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Background: Studies have shown that gut dysbiosis contributes to the

pathophysiology of type 2 diabetes mellitus (T2DM). Identifying specific gut

microbiota dysbiosis may provide insight into the pathogenesis of T2DM.

Purpose: This study investigated the causal relationship between gut microbiota

and T2DM using meta-analysis and Mendelian randomization (MR).

Methods: In the first part, we searched for literature on gut microbiota and

T2DM, and conducted a meta-analysis. We observed di�erences in glycosylated

hemoglobin and fasting blood glucose levels in both groups. Second, we

obtained GWAS data from genome-wide association study database 19 (GWAS).

We used two-sample MR analysis to verify the forward and reverse causal

associations between gut microbiota and T2DM. Additionally, we selected the

European GWAS data from the European Bioinformatics Institute (EBI) as a

validation set for external validation of the MR analysis. In the third part, we

aimed to clarify which gut microbiota contribute to the degree of causal

association between group disorders and T2DM throughmultivariateMR analysis

and Bayesian model averaging (MR-BMA).

Results: 1. According to the meta-analysis results, the glycated hemoglobin

concentration in the gut probiotic intervention group was significantly lower

than in the control group. Following treatment, fasting blood glucose levels

in the intervention group were significantly lower than those in the control

group. 2. The results of two samples MR analysis revealed that there were

causal relationships between six gut microbiota and T2DM. Genus Haemophilus

and order Pasteurellaceae were negatively correlated with T2DM. Genus

Actinomycetes, class Melanobacteria and genus Lactobacillus were positively

correlated. Reverse MR analysis demonstrated that T2DM and gut microbiota did

not have any reverse causal relationship. The external validation data set showed

a causal relationship between gut microbiota and T2DM. 3. Multivariate MR

analysis and MR-BMA results showed that the independent genus Haemophilus

collection had the largest PP.

Conclusion: Our research results suggest that gut microbiota is closely related

to T2DM pathogenesis. The results of further MR research and an analysis of the

prediction model indicate that a variety of gut microbiota disorders, including

genus Haemophilus, are causally related to the development of T2DM. The

findings of this study may provide some insight into the diagnosis and treatment

of T2DM.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO
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1 Introduction

T2DM is one of the most important diseases affecting the

health of the global population (1, 2). It will be beneficial to

improve the prognosis of patients with T2DM by actively exploring

the pathogenesis of the disease. Numerous factors contribute to

the development of T2DM, including insulin resistance, insulin

secretion defects, changes in the composition of cell membrane

lipids, inflammation, gastrogut complications, viral infections, and

disturbances in gut microbiota (3–5), among which gut microbiota

disorders are a hot topic and target of current research on the

pathogenesis of T2DM (6).

Recent studies have shown gut microbiota structure and

function changes may participate in T2DM pathogenesis through

the “pancreas gut axis” (7–9). The gut microbiota consists of

microorganisms that colonize the human intestines. Typically,

the gut microbiota consists of anaerobic bacteria and can be

classified into six phyla: Firmicutes (Lactobacillus, Enterococcus,

Clostridium), Bacteroidetes, Proteobacteria (Enterobacteria),

Actinomycetes (Bifidobacterium), Fusobacteria, and Verrucococcus.

Of the total gut microbiota, 64%, 23%, 8%, and 3% come from

the first four phyla (10). There are several physiological functions

performed by gut bacteria and their metabolites, including

maintaining the host’s gut microecological balance, enhancing

immunity, regulating gut motility, affecting nutrition absorption,

regulating glucose through gut hormone secretion and activating

immunity, and regulating fat metabolism (11–13).

Clinical studies have shown that T2DM patients’ microbiota

differs significantly from healthy individuals. In T2DM patients,

Clostridium and Firmicum were significantly lower than in healthy

individuals. It was found, however, that the ratio of Bacteroides to

Escherichia coli increased with the decrease of glucose tolerance

in the random subjects, which supported the hypothesis that

there was an imbalance in the gut microbiota during the onset

and development of T2DM (14, 15). Compared to non-T2DM

patients, T2DM patients have a higher level of LPS expression.

