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Objectives: Health policy attention (HPA) refers to the extent of attention given 
by governments to health issues in public policy and is generally influenced by 
socioeconomic development. This study aimed to examine the spatiotemporal 
heterogeneity and clustering of the associations between socioeconomic 
factors and HPA.

Study design: Longitudinal study.

Methods: This study examined the spatiotemporal heterogeneity of the 
association between public and provincial government attention, economic 
development, and demographic transition and HPA by using geographically 
and temporally weighted regression (GTWR). Word2Vec machine learning 
technology was utilized to calculate HPA data in 323 cities and independent 
variable data was collected in each city in China over the period of 2018–2021.

Results: The results showed that there is a substantial overall rise in HPA levels 
throughout China following the COVID-19 pandemic. Furthermore, the GTWR 
results revealed significant spatiotemporal heterogeneity in the associations 
between HPA and public and provincial government attention, economic 
development, and demographic transition, particularly in the context of 
COVID-19. The impact of provincial government attention on HPA decreased 
from the capital of the political center outward, while the impact of public 
financial investment decreased in less developed cities during the pandemic. It 
was only cities with high levels of aging are more likely to receive greater HPA.

Conclusion: The finding highlighted the remarkable spatial and temporal 
variations in the associations between the variables and HPA across different 
regions in China, emphasizing the need for region-specific policies to strengthen 
the focus on health by municipal governments.

KEYWORDS

health policy attention, socioeconomic development, geographically and temporally 
weighted regression, spatiotemporal heterogeneity, COVID-19

OPEN ACCESS

EDITED BY

Maximilian Pangratius de Courten,  
Victoria University, Australia

REVIEWED BY

Emil N. Coman,  
University of Connecticut, United States
Omar El Deeb,  
University of Warwick, United Kingdom

*CORRESPONDENCE

Hongchuan Wang  
 whc@mail.tsinghua.edu.cn

RECEIVED 14 November 2023
ACCEPTED 15 August 2024
PUBLISHED 

CITATION

He R, Wang H and Liang W (2024) 
Spatiotemporal heterogeneity of the 
association between socioeconomic 
development and health policy attention: a 
geographically and temporally weighted 
regression modeling study in China.
Front. Public Health 12:1338142.
doi: 10.3389/fpubh.2024.1338142

COPYRIGHT

© 2024 He, Wang and Liang. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 
DOI 10.3389/fpubh.2024.1338142

27 August 2024

27 August 2024

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2024.1338142&domain=pdf&date_stamp=2024-08-27
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1338142/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1338142/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1338142/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1338142/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1338142/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1338142/full
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1338142/full
mailto:whc@mail.tsinghua.edu.cn
https://doi.org/10.3389/fpubh.2024.1338142
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2024.1338142


He et al. 10.3389/fpubh.2024.1338142

Frontiers in Public Health 02 frontiersin.org

1 Introduction

Health, defined by the World Health Organization (WHO), refers 
to all health-related topics, including diseases and conditions, health 
and wellbeing, health interventions, health behaviors, health systems, 
socio-political determinants, etc., (1). Health encompasses a wide 
range of topics, and health issues and their determinants often exhibit 
significant spatiotemporal heterogeneity. In recent years, numerous 
studies have adopted a spatiotemporal perspective to analyze health 
issues, thoroughly examining the spatiotemporal distribution 
characteristics of factors such as health resources and disease 
incidence (2–4). Based on these analyses, spatial econometric models 
have been used to establish the relationships between health outcomes 
and their influencing factors (5–7). Building on this foundation, this 
paper attempts to explore the spatiotemporal association between 
socioeconomic development and health policy attention.

The attention that governments pay to health issues in 
policymaking can have a profound impact on the health of populations 
(8, 9). Recent decades have witnessed increasing global attention to 
health affairs and the formulation of diverse health strategies, with the 
COVID-19 pandemic emphasizing the significance of health policy 
on a global scale (10–12). WHO has stressed the need for nations to 
prioritize population health protection in their policy agendas. This 
necessitates an examination of government responses to health issues 
and the link between Health Policy Attention (HPA) and 
influencing factors.

