type of cancer. From the

analysis conducted, it emerges that there is an association between

certain pollutants and the incidence of respiratory system cancer.
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FIGURE 3

Methodological overview: climate, annual average and standard deviation pollution concentrations and socio-economic variables are used to model

the standard mortality ratios (SMRs) in the Italian provinces due to cancer of the respiratory system. Then, the SHAP algorithm is used to compute the

contribution of each input variable to the predicted SMRs.

FIGURE 4

The hierarchical clustering algorithm used in combination with the semivariogram plot of the SMR rates delineated 10 spatially-contiguous

community that alleviated the spatial data leakage that might occur in epidemiological studies.

This information should be included alongside other risk factors in

studies investigating risk factors for individual subjects, including

personalized ones (31, 32).

The spatial auto-correlation analysis, performed by using the

variogram of the standard mortality ratio, shown ten clusters of

provinces. The cross validation performed by using these clusters,

obtained an r2 lower than one with a random cross-validation,

by showing a spatial bias that overestimated the random forest

regressor performance.

XAI estimated which are the most important global and local

features in predicting SMR. In particular, for the present case,

the main role played by the standard deviation of NO and mean

O3 were revealed. This result is consistent with the literature, as

it is known that a greater exposure to NO2 is correlated with

a greater risk of developing lung cancer (33). According to our

study, a low average O3 concentration is linked to a greater SMR

for tumors of the respiratory system. Such a spurious association

have been observed before in previous works, including Dutton

et al. (34) and Travaglio et al. (35), and we believe that a plausible

interpretation is that increased ozone exposure is acting a as proxy

of residing in rural areas (36, 37). Moreover, it is also known that

the concentration of O3 is anti-correlated to the concentration
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FIGURE 5

(A) Random forest features importance. (B) Scatter plot of predicted Standard Mortality Ratio (y pred) vs. true Standard Mortality Ratio (y true). The

blue line represents the best fit for the plotted points, whereas the green one represents where the points would fall if all predicted values perfectly

matched the observed ones.

FIGURE 6

SHAP summary plot illustrating the SHAP values for each feature. Each point on the plot represents a Shapley value of a provinces, with the y-axis

indicating the corresponding feature and the x-axis representing the Shapley value itself. The color gradient reflects the feature value, ranging from

low to high. The features are ordered based on their mean importance, with more important features positioned toward the top.

of NO2 (36–42). This spatial pattern between rural areas and

O3 concentration is rather general, as O3 in troposphere is a

secondary pollutant that is produced after NO2 reacting with

UV light (40, 43). We also believe that the observed negative

correlation between NO2 and O3 can be largely attributable to this

causal link.
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Concerning the socio-demographic descriptors, income and

lifetime were the most important. Higher income appears to be

positively associated with SMR, implying greater cancer exposure

among wealthier individuals. Such association is in stark contrast

with the part of the current literature supporting the evidence of

how social inequalities may increase exposure to poor air quality

and vulnerability to respiratory diseases (34, 44, 45). Richardson

et al. (44) claimed evidence of income-related inequalities in

exposure to pollutants. Studies conducted to individual-level

demographic data that accounts social exclusion and ethnicity

(34, 45), evidenced that individual belonging to ethnic minorities

are disproportionately exposed to poor air quality. However, this

pattern has not been observed in Italy. Germani et al. (46), provided

an empirical analysis conducted on the Italian provinces (NUTS3)

claiming that air pollution increases with the average income per

administrative unit. Since our study relies on provinces, coarse

air quality products and no individual-level data is included to

account for social and gender, we believe that the average income

per province may act as a proxy for both human activities and may

not point to social exclusion due to the coarse resolution of the

proposed study.

Lifetime duration shows a consistent trend with expected

associations: shorter lifespans correspond to higher mortality rates

from respiratory diseases. We might speculate that respiratory

diseases significantly impact life expectancy in Italy, particularly

in certain provinces, potentially influencing the overall health of

the population.

The presented study has limitations that we aim to overcome

in future research. In particular, the database considered here

examined the remote sensing observations of 2019 of exposure to

air pollutants. An extension of the time range of our study would

guarantee greater robustness to the analyses. Moreover, another

limitation of this study is the failure to account for the population

density differences within the provinces, as it varies between small

urban centers and large cities, implying uniform exposure to air

pollutants for the entire population of a province.

6 Conclusion

The presented analysis reveals a correlation between specific

pollutants and socio-economic indices and the occurrence of

respiratory system cancer. These finding could still offer valuable

insights for further epidemiological studies as our results may

suggest which variables to gather to perform analyses on individual

level dataset that could lead to stronger andmore conclusive results.

Moreover, this study opens up future prospects for similar research

on other types of cancer related to environmental pollution, as well

as other types of diseases such as neurodegenerative ones.
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