There is evidence that an imbalance of gut microbiota may promote

the expression of pro-inflammatory factors such as LPS and

inhibit the expression of anti-inflammatory factors, thereby causing

inflammation and worsening T2DM (16–19).

Furthermore, the blood sugar concentration of patients with

T2DM decreased significantly after taking lactic acid bacteria,

indicating that gut microbiota improvement affects blood sugar

changes positively. A significant increase in glutathione oxidase

and dismutase activity was found in the blood, suggesting gut

microbiota improvement affects blood sugar levels. It should be

noted that most of the studies mentioned above are clinical cross-

sectional studies and cohort studies. Several limitations associated

with observational studies make it difficult to establish a causal link

between changes in gut microbiota and T2DM.

As an emerging causal inference method, MR analyses GWAS

utilizing genetic variation as instrumental variables (IVs) to

investigate causal relationships between risk factors and outcomes

(20–22). The research process is similar to that of a clinical RCT.

The method is widely used in epidemiological causal association

studies. In recent years, MR research has made significant

advancements. As a result, it positively affects identifying the causal

relationship between diseases. However, relatively few studies have

FIGURE 1

This figure illustrates a flow chart.

focused on the relationship between gut microbiota and T2DM

pathogenesis. Consequently, there is no consensus regarding

whether gut microbiota contributes to T2DM risk. In a two-sample

MR study, Xiang et al. found no evidence that 28 species of gut

microbiota were associated with the risk of developing T2DM.

According to their study, Streptococcus and Acidaminococcaceae

were likely associated with a borderline positive correlation with

T2DM risk (23).

In this study, we used meta-analysis to identify a clinical

correlation between gut microbiota and T2DM. Then, we used MR

research methods to develop a predictive model of gut microbiota

for T2DM. The study identified a causal link between gut bacteria

and T2DM risk using genetic evidence.

2 Materials and methods

There are three stages to this research, as shown in Figure 1.

2.1 Meta-analysis

Using the subject headings and free words “gut

microorganisms,” “type 2 diabetes,” and “clinical randomized

controlled trials,” we searched PubMed, Web of Science, Cochrane

Library, and Embase databases, respectively. The retrieved

documents were not restricted to countries. The language is

English, and the period is July 2023.

Inclusion criteria: the study population is T2DM; the research

type is a clinical randomized controlled trial; the intervention
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FIGURE 2

This figure illustrates the flow chart of literature screening.

measures are gut probiotics or similar preparations; and the

outcome indicators are fasting blood glucose and glycated

hemoglobin levels.

Exclusion criteria: exclude case reports utilizing animal and cell

models; literature that has been repeatedly included; literature with

incomplete data; unpublished literature; literature that does not

include T2DM in the study population; or literature that does not

include probiotics or similar preparations in the intervention.

Data extraction and quality evaluation: we imported the

literature from four databases into the title list. Using a double-

masked method, two investigators screened the literature. They

extracted data based on study inclusion and exclusion criteria,

including author, year, country, age, sample size, intervention, and

outcome measures. We assessed bias risk in randomized controlled

trials using a tool developed by the Cochrane Collaboration.

This study was conducted by the Preferred Reporting Items for

Systematic Reviews and Meta- Analyses (PRISMA) guidelines. We

assessed bias risk in randomized controlled trials using the bias

risk assessment tool developed by the Cochrane Collaboration. The

PROSPERO registration number was CRD42023444465.

2.2 Data source

We obtained T2DM and gut microbiota data from the public

GWAS database (https://gwas.mrcieu.ac.uk). All data used in this

study were publicly available GWAS summary results. The research

does not involve ethical or privacy issues; as a result, an ethical

review is unnecessary.

This study utilized gut microbial GWAS data from the

MiBioGen consortium (24, 25). This study included genome-

wide association and gut microbial metagenomic data from 18,340

European populations in 24 cohorts. Genomics-based association

studies could be used to examine the genetic association between

the relative abundance of gut microorganisms and the genes

of the human host. In addition, this study included 271 gut

microorganisms for further analysis.