Past research indicates that government policy attention can 
be  driven by factors such as economic development, population 
dynamics, and inter-government networks. For instance, the 2008 
financial crisis led to a shift in government attention between 
healthcare and budget deficits (13). Regional population dynamics 
and inter-sectoral collaboration can also influence local government 
policy attention (14). Furthermore, public attention, institutional 
background, and party membership may impact policymakers’ policy 
focus (15–17). In the realm of health policy attention, limited 
exploration has been made into the factors influencing HPA. Some 
studies suggest that government attention to health topics can 
be  responsive to public opinions, and the preferences of various 
parties, including organizations, policymakers, personal and mass 
media, can influence HPA (18–22). Additionally, directions from 
superior authorities and nearby cities influence the policy attention of 
subordinate governments on health (23).

Despite these findings, existing studies on HPA have not 
adequately explored the spatiotemporal heterogeneity of 
socioeconomic factors affecting city government policymaking, which 
is crucial when comparing the determinants of government 
HPA. While prior research has mainly focused on national-level data, 
HPA varies significantly at sub-national levels due to local context 
differences, implying that government HPA may be influenced by a 
variety of socioeconomic factors across different cities (10, 18, 19, 22, 
24). Moreover, government policies exhibit varying trends at different 
stages, with the pandemic having a lasting impact on policy attention 
(10, 25, 26). Therefore, a comprehensive exploration of government 
HPA requires a robust spatiotemporal analysis.

This study used the definition of health that is promoted by the 
WHO, which is a broad conceptualization of health comprising many 
health-related topics (1). It also aimed to explore the spatiotemporal 
differentiation of the association between the government’s HPA and 

socioeconomic factors through GTWR analysis. It is particularly 
important in exploring the impact of socioeconomic development on the 
HPA in different cities or regions before and after the COVID-19 
pandemic. However, there has been limited research identifying their 
association from a spatiotemporal perspective. This study aims to fill 
that gap.

2 Methods

2.1 Data

The HPA data of 323 Chinese cities and 31 provinces from 2018 to 
2021 was obtained from the annual Government Work Report (GWR). 
Focusing on the Chinese context, GWR is a legally binding document and 
a significant policy instrument that documents the Chinese government’s 
responsibilities and achievements. The report outlines targets and plans 
for the government’s work and serves as the annual action program for 
the local government. Therefore, in this study, the use of literal expressions 
of health affairs in the GWR is employed as a proxy for the evaluation of 
HPA, in order to gain insight into the level of government attention 
dedicated to health policy in China. The text data for this study was 
sourced from the WinGo Financial text data platform. This study also 
employed the data from the China City Statistical Yearbook (2019–2022) 
and the National Economic and Social Development Statistical Bulletin 
(2019–2022) of each city, including population size and structure, 
economic development, air quality, city type and other socioeconomic 
characteristics of cities, reflect the social and economic development of 
cities, and other variables. The public attention data were acquired from 
the Baidu search index webside using the keyword “health” in Chinese for 
sample cities.

2.2 Variables

2.2.1 Health policy attention
In this study, health policy attention refers to the government’s 

attention to health topics in formulating and implementing public 
policies. The indicator of HPA at the prefecture level from 2018 to 
2021 is considered the dependent variable in assessing the level of 
attention that each city’s government pays to public health (Table 1). 
Organizational attention is often reflected in the changes in the 
frequency of the use of words (27). The proportion of health words in 
the total number of words in the GWR was used to measure the 
HPA. This approach is preferred as it can effectively avoid the influence 
of document size on the evaluation (28). Specifically, the construction 
process of the HPA indicator was as follows. First, a seed word set 
related to health in Chinese was created by combining the text of 
“Healthy China 2030 Strategic Plan”’ and drawing on the idea of 
building text indicators (29). Second, to address the problem of people 
using multiple words with similar semantics to describe the same 
concept, it was necessary to expand the seed word set of similar terms. 
The Word2Vec machine learning technology has recently been a 
landmark achievement in the field (30, 31). The core of this technology 
is the neural network Word Embedding method, which consists of 
representing words as multi-dimensional vectors based on contextual 
semantic information, thus allowing for the calculation of semantic 
similarity between words by computing the similarity between the 
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vectors (32). For the purposes of this study, the Continuous Bag-of-
words Model (CBOW Model) in Word2Vec was used to train the 
Chinese government work report corpus. CBOW model:

