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Introduction: Acute and long-term health impacts from flooding related

toxic chemical releases are a significant local health concern and can

disproportionately impact communities with vulnerable populations; reliable

release data are needed to quantify this hazard.

Methods: In this paper, we analyze US Federal Emergency Management

Agency designated floodplain data and US Environmental Protection Agency

Toxic Release Inventory (TRI) data to determine if geographically manipulated

databases adhere to Benford’s Law.

Results: We investigated multiple variants and discovered pollution releases

adhere to Benford’s Law and tests which thereby validates the self-reported toxic

release dataset.

Discussion: We find that Benford’s Law applies to self-reported toxic

chemical release and disposal data, indicating a lack of widespread data errors

or manipulation.
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Introduction

The United States Environmental Protection Agency (USEPA) relies on a volunteer

reporting of pollution emissions by manufacturing facilities utilizing chemicals listed on

their Toxic Release Inventory (TRI). This honor system is often questioned for its’ accuracy

in reporting such emissions to ensure regulatory compliance to minimize hazardous

releases and resulting human exposure. To determine the effectiveness of this reporting

method, environmental health scientists are investigating the potential Benford’s Law

(BLs) to discover anomalies in TRI reported levels of pollutant. For example, in 2006

Marchi and Hamilton (1), compared self-reporting air constituents in relation to ambient

air monitoring collected by the USEPA. Testing BL using air pollution samples, they

determined that BLs is potential tool to discover discrepancies with under-reporting (1).

Utilizing BLs to investigate pollution discharges show increasing promise (1–4). This study

examines the potential of using BLs with TRI emissions in designated flood zones in

the United States to determine the efficacy of discovering abnormalities associated with

under-reporting to identify exposure concerns in regard to flood related disaster.

BLs looks at the frequency of the first digits in real life databases and that the

distribution of such digits that range from 1 to 9 in big data sources are not randomly
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distributed but follow distinct probability curve with the lower

digits occurring more often than the higher digits (5). The first

digit law was first discovered by Simon Newcomb in 1881, an

astronomer looking at the distribution of numbers in logarithm

tables and then rediscovered by its namesake, Frank Bedford,

a physicist in 1938 (5). In 2000 it was show that BL could

be used to detect database anomalies, including data errors or

manipulation (3) and was later used to this effect in financial

databases to discover credit card fraud (6). Its uses have expanded

as a potential investigative tool in environmental health datasets.

For example, in the emergency management field. Using its

ability to analyze large BLs has been applied to the prediction of

natural hazards, including cyclones and hurricanes; in particular,

researchers analyzed the historical records of cyclone occurrences

using BLs to seek possible explanations for changes in weather

patterns, which could potentially give insight into the impacts of

climate change (7).

In this study, we examine the application of BLs on the USEPA

TRI data source looking at the use and disposal of toxic chemicals

by manufacturing facilities located in floodplains. The concern

over these floodplains is especially relevant due to the increase in

severe weather from climate change and a higher risk of flooding

impacting manufacturing sites, which can lead to toxic chemicals

leaching off site and impacting surrounding communities. Since

its creation by the Emergency Planning and Community Right-to-

Know Act (EPCRA), the TRI has collected data on reported toxic

chemical releases and pollution prevention activities by industrial

facilities at the state and federal levels (8). As of 2019, there

are 770 listed chemicals within 33 chemical categories which are

chosen based on their carcinogenic, acute human health effects, or

adverse environmental effects (9). The list of TRI chemicals is not

all encompassing with mostly large manufacturers, metal mining,

electric power, chemical plants, and hazardous waste treatment

This is a provisional file, not the final typeset article facilities:

and with such a large amount of data on toxic releases, the TRI

can helpmake informed decisions within low-income andminority

communities regarding emergency management for preparation,

response, and mitigation of these chemical spills (10). This risk is

not theoretical; a recent example of a flooding event in the form of a

storm surge inundated TRI sites in the Houston Metropolitan Area

during Hurricane Harvey in August of 2017. The total economic

cost of the storm was estimated to be between $81 to $108 billion,

and tens of thousands of homes, along with over 700 businesses,

were damaged by this extreme weather event throughout southeast

Texas (11). After the massive amounts of flooding from Harvey’s

torrential rains and storm surge, hundreds of industrial facilities

released excessive amounts of toxic chemicals into surrounding

waterways and neighborhoods. After the release of dozens of tons

of industrial toxins– including benzene, vinyl chloride, and other

human carcinogens –the long-term human health consequences

from flood-induced TRI site releases continue to be a major

concern (11).