T2DM data from the UK Biobank (UKBB) were used in

this study, containing 10,894,596 SNPs in 337,159 individuals,

including 335,026 in the control group and 2,133 in the

experimental group. In addition, 655,666 Europeans were selected

for verification from EBI, including 654,488 experimental subjects

and 1,178 control subjects. The dataset contains 5,030,727 SNPs.

2.3 MR analysis

The genetic variation selected as an IVsmustmeet the following

three assumptions (26): (1) Correlation assumption: The selected

IVs must have a close relationship with T2DM. (2) Independence

assumption: IV should not be confounded by confounding factors;

(3) Exclusion restriction assumption: IV can only influence T2DM

through the gut microbiota, not other channels.

We selected genetic variant SNP sites with genome-wide

significance (P < 1 × 10–5) for T2DM. Select SNPs based on the
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FIGURE 3

This figure displays a forest plot illustrating the impact of the combination of SGLT2 inhibitors with metformin on glycated, hemoglobin and fasting

blood glucose levels were analyzed using a fixed-e�ects model, and the results were expressed as weighted mean di�erence (WMD) and 95%

confidence interval (CI).

linkage disequilibrium parameter (r2) threshold of 0.01 and the

genetic distance of 139 10,000 kb to guarantee their independence

and eliminate the impact of linkage disequilibrium (LD).Our

analysis followed the guidelines for conducting MR studies. This

report followed the guidelines for Strengthening the Reporting of

Studies with MR (STROBE-MR).

2.3.1 Two-sample MR analysis
In this study, causal effects were estimated using five methods:

inverse variance weighting (IVW), MR Egger, weighted median

(WME), simple mode (SM), and weighted mode (WM). The

IVW method assumes that all genetic variants contain valid IVs.

The ratio method calculates the causal effect value of a single

instrumental variable. Each estimate is aggregated for weighted

linear regression to obtain the total effect value. It is important

to note that the MR-Egger method differs from the IVW method

in that an intercept term is considered in the regression. The

WME method takes advantage of the intermediate effects of all

available genetic variants to get an estimate. This is accomplished

by weighting the inverse variance of each SNP’s association with

the outcome. SM and WM are modality-based methods. Modality-

based estimation models aggregate SNPs with similar causal effects

and return estimates of causal effects for most cluster SNPs.

According toWM, every SNP’s impact on the cluster is weighted by

the inverse variance of its effect (27). This study utilized the IVW

method as its preferred method for causal effect estimation due to

its higher testing efficiency than the other four MR methods. The

results were visualized using forest maps and scatter plots.

2.3.2 Inverse MR analysis
Using T2DM as the exposure variable and associated gut

microbiota as the outcome variable, we examined whether T2DM

has the exact causal relationship with the gutmicrobiota. In order to

assess the causal relationship between the two diseases, MR analysis

was conducted once again without modifying either the statistical

method or the data source. This study aimed to determine if T2DM

affects the gut microbiome. The statistical methods used at this

stage are the same as those used at the previous stage.

2.3.3 Validation analysis
Selecting 655,666 Europeans from EBI as the

validation population, we performed MR analyses again

to determine whether the gut microbiome was causally

associated with developing different types of T2DM. At

this stage, the statistical method remains consistent with

the above.

2.3.4 MR research based on Bayesian model
The multivariate MR analysis could simultaneously estimate

the causal relationship between multiple risk factors for T2DM.

In essence, it is an extension of unit MR analysis. Based

on multivariate MR analysis, we used MR Bayesian model

averaging (MR-BMA) probability to quantify the degree

of causal association between different gut microbiomes

and T2DM.

Based on the MR-BMA research method, we predicted the

causal importance of the gut microbiota that was significantly

related to T2DM and considered the potential pleiotropic effects.

A posterior probability (PP) is assigned to each candidate

model. After adding PP to each candidate risk factor, we

calculated each biomarker’s marginal inclusion probability (MIP)

and reported each biomarker’s model average causal effect

(MACE) on T2DM. The best model was preferentially selected

based on the PP value ranking of each model (threshold

set to 0.02). Finally, we used Q statistics and Cook distance

to identify outliers and strong influence points for model

diagnosis. The MR-BMA analysis was repeated after these factors

were removed.
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FIGURE 4

Forest map of Mendelian randomization analysis of gut microbes and T2DM.