 
max log

w C
p wContext w

∈
∑ ( )( )|

Where C represents corpus, w is the central word, and Context 
(w) indicates the context of the seed word. The Contextual Bag-of-
Words (CBOW) model is a probability-based approach to predicting 
the current word according to its context. By maximizing the objective 
function, the word vector corresponding to the central word can 
be obtained, and then the similarity of the seed word can be calculated 
through vector similarity. This model has been trained on massive text 
corpora and has been proven to be an effective means of avoiding the 
subjectivity of artificial thesaurus definitions and the weak correlations 
of generic synonym tools. In order to determine the index word set, 
411 words were selected after expert verification. To calculate the local 
government HPA index, the proportion of health-related term 
frequency in the total term frequency was multiplied by 100. The 
higher the value, the more critical the local government is to health.

2.2.2 Attention from the public and provincial 
government

Public opinion plays a vital role in influencing public policy 
(33–38) and affects policymaking attention to health through 

short-term error correction and coexists with it in a long-term 
equilibrium (19). Meanwhile, public involvement initiatives or 
activities can increase decision-maker awareness in the healthcare 
sector and thus influence strategies and priority settings related 
to healthcare (39, 40). Furthermore, public attention manifested 
by social media and news can also influence policy attention in a 
more general, relational, and instantaneous way (41, 42). Online 
public opinions provide meaningful information for 
policymakers’ focus on public policy (43–45). Thus, the public 
attention on health topics could be  a vital influencing 
factor on HPA.

Moreover, the policy attention of the provincial government 
may also influence the policy attention of the inferior government. 
The top-down vertical diffusion of policy attention has been 
observed between the federal and state governments (23, 46). The 
political influence was also found between Chinese central and 
local governments, while the latter retain a certain degree of 
autonomy (47–49). For instance, it is found that the attention 
allocation on safety management of different levels manifests a 
stable equilibrium in the long term (50). The urban land 
marketization policy from the central government was associated 
with local land marketization (51). Thus, the attention that higher-
level governments give to health policy could increase the focus of 
local governments on the same issues. In this study, attention from 
the public and provincial government are considered the 
independent variables.

TABLE 1 Variable summary.

Variable Mean value Max value Min value Standard deviation

Dependent variable

HPA Health policy attention (%) 1.3089 2.5450 0.3906 0.2690

Independent Variables

Attention from the public and provincial government

PA Public attention 0.9092 4.9465 0.0110 0.7022

PGA
Provincial government 

attention (%)
1.3136 2.0010 0.7740 0.2499

Demographic transition

AGE65

The proportion of the 

population aged 65 or older 

(%)

13.3916 23.5260 2.9340 3.4073

POP Population (million people) 4.2903 32.1243 0.2038 3.6394

UR Urbanisation rate (%) 59.6278 99.7500 21.8700 13.7270

Economic development

GDPPER
GDP per capita (ten 

thousand yuan)
6.3309 21.8118 1.2447 3.4921

BEPER

Budget expenditure of public 

finance per capita (ten 

thousand yuan)

1.3172 2.5450 0.3906 0.6893

Control Variables

CT

City type (1 = high 

administrative level city, 

0 = general city)