The potential for mitigating future risk of toxic chemical

releases into the environment has turned pattern analysis of

TRI designated facilities in floodplains into an emerging field of

research. Given the potential long-term health impacts of toxic

chemical use and disposal exposure among nearby residential

communities, it is valuable to understand if BLs can help identify

anomalous chemical release data from facilities within these

high-risk areas. With the increase of extreme flooding, tropical

storms, and hurricanes due to climate change, it is essential to

properly allocate billions of dollars of resources for mitigation and

emergency response planning to minimize damages and negative

public health impacts. The evaluation of potential chemical releases

resulting in hazardous exposures is a valid concern during

emergency response and mitigation. Another area to consider

when discussing climate change and the increasing occurrence

of extreme weather events are how exposures to toxic chemicals

and disparities in emergency preparedness and response measures

disproportionately affect vulnerable populations, e.g., communities

of color, low-income neighborhoods, immigrant groups, and

indigenous people. In emergency management, populations that

are at greater risk of negative impacts from a natural disaster

are considered vulnerable as quantified by an index that consists

of numerous U.S. Census indicators such as age, housing, non-

English speaking residences, etc. (12). Institutional level constructs

further exasperate this inequity due to structural racism, lack of

neighborhood infrastructure, health disparities, lack of social and

political capital, and fewer evacuation resources (13).

Numerous studies show that racial/ethnic minority

communities suffer from greater environmental burdens because

they live in areas with elevated environmental hazard exposure

levels (2, 14–22). A recent study used spatial distribution

mapping technology to demonstrate that environmental hazards

increase in concertation the closer they are to urban centers and

pollution sources (2). Furthermore, such proximity to sources of

environmental exposure is linked with negative health outcomes

with a mutagenic risk of about 18 times greater than recommended

(23). Low-income minority communities are located near high-

polluting industries, hazardous waste facilities, and incinerators

(24, 25), and regional investigations confirm a relationship between

TRI locations and communities of color (25, 26). TRI sites in flood

plains that reside in areas with vulnerable populations increase the

potential of negative human health outcomes, unexpected acute

chemical emergencies, and longer periods of recovery.

The USEPA relaunched the climate change indicator website,

after a 4-year hiatus, which provides general information, data,

and mapping tools to better understand extreme climate changes

affect public health and the physical environment (27). Excessive

heat waves, droughts, wildfires, flooding, hurricanes, and rising

ocean levels are no longer predictions but evidence-based realities

with an accelerating increase in the number and severity of natural

disasters. Associated with the increase of extreme events, is the

increasing toll in both damage costs and human lives. Between

1980 and 2020 the United States experienced 290 natural disasters

that exceeded $1 billion, which were cumulatively responsible for

almost 14,500 deaths with total costs of $1.9 trillion (28). From

1980 to 1989 the U.S. averaged 2.9 billion-dollar events annually.

By the 2016 to 2020 period the number of events more than

quintupled, with an average of 16.2 events annually. 2020 set a new

record with 22 natural disasters that exceeded $1billion in damages

(28). This trend demonstrates the increasing need to be able to

predict in which spaces climate impacts will have the most adverse

health consequences.

To help mitigate the changing climate, the U.S. Federal

Emergency Management Agency (FEMA) developed a variety
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FIGURE 1

Benford’s Law: percentage of time digits 1 through 9 are expected

to occur in the first position.

of prediction models for emergency preparedness, response,

mitigation, and recovery. For example, FEMA’s Hazus Program

utilizes geographic information system software to estimate

risks and costs from earthquakes, floods, tsunamis, and

hurricanes utilizing historical data. Regions and neighborhoods

with vulnerable populations can be identified to increase

community resilience to these events (29). Likewise, the FEMA

InteragencyModeling and Atmospheric Assessment Center models

atmospheric dispersion in relation to acute chemical emergencies

(30). Models are indispensable tools to help understand past events

and, more importantly, predict natural disaster outcomes as the

number and severity of climate change induced weather events

continue to grow.