2.4 Quality control

In this study, quality control was implemented on MR results

that had a P < 0.05. The quality control process included sensitivity

analysis, heterogeneity testing, and horizontal gene pleiotropy

testing. Sensitivity analysis was conducted using the leave-one-out

method by deleting individual SNPs in sequence and calculating

the combined effect size of the remaining SNPs to evaluate the

impact of each SNP on the results. The heterogeneity test uses the

Cochran Q test to determine the heterogeneity of SNPs. It also

evaluates the possibility of causal effect estimation bias due to SNP

measurement errors resulting from differing analysis platforms,

experimental conditions, and sample populations. In horizontal

pleiotropy testing, the intercept term of MR-Egger regression was

used to assess whether IVs impact outcomes through pathways

other than exposure.

2.5 Statistical analysis

We completed Meta-analysis with RevMan 5.3 and STATA

16.0 statistical software, and we conducted MR analysis using R

packages such as “Mendelian Randomization” and “Two Sample

MR.” Furthermore, Multivariate MR analysis uses the R language

code and functions related to MR-MBA publicly released on

GitHub (https://github.com/verena-zuber/demo~AMD).

3 Results

3.1 Meta-analysis

We retrieved 1,378 documents from four databases: PubMed,

Web of Science, Cochrane Library, and Embase. Ultimately, we

included six documents after screening them according to inclusion

and exclusion criteria. A flow chart of the screening process was

shown in Figure 2. The six included in the literature Kanazawa et al.

(28), Chaiyasut et al. (29), Khalili et al. (30), Rustanti et al. (31),

Toejing et al. (32), Firouzi et al. (33) were all RCT trials, and their

interventions included gut probiotics.

The outcome indicators of six of the included studies were

glycated hemoglobin and fasting blood glucose. A meta-analysis

using a fixed effects model demonstrated that the glycated

hemoglobin of the intervention group was significantly lower

than that of the control group after treatment (WMD = −0.108,

95%CI: −0.314–0.098, P = 0.305). There was no statistical

heterogeneity among the studies (I2 = 0, P = 0.486). In the

intervention group, fasting blood glucose levels were significantly
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FIGURE 5

Loop diagram of the Mendelian randomization analysis of gut microbes and T2DM.

lower than in the control group (WMD = −13.83, 95%CI:

−18.831– −8.835, P < 0.05). Fasting blood glucose results were

not statistically heterogeneous (I2 = 0, P = 0.639) (Figure 3).

All studies were analyzed for sensitivity, and the results showed

no significant differences. A publication bias analysis was also

conducted using Begg’s test: glycosylated hemoglobin (P = 0.647)

and fasting blood glucose (P = 0.0229), indicating no publication

bias present.

3.2 IVs screening

As exposures for the study, 271 gut microbes were selected

from GWAS data on gut microbes involving 5,959 healthy

Europeans. This study examined the relative abundance of 271 gut

microorganism species, including 10 phyla, 16 classes, 22 orders,

48 families, 98 genera, and 77 species. A two-sample MR study was

conducted using 271 species of gut microorganisms and 2,770 SNPs

for the study, which was screened based on P < 1 × 10 – 5 and

linkage disequilibrium thresholds.

3.3 Two-sample MR analysis and sensitivity
analysis

Five TSMR methods were employed to analyze the causal

relationship between the relative abundance of 271 species of gut

microorganisms and T2DM, and the IVW method was primarily

used to analyze the results.

Based on the IVW method, five gut microorganisms were

associated with T2DM. These five types of gut microorganisms

include three genera, one class and one order, each belonging to

genus Haemophilus (OR = 0.997, 95%CI: −0.004–−0.002, P =

0.003), genus Actinobacteria (OR = 1.003, 95%CI: 0.002–0.005,

P = 0.004), order Pasteurellaceae (OR = 0.998, 95%CI: −0.003–

−0.001, P = 0.009), class Melanobacteria (OR = 1.001, 95%CI:
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TABLE 1 Summary of the results of two-sample Mendelian randomization analysis of gut microbiota and T2DM.