0.8869 1 0 0.3169

AQI Air quality index 66.7891 126.6078 23.1096 18.9123
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2.2.3 Economic development
Economic development may influence the government’s HPA 

within the region under the government’s jurisdiction. Health service 
provision is unevenly distributed spatially between developed and 
developing countries (52, 53). In China, there are significant disparities 
in public health services owing to the substantially differentiated 
health expenditures across regions (54). Even though the central 
government dedicated fiscal inputs in health fields to the poor and 
western regions, the inequalities in the allocation of health resources 
are still widening in these areas (55). Also, indicators of local economic 
development, such as gross domestic product (GDP) per capita, are 
positively related to the health expenditure of local governments in 
China (56). Thus, it is hypothesized that HPA would be higher in cities 
with higher levels of economic development. In this study, GDP per 
capita and budget expenditure of public finance per capita at the 
prefecture level is selected as the main indicators of economic 
development in the spatiotemporal regression modeling.

2.2.4 Demographic transition
Demographic transitions can potentially influence the 

government’s HPA. The aging of population has been dramatically 
accelerated in recent decades, and this is drawing significant attention 
from the government worldwide (57–59). Importantly, population 
aging is closely related to the government’s health expenditure (60). 
Moreover, the mass migration from rural to urban areas also raises 
health problems that need to be addressed. For example, the rapid 
urbanization process in China has attributed to a higher rate of poor 
health reporting (61). In addition, the population decline in many 
countries poses heavy burdens to fiscal budgets and, thus, healthcare 
provisions (62–64). This is important to contemporary China since its 
population declined in 2022 for the first time in the last 60 years (65). 
In this study, the proportion of the population aged 65 or older, 
permanent population size, and urbanization rate at the prefecture-
level are considered the main indicators of demographic transition.

2.3 Spatiotemporal regression modeling

Geographically and temporally weighted regression (GTWR) 
offers a valuable alternative for exploring spatiotemporal heterogeneity 
that traditional regression models fail to capture. An increasing 
number of studies have demonstrated the efficacy of GTWR in 
housing (66, 67), air pollution (68, 69), and transportation (70). These 
studies have consistently found that the GTWR model produced a 
better model fit than naive/a-spatial models, suggesting its potential 
for informing health policy decisions amid the current pandemic. 
However, due to the highly computationally intensive nature of the 
GTWR model, its application is constrained to small size datasets, 
restricting its wider use. Nonetheless, the potential of GTWR for 
exploring spatiotemporal heterogeneity cannot be overlooked in the 
current context of dynamically changing HPA. It is thus critical to 
explore ways of improving the computational efficiency of the GTWR 
model and enabling its wider application in the social sciences. A 
typical GTWR model can be written as follows:

 
Y , , , ,i i i i

k
k i i i ik iu v t u v t X= ( ) + ( ) +∑β β ε0

Where Yi is the dependent variable percentage of health-
related keywords in a government work report of the city i; (ui, 
vi, ti) denotes the spatial location (ui, vi as coordinates) of census 
tract i at time ti; β0 (ui, vi, ti) is the intercept value; βk (ui, vi, ti) 
represents a vector of parameter value for the independent 
variable k at the census tract I, and Xik is the respective 
independent variable; and εi denotes an error term for census 
tract i. What is distinct about the GTWR model is that it allows 
the parameters βk (ui, vi, ti) to vary across the model to measure 
both the spatial and temporal variations in a spatiotemporal 
dataset. To calibrate this model, a spacetime weight matrix W (ui, 
vi, ti), a diagonal matrix with elements representing the spatial 
and temporal weights of each census tract i, is required. The 
optimal spatiotemporal weight matrix can be determined through 
a cross-validation (CV) approach, which seeks to obtain the best 
goodness of fit. This process was executed using the local 
weighted least squares approach in combination with the GTWR 
model. Specifically, data preparation was conducted using the R 
programming language, whilst the model was calibrated with the 
ArcGIS GTWR add-in (66, 67).