Investigating BLs in relation to flooding events and TRI

locations has the possibility to be a prediction tool for emergency

preparedness and response. BLs characterizes the distribution of

first digits, second digits and the first two digits within large

datasets. SimonNewcomb first described the tendency for numbers

with the first digit of 1 to be observed more often than other

numbers (i.e., first digits of 2, 3, and so on), and later re-discovered

by Frank Benford (31). BLs allows for the prediction of the leading

digit(s) distribution in certain datasets, and it is more accurately

applied when there are multiple magnitudes that the data covers

evenly (7). After the initial discovery of BLs in 1938, subsequent

research has been focused on potential applications for its use.

The logarithmic distribution described by BLs has been found

to follow large numerical data from a variety of natural and

social phenomena, ranging from extreme weather events to fraud

detection (32). BLs natural disaster studies find that BLs can be

used to examine data quality and homogeneity to ensure variables

chosen for analysis are the best for decision making (7). BLs relies

on the log10 distribution within the data with a right-tail skewed

distribution of 1 – 9 (with no unit value), which is commonly found

with environmental health data sets such as air and water samples.

BLs adhere to a percent scale in the form of a histogram (Figure 1)

from 1 – 9 on the x-axis and the percent on the y-axis (5).

Although BLs are used to analyze a myriad of larger datasets

to unearth anomalies, it remains a highly contested tool due

to the elusiveness in proving the law within mathematical

theory or statistical methods. Benford’s Law Strikes Back by

Berger and Hill (33) provided the derivation to explain the

BLs phenomenon. Over the past 15 years, BLs continues to be

further scrutinized to understand the logic behind the distribution

frequency (33–35) examining goodness of fit, severity evaluations,

and arithmetic/geometric means. These contributions provide

greater insight into BLs, however, a complete explanation of the

workings of the law is still under investigation.

Our study expands upon previous BLs natural disaster

research looking at cyclones, hurricanes, earthquakes, and TRI

site emissions. We analyze FEMA designated floodplain data

in relation to TRI locations to determine if BLs adheres to

geographically manipulated databases looking at space and place.

Finding abnormalities within the TRI database can help predict

potential emergency situations within floodplains associated with

the increase of extreme weather events.

Methods

This research’s methodology focuses on examining TRIs in

floodplains that are identified after an inundation event. The

analysis was done by compiling and analyzing various federal

governmental data sets. Three primary data sets were analyzed:

TRI site locations; TRI site release and disposal values; and

historical federally declared flooding disasters. These data were

cross referenced by zip code and by county and visualized in

ArcMap to highlight the potential risk posed to an area from both

flooding and a resultant acute chemical emergency.

A list of inundation likelihood from FEMA was compiled by

comparing the number of TRI facilities in the USEPA dataset

(10) present in a particular area with the number of federally

declared flood disasters in that region. The locations of the Toxic

Release Inventory sites, which include a specific street number, were

assigned to floodplains delineated with ESRI ArcMap geocoding by

aggregating the point data into state and county boundaries. This

allowed for exact mapping of the site locations. The database was

then exported into IBM Statistical Product and Service Solutions

(SPSS) software to perform descriptive statistical analysis. A total of

4,145 TRI sites in the United States were found to be in floodplains.

Microsoft Excel 2010 with Benford’s Law and test formulas

were used to analyze several non-uniform variables associated

with these sites to determine if the information adhered to BLs

first digit order and multiple variants (36). To validate our data

analysis for TRI sites in floodplains, and to ensure inherent bias

was removed based on a possible increased number of flood plains

in urban versus rural areas, all TRIs in Alabama and California

were combined into a dataset totaling 7,844 sites and subjected

to BL analysis. TRI facilities, total on- and off-site disposal or

other releases in U.S. pounds by zip code were gathered within a

range of 1 - 885,683,717U.S. pounds (10). Types of disposals and

releases include but are not limited to air emissions, surface water

discharges, underground injections, and landfill disposal. 7,684 TRI

Sites with at least 1-pound total onsite releases or other disposal

locations. Using Microsoft Excel 2010, duplicate zip codes were

removed leaving a total of 7,393 zip codes that lie within declared

flooding disasters by county. Total pounds of chemical releases for
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these 7,684 sites were analyzed to see if the release values conform

to BLs. According to Nigrini (37), there are multiple variants to

examine BLs of conformity including the first digit, the second-

digit, or the first two digits. The first Equation (1) examines the first

digit (38). Then, chemical releases were analyzed by BL2 in which

the second digit is also examined with the Equation (2). Lastly, the

releases were investigated using the BL12 Equation (3) that looks

at the first and second digit. The formulas for the digits include D1

representing the first digit, D2 the second digit, and D1D2 the first-

two digits of a number and Prob is the probability of observing the

event in parentheses (37).