Gut microbiota Traits Method OR OR (95%CI) Beta p-value Heterogeneity (IVW) MR-Egger regression

Cochran’s
Q

p-value Egger-
intercept

p-value

Genus Haemophilus T2DM MR Egger 1.000226 0.997122–1.003339 −0.0003 0.871954 6.955836 0.641718 −0.00025 0.271674

WME 0.996749 0.995187–0.998313 −0.00233 0.03201

IVW 0.99732 0.996157–0.998484 −0.00223 0.073305

SM 0.996111 0.992895–0.999337 −0.00346 0.073305

WM 0.996252 0.99315–0.999362 −0.0033 0.074944

Genus Actinomyces T2DM MR Egger 1.00036 0.996372–1.004363 0.001358 0.597155 1.734946 0.942392 0.000151 0.588458

WME 1.003139 1.001418–1.004863 0.002902 0.012449

IVW 1.003343 1.0020 14–1.0046 74 0.002646 0.003522

SM 1.003 311 1.000101–1.006532 0.002 935 0.141 957

WM 1.003356 1.00026–1.006462 0.00291 0.115516

Order Pasteurellales T2DM MR Egger 1.132908 0.759943–1.688918 0.000542 0.733494 17.00006 0.256174 −0.00031 0.111692

WME 1.076112 0.961559–1.204312 −0.00107 0.244946

IVW 1.020298 0.908714–1.145584 −0.00186 0.008605

SM 1.168823 0.954992–1.430534 −0.00328 0.079287

WM 1.163325 0.968436–1.397433 7.33E−05 0.961784

Class Melainabacteria T2DM MR Egger 1.010609 0.918467–1.111995 0.001758 0.385119 6.395291 0.699796 −0.00003 0.864495

WME 0.985414 0.954629–1.017191 0.000948 0.287669

IVW 0.983894 0.959877–1.008511 0.001443 0.033665

SM 0.985494 0.928972–1.045454 0.000611 0.694069

WM 0.985966 0.922925–1.053312 0.00068 0.624704

Genus Lachnoclostridium T2DM MR Egger 1.597226 1.182501–2.157402 −0.00212 0.652128 16.11211 0.186155 0.000327 0.294713

WME 1.128202 1.081772–1.176625 0.002463 0.129611

IVW 1.127492 1.091355–1.164826 0.002714 0.035294

SM 1.171256 1.053803–1.3018 0.002973 0.331111

WM 1.166773 1.054457–1.291053 0.002144 0.469648

OR, odds ratio; IVW, inverse variance weighted method; WM, weighted mode; WME, weighted median method; SM, simple mode; T2DM, type 2 diabetes mellitus.
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0.001–0.002, P = 0.034), genus Lactobacillus (OR = 1.001, 95%CI:

−0.00001–0.002, P = 0.035).

Based on the Q test results, it was determined that there was

no heterogeneity among the included SNPs, of which the five

gut microbiota were (P = 0.642, P = 0.942, P = 0.256, P =

0.700, P = 0.186). According to the MR-Egger regression intercept,

no horizontal pleiotropy exists in the association between gut

microbiota and T2DM. These were genus Haemophilus (MR-Egger

intercept = −0.0003, P = 0.272), genus Actinobacteria (MR-Egger

intercept = 0.0002, P = 0.588), order Pasteurellaceae (MR- Egger

intercept = −0.0003, P = 0.112), class Melanobacteria (MR-Egger

intercept= −0.00004, P = 0.864), genus Lactobacillus (MR-Egger

intercept = 0.0003, P = 0.295) (Figures 4, 5). According to the MR

results of the retention method, no SNPs significantly impacted

the effect estimation of gut microbiota and T2DM. As a result, the

causal relationship appeared stable (Table 1).

3.4 Inverse MR analysis

We again conducted a two-sample Mendelian randomized

study; T2DM was used as an exposure factor, and six related

gut microorganisms were selected as outcome factors. The results

indicated no causal link between T2DM and gut microbiota. Genus

Haemophilus (OR = 5.555, 95%CI: 0.002–17,959.04, P = 0.678),

genus Actinobacteria (OR= 0.021, 95%CI: 2.74E-06–160.7864, P=

0.397), order Pasteurellaceae (OR = 8.029, 95%CI: 0.003–2,292.23,

P = 0.608), class Melanobacteria (OR = 0.031, 95%CI: 1.33E-06–

706.659, P = 0.497), genus Lactobacillus (OR = 1.112, 95%CI:

0.001–1026.964, P= 0.976). The study suggests that T2DM and gut

microbiota do not have any causal relationship (Figure 6).