Moran’s I was computed for the dataset, and its value of 0.163 
(p < 0.001) demonstrated strong spatial autocorrelation, 
necessitating a spatial regression approach. A test for spatial 
nonstationarity was also conducted by comparing the 
interquartile from the GTWR with twice the standard errors from 
the ordinary least squares (OLS) model. The results indicated 
that all the variables exhibited extra local variations, making 
GTWR more suitable to explore the spatiotemporal heterogeneity 
(66). Furthermore, the GTWR model was also found to have a 
higher adjusted R-squared of 0.20 and a lower AICc of 105.576, 
compared to the OLS model values of 0.09 and 164.817, 
respectively. This suggested that the GTWR model significantly 
improved the overall model performance in reflecting the spatial 
and temporal variations in the research sample.

3 Results

3.1 Spatial characteristics of HPA across the 
study period

Spatial differences in HPA across the study period were 
observed in China (Figure 1), increasing from the east to the west 
with an average value of 1.308%. In general, regions with 
relatively low HPA (less than 1.1%) were mostly located in the 
eastern and middle parts of China, while regions with relatively 
high HPA (more than 1.4%) were mainly concentrated in the 
Qinghai-Tibetan Plateau area, the Northeast Plain area, and 
Yunnan-Sichuan provinces. The eastern and middle regions were 
also found to have relatively high HPA in Guangdong, Fujian, 
Shannxi, Henan, Shandong, and Jiangsu provinces. Further, the 
average HPA before COVID-19 was 1.221%, and this increased 
to 1.366% during the pandemic. Cities with relatively high HPA 
(more than 1.4%) noticeably increased in the study period, 
suggesting a substantial overall rise in HPA levels throughout 
China following the pandemic.
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3.2 Geographically and temporally 
weighted regression modeling

3.2.1 Overall model
The results of the GTWR model, presented in Table 2, suggest 

that public attention and provincial government attention had a 
positive impact on HPA. This finding is consistent with 
expectations, as increases in these variables are expected to 
increase HPA. Furthermore, the coefficient of the population was 
positive, indicating that increases in population size can lead to 
increases in HPA. However, the coefficient of proportion of the 
population aged 65 or older was negative, suggesting that 
increases in this variable can lead to decreases in HPA. The 
GTWR model results also revealed that urbanization rate, GDP 
per capita, and budget expenditure of public finance per capita all 
had different effects on HPA. Urbanization rate and GDP per 
capita had a negative impact, whereas budget expenditure of 
public finance per capita had a positive effect. Additionally, 
coefficients of city type and air quality index were both negative, 
suggesting that increases in these variables can lead to 
decreases in HPA.

3.2.2 Temporal dimension
Table 3 presents a comparison of the average coefficients of selected 

variables on HPA between the pre-COVID-19 and COVID-19 periods. 
Results show that the coefficients of public attention, provincial 
government attention, and budget expenditure per capita increased 
during the pandemic, indicating that the positive influence of these 
variables on HPA became stronger. At the national level, the coefficient 
of proportion of the population aged 65 or older and GDP per capita 
remained negative, requires further spatial analysis at sub-national 
level. On the other hand, the coefficients of population, city type, and 
air quality index exhibited varying changes during the pandemic.

3.2.3 Spatial dimension
Figure 2 indicates the spatial distribution characteristics of the 

association between socioeconomic factors and HPA. The average 
effects of provincial government attention vary geographically, with 
the highest coefficients observed in the Beijing-centered area, and 
diminishing coefficient levels observed in the surrounding regions 
throughout the study period. In contrast, the western regions display 
the weakest association with provincial government attention, with 
negative coefficients observed in some instances. Prior to the 

FIGURE 1

Spatial pattern of HPA in all time, before COVID-19, and during COVID-19 periods.

TABLE 2 GTWR model summary.