Prob(D1 = d1) = log(1+ 1
d1
); d1 ∈ {1, 2, ...., 9}

(1)

Prob(D2 = d2) =

9
∑

d1=1

log(1+
1

d1d2
); d2 ∈ {0, 1, .......9} (2)

Prob(D1D2 = d1d2) = log(1+
1

d1d2
); d1d2 ∈ {10, 11, .....99} (3)

Each Benford’s Law test for BL1, BL2, and BL12 were

investigated for significance using the Z-statistic for outlier

detection (Equation 4), with Z = the standard statistic, EP = the

expected proportion, AP = the actual proportion, and N = the

number of records. The (1/2N) is a continuity correction term and

is used if it is smaller than the first term in the numerator. Nigrini

(37) states that Z-statistic tests if the actual proportion for a specific

digit is different than the digits expected with BLs. This test is used

to test the null hypothesis of conformity.

z =

∣

∣AP − EP| −
(

1
2N

)

√

EP(1−EP)
N

(4)

Druică et al. (39) believe that the Mean Absolute Deviation

(MAD) (Equation 5) which examines conformity where Obsk =

observed frequency, Expk = expected frequency of the class k, and

N is the sample size is a better test than looking at significance when

looking at the null hypothesis (36, 39).

MAD =
1

90

99
∑

k=10

∣

∣Obsk − Expk
∣

∣

N
(5)

Additionally, FEMA Disaster Declaration summaries were

downloaded from 1953 to 2021 (current), which totaled 61,898 total

natural disasters (40). UsingMicrosoft Excel 2010, disasters prior to

1990 and those that did not involve flooding events were removed,

leaving a total of 28,078 flooding disaster declarations. Duplicate

zip codes were eliminated, leaving a total of 3242U.S. counties

with TRI facilities. These data were used to create visualizations

in GIS ArcMap of counties with flooding disaster declarations

overlaid with zip codes containing at least one TRI site with at

least 1 pound total onsite or other disposal location releases that

lie within floodplains.

FIGURE 2

BL breakdown of chemical release: first digit distributions of

chemical release amounts for 7,684 TRI facilities located in declared

flooding disasters.

Results

The USEPA TRI database provides numerous options to

download data by facility, chemical, industry type, and geography.

Data was collected by total pounds of chemical releases onsite and

other offsite disposal by zip code. A total of 7,684 TRI sites across

the U.S. for total onsite and offsite chemical releases fit the first digit

law for digits 1 – 9. The Figure 2 shows the skewed nature of the

chemical release data with the percentages closely aligned with the

BLs percentages.

To determine goodness of fit of observed data vs. expected data,

the following hypothesis was developed:

H0 (null hypothesis): The TRI facilities pollution emissions

distribution conforms to Benford’s Law.

H1 (alternate hypothesis): The TRI facilities pollution emissions

distribution is different from Benford’s Law. The TRI facilities

pollution emissions conform to Benford’s Law.

One way to test the null hypothesis of conformity, a chi-square

test looks at expected vs. observed outcomes. However, this test

has an excessive power issue when working with larger data sets

of more than 5,000 records (36). This study involves more than

7000 records; therefore, the Z-statistic and MAD are utilized to

determine conformity instead of the chi-square test. In Table 1,

the results of the BL first digit for 1,. . . ,9 are shown with the

corresponding Z-statistic, and MAD.

The Z-statistic looks at a two-sided p-value for each observed

proportion and the BLs proportion (41). It is important to note that

in this instance, the p-value is not a measure of significance but an

absolute value to use for comparison to accept or reject the null

hypothesis. Since our z-statistics are >2.77 and <0.0056 (Table 1),

we will not reject the null hypothesis because both proportionate

values equate to each other (41).