3.5 Verification analysis

As the validation population for the Two-Sample MR analysis

verification, 655,666 European individuals were selected from

EBI. The results of the IVW method showed that 223 gut

microorganisms are causally related to T2DM. We used the Q test

to exclude heterogeneity and the MR-Egger regression method to

exclude gut microorganisms that exhibit horizontal pleiotropy.

Ultimately, 22 types of gut microorganisms were found.

These included genus Streptococcus (P = 1.08E-60), phylum

Actinobacteria (P = 1.77E-16), genus Eubacterium (P =

4.04E-14), genus Ruminococcus (P = 1.42E-10), genus

VerrucomicrobiaUCG003 (P = 1.57E-09) and UCG010 (P =

2.51E-09), family Clostridiaceae (P = 9.61E-09), genus Butyrivibrio

(P = 2.57E-07), genus Lachnospira (P = 4.23E-07), genus

Faecalibacterium (P = 2.01E-06), Eubacteriumredox (P = 2.67E-

06), genus Candida (P = 1.76E-05), genus Ruminococcus (P =

7.68E-05), genus Thielella (P = 0.0001), genus Anaerobacteria (P

= 0.0003), genus Rikenella (P = 0.0007), family Christeniaceae (P

= 0.0010), genus Eisenbergella (P = 0.0024), genus Lactococcus

(P = 0.0026), phylum Firmicutes (P = 0.0043) and two unknown

bacterial groups (P = 3.84E-10, P = 9.61E-09). According to the

results, certain gut microbiota might be responsible for T2DM

(Figure 7).

3.6 MR research based on Bayesian model

WeperformedMR-BMA analysis on six types of gut microbiota

and included 55 SNPs in the analysis. Fourteen SNPs were deleted

because the Cook distance exceeded 10, three SNPs were removed

because the Q statistic exceeded the threshold, and 38 SNPs were

retained and included in the model. Based on the MR-BMAmodel,

the six gut microbiota were organized and combined into ten

groups. We performed a multivariate MR analysis using weighted

regression for each group of gut microbiota. There were six groups

with PP > 0.02, and the optimal model of the genus Haemophilus

had the highest (PP= 0.447).

Furthermore, we identified other optimal models (PP >

0.02) for the genus Lactobacillus, genus Actinomycetes, order

Pasteurellaceae, and class Melanobacteria. The PP was then added

up for each candidate’s risk factor. The MIP of a risk factor

represents the probability that it will be a causal determinant of

disease risk, which was the risk factor with the high levels of

causal evidence (MIP = 0.449), and the specific value was shown

in Table 2.

4 Discussion

In this study, we used meta-analysis to observe that T2DM

patients who took gut probiotics had lower fasting blood sugar

and glycated hemoglobin levels than the control group. Our meta-

analysis suggests that regulating gut microbiota disorders may

delay T2DM progression. It is unclear, however, which specific gut

microbiota disorders maybe involved in T2DM pathogenesis. For

this issue, we usedMR research methods further to study the causal

relationship between gut microbiota and T2DM. The results of

the two-sample MR analysis showed that five gut microbiota are

causally related to T2DM, among which the genus Haemophilus

and order Pasteurellaceae were negatively correlated with T2DM;

genus Actinomycetes, class Melanobacteria, and genus Lactobacillus

were positively correlated. Reverse MR analysis demonstrated

that T2DM and gut microbiota do not have any reverse causal

relationship. Additionally, we selected data from EBI for external

verification. MR analysis showed that 22 types of gut microbiota

were causally related to T2DM. Based on the external validation

data set, this study suggests a causal relationship between gut

microbiota and T2DM.