Variable AVG MIN LQ MED UQ MAX

PA 0.0005 −0.0985 −0.0473 −0.0100 0.0376 1.3536

PGA 0.2064 −0.4581 0.1706 0.2318 0.2643 0.3250

AGE65 −0.0033 −0.0188 −0.0052 −0.0032 −0.0018 0.0228

POP 0.0014 −0.1891 −0.0038 0.0029 0.0054 0.0215

UR −0.0006 −0.0034 −0.0015 −0.0008 −0.0003 0.0119

GDPPER −0.0096 −0.0710 −0.0125 −0.0092 −0.0066 0.0082

BEPER 0.0187 −0.0859 0.0093 0.0194 0.0322 0.1652

CT −0.0203 −0.5809 −0.0788 −0.0132 0.0323 0.8702

AQI −0.0018 −0.0037 −0.0025 −0.0019 −0.0012 0.0014

AICc 105.576

Adjusted R2 0.2015
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FIGURE 2

Spatial pattern of the average coefficients for three variables in all time, before COVID-19, and during COVID-19 periods.

COVID-19 pandemic, the strongest impact of provincial government 
attention was concentrated in Beijing and its neighboring provinces, 
such as Hebei and Nei Monggol. However, during the pandemic, this 
effect expanded to other provinces, including Liaoning, Shanxi, and 
Shandong, ultimately resulting in a broader geographic impact. The 

average effects of aging on various outcomes exhibits a distinct spatial 
pattern. Specifically, the aging effect is consistently negative across all 
time periods, with the highest coefficients observed in the western 
regions, gradually declining toward the east. Prior to the outbreak of 
COVID-19, the southwestern regions demonstrated the greatest 

TABLE 3 Average coefficients in different periods.

Variable Before COVID-19
(2018–2019)

During COVID-19
(2020–2021)

Average coefficient change

PA 0.0002 0.0008 0.0006

PGA 0.1896 0.2169 0.0273

AGE65 −0.0035 −0.0031 0.0004

POP 0.0038 −0.0009 −0.0047

UR −0.0011 −0.0001 0.0010

GDPPER −0.0081 −0.0110 −0.0029

BEPER 0.0144 0.0226 0.0082

CT 0.0232 −0.0613 −0.0845

AQI −0.0025 −0.0011 0.0014
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vulnerability to aging, whereas after the pandemic, the northeastern 
regions experienced the most significant aging effect. This effect 
ultimately weakened moving toward the southwest region. The 
average effects of budget expenditure and public finance per capita 
during the study period are strongest in the northwestern regions and 
diminish gradually southeastward. Before COVID-19, the coefficients 
of public budget expenditure were the largest in the western area and 
some northeastern regions. And the coefficients decrease eastward 
and become negative on the southeast coast. During COVID-19, on 
the contrary, the effects of public budget expenditure are most 
significant in eastern areas and then diminish westward.

4 Discussion

This study aimed to investigate the spatiotemporal heterogeneity in 
the association between HPA and socioeconomic development in China, 
where marked differences in HPA have been observed across the country. 
The results revealed that public and provincial government concern, 
economic development, and demographic transition were significantly 
associated with HPA. These findings suggest that the spatial heterogeneity 
of the association between HPA and socioeconomic factors should 
be taken into account when developing health policies. Moreover, it may 
be necessary to develop different policies or investments to increase HPA 
in different regions. Overall, the findings of this study had several 
important ramifications for health policy and future research.

First, these findings suggest that provincial government health policy 
attention has a strong influence on local government decision-making. 
Notably, the positive association between government health concerns 
and city-level health policy attention has been further strengthened 
during the COVID-19 pandemic, with an increased effect of provincial 
government attention on cities’ HPA. This might be due to the climbing 
public attention during the pandemic and the top-down public health 
emergency response (71–73). This study also found that the most robust 
average coefficients for provincial government attention were in the 
Beijing-centered areas. This may be due to Beijing is political center in 
China, as it has the most potent political influence and receives the most 
resources from the central government (50). During the COVID-19 
pandemic, political influence and access to resources expanded to a 
broader range of areas, indicating that increased pressure from the 
provincial government in health policy may encourage local governments 
to pay more attention to health issues. These findings suggest that public 
health crises have played an important role in strengthening 
intergovernmental relations, and this impact is more pronounced in cities 
and regions closer to the political center.