The MAD test is not reliant on the size of a dataset and

commonly used for big data. The results are absolute and are

measure by a standard of conformity that was created by Nigrini

and his interpretation of BLs based on his experience working with

datasets (42). The MAD critical score for the first digit analysis
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TABLE 1 Benford’s Law for the first digit outcomes for the pollution generated by 7,684 TRI sites.

First digit

First Count Actual Benford Di�erence AbsDi� Z-stat

1 2347 0.305 0.301 0.004 0.004 0.838

2 1397 0.182 0.176 0.006 0.006 1.306

3 953 0.124 0.125 −0.001 0.001 0.221

4 765 0.100 0.097 0.003 0.003 0.769

5 629 0.082 0.079 0.003 0.003 0.852

6 503 0.065 0.067 −0.001 0.001 0.496

7 419 0.055 0.058 −0.003 0.003 1.271

8 342 0.045 0.051 −0.007 0.007 2.614

9 328 0.043 0.046 −0.003 0.003 1.260

MAD = 0.00345

The bold indicates that the mean absolute deviation is significant.

TABLE 2 Benford’s Law for the second digit outcome for the pollution generated by 7,684 TRI sites.

Second digit

Second Count Actual Benford Di�erence AbsDi� Z-stat

0 1111 0.145 0.120 0.025 0.025 6.713

1 817 0.106 0.114 −0.008 0.008 2.066

2 822 0.107 0.109 −0.002 0.002 0.497

3 744 0.097 0.104 −0.007 0.007 2.130

4 699 0.091 0.100 −0.009 0.009 2.703

5 783 0.102 0.097 0.005 0.005 1.533

6 675 0.088 0.093 −0.006 0.006 1.641

7 715 0.093 0.090 0.003 0.003 0.809

8 661 0.086 0.088 −0.002 0.002 0.456

9 656 0.085 0.085 0.000 0.000 0.100

MAD = 0.00665

The bold indicates that the mean absolute deviation is significant.

equals 0.00345. This is within the range of 0.000 to 0.0006 which

means that it is close to conformity.

We then investigated BL2 with results presented in Table 2.

Even though the statistic is somewhat higher for some of the

buckets, the interpretation of the Z-statistic and the MAD is the

same for BL2.

For BL12, the highest z-statistic for 10,11,. . . ,98,99 (table not

included) is 3.06 with the remaining z-scores below 2.77. TheMAD

critical score for the first- and second-digit analysis of the pollution

data equals 0.00101. This is within the range of 0.000 to 0.012 for

the first two digits which means that it is close to conformity (42).

As shown in the ArcMap visualization (Figure 3), the majority

TRI disposal locations lie in counties that had a disaster flood

declaration between 1990 and 2021.

Discussion

Health disparities research has focused primarily on racial

and socioeconomic factors in relation to an increase of negative

health outcomes. Although neighborhood characteristics and the

concept of built environment have been shown to affect individual

health, measuring the effects of environmental risks on health

has been a less developed area of disparities research (43).

Emergency management reliance on social vulnerability is complex

and varies between scales (e.g., County, census block), however;

the national scale of this study highlights the widespread of

TRI manufacturing facilities in flood prone areas. This suggests

that climate change indicators might be an inclusive factor when

examining vulnerability, especially when socioeconomic status

and race are recognized to be the two largest contributing

factors to social vulnerability (44). The impacts of race and

socioeconomic status on social vulnerability were particularly

evident in the response to Hurricane Katrina Toxic chemical

exposure was a major concern given the industrial base of the

New Orleans area (45) and this area has yet to fully recover.

Recognizing methodologies that can combine environmental

health risk factors and social vulnerability provides necessary

details during extreme climate change events. However, this is

more challenging due to the multidisciplinary approaches to

these models. Almost every county throughout the U.S. has

experienced at least one flooding disaster declaration over the past
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FIGURE 3

TRI disposal locations and historical disaster flooding declarations: TRI onsite or o�site disposal locations, 7,393 zip codes with no duplicates for

map; 3,242 county flooding disaster declarations, 1990 to 2021 with no duplicates for map.

30 years and contains zip codes with TRI sites. A total 4,145,

or ∼78% of total TRI facilities are in designated floodplains.