Evidence shows gut microbiota structure and function

changes are associated with T2DM (34). The pathophysiology

of T2DM is influenced by gut microbiota and its related

metabolites, including blood sugar metabolism, insulin resistance,

and chronic inflammation. Recent studies have demonstrated an

alteration in the gut microbiota of T2DM patients. Compared

to the general population, T2DM patients had higher genus

Lactobacillus (35), Enterococcus, and Clostridium levels in the

phylum Firmicutes. The genus Bacteroidetes was decreasing in the

phylum Bacteroides. In the phylum Actinobacteria, the number

of genus Bifidobacteria and genus Rochella decreases, and the

gut microbiota changes signaling pathways that affect lipid

and glucose metabolism, resulting in low-level inflammation,

insulin resistance, and ultimately contributing to T2DM (15).

Additionally, T2DM patients with better blood sugar control
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FIGURE 6

Loop diagram of the gut microbiome and T2DM in reverse Mendelian randomized analysis.

had a decrease in Enterobacteriaceae and Enterococcus compared

with patients with poor blood sugar control. Furthermore, a

significant improvement in insulin resistance was observed,

with increased Bifidobacterium, Bacteroidetes, and bacteria that

produced butyrate and propionate.

Generally, the mechanism by which gut microbiota disorder

may contribute to T2DM includes three components (36): First,

these gut microbiota can decrease the composition of short-

chain fatty acid- producing bacteria in diabetic subjects, affect

the metabolism of bile acids, and increase the microbiota in

the gut tract (37). Second, they may prevent the recovery

of the gut mucosal barrier, a process related to consuming

potential gut pathogens and weakening digestion enzymes. As

a result, it increases diabetes risk by promoting the production

of trimethylamine nitrogen oxide (TMAO), which results in

cholesterol accumulation and insulin resistance (38). Furthermore,

these gut microbiotas can affect the progression of diabetes

as well as other chronic diseases, such as systemic lupus

erythematosus (39), rheumatoid arthritis (40), inflammatory

bowel disease (41), chronic kidney disease (42), and ischemic

stroke (43).

Numerous studies have demonstrated a close relationship

between changes in gut microbiota structure and function and

T2DM. However, given the diversity of gut microbiota, it is still

unclear what type of gut microbiota disorder contributes to T2DM

development. Previously, Xiang et al. (23) used MR research to

demonstrate that Streptococcus and Acidaminococcaceae may have

a critical positive correlation with T2DM risk. Our validation data

set also revealed a positive association between Streptococcus and

T2DM, consistent with Xiang et al.’s findings. Based on the research

of Xiang et al., we expanded the types of gut microbiota and

ranked the exposure factors. According to furtherMR study results,

genus Haemophilus and order Pasteurellaceae were negatively

correlated with T2DM and might play a protective role; genus

Actinomycetes, class Melanobacteria, and genus Lactobacillus were

positively correlated with T2DM, and theymight be associated with

T2DM. Additionally, the MR-BMA predictions suggested that the

genus Haemophilus and T2DMhad a significant causal relationship.
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FIGURE 7

Loop diagram of the Mendelian randomization validation analysis of gut microbes and T2DM.

Some studies have demonstrated a close relationship between

the genus Haemophilus and T2DM (44, 45). As stated by Nuli

et al. (46), people with impaired glucose tolerance would have a

higher proportion of order Pasteurellaceae and genus Haemophilus

than those with normal glucose tolerance. Nevertheless, Zhang

et al. (47) and Zhong et al. (48) found a reduction in

the proportion of genus Haemophilus in new-onset diabetes.

Studies have shown (49) that decreasing the abundance of

genus Haemophilus in the intestine may produce short-chain

fatty acids (SCFAs), such as butyric acid, propionic acid, and

acetic acid, which may increase gut permeability (50). Several

inflammatory factors, including lipopolysaccharides (LPS) and

chyle particles, could pass through the gut epithelial barrier

and activate downstream inflammatory pathways and pro-

inflammatory cytokine cascades, resulting in a chronic systemic

inflammatory response, impaired glucose metabolism, increasing

insulin resistance, and eventually contributing to diabetes. In

addition, A decrease in the number of genus Haemophilus

species in the gut tract could also increase the production of

uremic toxins (51, 52), including indenyl sulfate and p-cresol

sulfate, which might lead to mitochondrial dysfunction, podocyte

damage, thickening of the glomerular basement membrane, and

complications such as diabetes kidney disease and coronary

heart disease.