Second, this study examines the association between demographic 
transition and HPA in cities. Contrary to this study’s initial hypothesis, the 
results reveal a negative association between urbanization and HPA, 
suggesting that high levels of urbanization may lead to decreased policy 
attention to health due to the growing pressure on local governments to 
address various issues (74). This study also found interesting results 
regarding the association between aging populations and HPA. It was only 
in cities with high levels of aging (southwest and northeast China), saw a 
greater increase in HPA in response to its aging population. Notably, the 
study found a close-to-zero negative coefficient for this variable in the 
all-time period, indicating that the positive and negative coefficients of all 
cities in China even out. These findings provide valuable insights into the 
significant difference between demographic transition and HPA in cities, 

suggest that cities with a high proportion of older adult residents are more 
likely to receive greater attention in health policy, but the extent of this 
attention may vary depending on the region.

Third, the study shows a significant correlation between economic 
development, as measured by GDP per capita, and public finance budget 
expenditure per capita, with HPA. Unexpectedly, the results indicate that 
higher GDP per capita is negatively associated with HPA. This may be due 
to cities with high GDP per capita, the government may direct its attention 
toward more priorities, including unemployment, public security, 
ecological environment, etc. (75, 76). However, budget expenditure of 
public finance per capita is positively correlated with HPA. This 
association has been strengthened during the COVID-19 pandemic due 
to increased government investment in public health. Results from this 
study also highlight a significant difference between the less-developed 
western region and the highly developed eastern region, suggesting that 
the effects of economic factors on HPA may vary across cities, especially 
during the COVID-19 pandemic. Before the pandemic, less developed 
cities in western region relied more heavily on public finance expenditures 
to improve their healthcare systems, while more developed cities may pay 
less attention to health in their public finance. However, with the outbreak 
of COVID-19, cities became more reliant on public finance to address 
public health emergencies. The economic resourcefulness of the more 
developed cities provided them with greater potential to raise their policy 
attention to health during the pandemic (77, 78). When less developed 
cities or regions face public health crises, strengthening HPA requires a 
higher level of public financial investment than before.

This study has several limitations that should be  acknowledged. 
Firstly, the data on the socioeconomic variables were limited to average 
statistical values, and only a limited number of socioeconomic variables 
were examined. Detailed information on the distribution of economic 
development within each city was not available. As a result, the R-squared 
value for this study is moderately high. Future studies should aim to 
consider a wider range of factors, such as the economic structure, natural 
environment, and official characteristics. This would help to provide a 
more comprehensive understanding of the association between 
socioeconomic variables and health outcomes. By incorporating 
additional variables and methods of analysis, it may be  possible to 
strengthen the explanatory power of the model and increase the 
understanding of this complex relationship.

5 Conclusion

This study utilized a GTWR model to explore the heterogeneity 
and clustering of socioeconomic factors associated with HPA in cities 
in China, with a focus on the impacts of the ongoing COVID-19 
pandemic. The results showed that there is a substantial overall rise in 
HPA levels throughout China following the COVID-19 pandemic. 
The pandemic has played a significant role in strengthening 
intergovernmental relations, with the impact of provincial government 
attention being more pronounced on HPA in cities closer to the 
political center. The economic resourcefulness provided developed 
cities with greater potential to increase their HPA during the 
pandemic. In contrast, less developed cities require a higher level of 
public financial investment to strengthen HPA. It was only in cities 
with high levels of aging are more likely to receive greater HPA. The 
findings highlighted the remarkable spatial and temporal variations in 
the associations between the variables and HPA across different 
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regions in China, emphasizing the need for region-specific policies to 
strengthen the focus on health by municipal governments. These 
findings offer valuable insights into the heterogeneity and clustering 
of determinants related to HPA, which can inform effective policy-
making in response to the pandemic.
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