Since 1980, all fifty states have been impacted by at least one

natural disaster that exceeded $1 billion which continues to

increase with the intensity and number of disasters. USEPA

policy suggests working with social scientists in environmental

justice research to better understand the complex social structures

within a community (46), and environmental scientists/emergency

managers that investigate climate change, extreme weather events,

and pollution modeling.

In regards to BLs and first digit outcomes associated naturally

occurring events, there is a possible shift from predictability to

detection (7). The implications of BLs are significant to the study

of health and place because the data for both onsite and offsite

TRI hazardous chemical releases and disposals was not uniform,

therefore, independent, and conformed to BLs irrespective of

the units of data as well as their source. This implies that

BLs is a universal property of real-world measurements for TRI

releases and disposals. It is important to note that although the

possibility of utilizing BLs to determine anomalies within voluntary

TRI pollution discharge reporting, the mechanisms behind BLs

are still not fully understood. The chi-square goodness-of-fit-

test confirmed conformity of the TRI pollution emissions data

with BLs but utilizing this test is also highly criticized that

conformity is achieved by a problem of excessive power inherently

apparent in large datasets (35). Discrepancies in these datasets

might falsely detect anomalies that do not exist. Emerging research

that explores different goodness of fit approaches such as severity

testing prove to be promising (35). Therefore, we investigated

the z-statistic and the MAD critical score for BL1 and found the

result supported the goodness of fit for the first digit. However,

because of known issues with BL1, we expanded our analysis

to examine BL12 and BL2, and discovered that the pollution

discharge data from 7,648 TRI sites met the criteria to not reject

the null hypothesis for the z-statistic and the MAD critical score

showed close conformity. These outcomes provide further evidence

that BLs can discover anomalies with self-reporting pollution

discharges, and with summation, the ability to find over-reported

or abnormal values to find TRI sites that might have mis-reported

their numbers.

The number of TRI sites vulnerable to flooding in this study

should be considered a conservative count; limitations of flood

mapping throughout the U.S. is a known issue (47), and we

can expect these numbers to rise when the flood zones for TRI

locations are updated (48). Future research should investigate the

exact flooding emergency planning protocols that TRI facilities

practice state-to-state.

Chemical facilities operating at safer flooding standards than

their state counterparts should have their standards reviewed to

determine the applicability from facility to facility. This would lend

a hand in determining which specific protocols should be revised

and improved to contribute to a safer chemical facility regardless

of specific region. Besides TRI facilities, health care facilities

locations have also been documented in flood plains. Interactive

floodplains maps could be used to reliably identify healthcare

facilities vulnerable to chemical release from flood hazards. TRI

facilities that may result in an acute chemical release during a flood,

first responders tasked in controlling the emergency and assisting

human exposures, and healthcare facilities responsible for quick

and immediate care, would benefit from a shift to reliable data

sources for predicting acute, events in flood areas that include

chemical releases (49).

To further improve this study, the incorporation of

the disaster loss data for analysis, in conjunction with

socioeconomic data, is a critical performance assessment

technique that can effectively determine current approaches

and compare the accuracy of other methods for identifying

high-risk areas (43). Further studies should explore the
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health risks posed by toxic chemical manufacturing hazards

exposed to natural flood hazards to places with the most

vulnerable populations who have the least amount of capacity

to prepare, respond and recover (e.g., non-white and lower

socioeconomic groups).

Conclusion

The values for TRI Sites’ total onsite release or other offsite

disposal locations of toxic chemicals with at least one pound

recorded align with BL, BL2, and BL12 and could indicate there are

no database anomalies. This includes data errors or manipulation

with a required federal program that is reliant on the honor

system of these facilities to report their releases. The implication

is that TRI release data may be generally reliable for conducting

local risk assessments, although this study does not confirm

the reliability of any individual release values. Almost all the

counties throughout the U.S. have experienced at least one flooding

disaster declaration over the past 30 years and contain a zip

code with TRI sites, which makes this a high priority emergency

preparedness issue. Further research incorporating disaster loss

data, socioeconomic data, and updated flood hazardmaps is needed

to properly identify areas at high-risk from flood induced TRI

releases. Regions with vulnerable populations, flooding hazards,

and TRI sites will need additional resources to prevent, prepare,

mitigate, respond, and recover from increasingly common extreme

weather events.
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