The results of our MR study suggest that the genus

Actinobacteria and genus Lactobacillus may contribute to the

progression of diabetes. The relevant research indicated that

genus Actinomycetes and genus Lactobacilli in the intestine are

associated with chronic inflammatory diseases, including T2DM.

According to recent research (53–55), patients with T2DM have

reduced amounts and proportions of bacteria from the genus

Actinobacteria in their gut microbiota. In addition, the genus

Lactobacilli positively correlates with fasting blood glucose and

HbA1c levels. Several studies have shown that genus Lactobacilli

levels were significantly higher among type 2 diabetics than

healthy individuals (56, 57). Interestingly, we observed that
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TABLE 2 Ranking of gut microbiota for T2DM using MR-BMA.

Risk factor or
model

MIP Rank by
MIP

MACE PP Rank
by PP

Causal
estimates

p

Model averaging employing 55 SNPs

Class Melainabacteria 0.372 1 0 0.372 1 −0.001 0.069

Genus Lachnoclostridium 0.134 4 0 0.134 2 0 0.703

Genus Actinomyces 0.126 5 0 0.125 3 −0.001 0.683

Order Pasteurellales 0.136 2 0 0.125 4 0.001 0.574

Genus Haemophilus 0.108 6 0 0.107 6 0.001 0.703

Model averaging employing 41 SNPs (SNPs with Q-statistics > 10 are not included)

Order Pasteurelales 0.254 2 0 0.235 2 0.001 0.069

Genus Haemophilus 0.227 3 0 0.226 3 0.001 0.050

Genus Lachnoclostridium 0.111 4 0 0.111 4 −0.001 0.901

Genus Actinomyces 0.1 5 0 0.099 5 −0.001 0.812

Class Melainabacteria 0.075 6 0 0.074 6 −0.001 0.752

Model averaging employing 38 SNPs (SNPS that exceed the Cook’s distance threshold are excluded)

Genus Actinomyces 0.449 1 −0.001 0.447 1 −0.002 0.069

Genus Lachnoclostridium 0.213 2 0 0.212 2 −0.002 0.604

Genus Haemophilus 0.094 5 0 0.094 3 0.001 0.802

Order Pasteurellales 0.101 4 0 0.093 5 0.001 0.772

Class Melainabacteria 0.051 6 0 0.051 6 −0.001 0.911

SNPs, single nucleotide polymorphisms; MIP, marginal inclusion probability; MACE, model-average causal effect; MR-BMA, MR based on Bayesian model averaging; PP, posterior probability.

order Pasteurellaceae and class Melanobacteria were associated

with T2DM. More clinical and basic research is needed to

determine the specific pathogenesis of these gut microbiota

and T2DM.

This study has several advantages: First, it includes clinical and

genetic studies. We used various research methods to elucidate

gut microbiota and T2DM correlation. These researches included

meta-analysis, two-sample MR analysis, and reverse validation

with different data sets. In addition, we used MR-BMA torank

the strength of the causal association between gut microbiota

and T2DM. Second, we clarify the causal relationship between

specific gut microbiota imbalances and T2DM. In this paper, we

propose novel ideas and methods for studying the mechanism of

the “pancreas-gut axis”.

Somethings could be improved in this study: Firstly, We could

not further perform reverse MR analysis due to insufficient SNPs.

The results of our study did not allow us to conclude that gut

microbiota and T2DM were mutually related. Secondly, the MR

results of the validation data set used in this article differ from those

of the original data set. This may be due to the use of different

consortium data. Lastly, although causal associations derived from

MR studies have a certain amount of research value, they still

require additional clinical and basic research confirmation. In

light of this, we should be cautious when interpreting relevant

research results.

5 Conclusion

Our research results suggest that gut microbiota is closely

related to T2DM pathogenesis. The results of further MR research

and an analysis of the predictionmodel indicate that a variety of gut

microbiota disorders, including genus Haemophilus, are causally

related to the development of T2DM. The findings of this studymay

provide some insight into the diagnosis and treatment of T2DM.
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