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Isolation policies are an e�ective measure in epidemiological models for the

prediction and prevention of infectious diseases. In this paper, we use a

multi-agent modeling approach to construct an infectious disease model that

considers the influence of isolation policies. The model analyzes the impact

of isolation policies on various stages of epidemic from two perspectives:

the external environment and agents behavior. It utilizes multiple variables to

simulate the extent to which isolation policies influence the spread of the

pandemic. Empirical evidence indicates that the progression of the epidemic is

primarily driven by factors such as public willingness and regulatory intensity. The

improved model, in comparison to traditional infectious disease models, o�ers

greater flexibility and accuracy, addressing the need for frequent modifications

in fundamental models within complex environments. Meanwhile, we introduce

“swarm entropy" to evaluate infection intensity under various policies. By linking

isolation policies with swarm entropy, considering population structure, we

quantify the e�ectiveness of these isolation measures. It provides a novel

approach for complex population simulations. These findings have facilitated the

enhancement of control strategies and provided decision-makers with guidance

in combating the transmission of infectious diseases.
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1 Introduction

The outbreak and spread of infectious diseases cause significant threats to human

society, making effective prevention and control of these diseases a crucial public health

concern. To formulate effective prevention and control strategies, it is essential to have

a clear understanding of the dynamic changes in infectious diseases. These dynamic

changes are influenced by various factors, and one controllable factor is quarantine policies.

The purpose of quarantine policies is to reduce contact between infected individuals

and susceptible individuals, thereby lowering the risk of transmission. However, these

policies also impact people’s daily lives and social activities. Therefore, it is worth exploring

how to assess the impact of different quarantine policies on the dynamic changes of

infectious diseases.

In recent years, group simulation has found widespread applications in various fields,

including urban planning, disaster prevention and control, and visual effects (1). By

simulating interactions and information exchange among individuals, group simulation

can provide data support for formulating relevant management strategies.
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The fidelity of group simulation models has been a time-

consuming challenge to address. Cunha et al. (2) introduced

a data-driven machine learning framework that employs the

cross-entropy method to enhance the fidelity of real-time

infectious disease models. Kumar and Susan (3) suggests a fuzzy

time series (FTS) forecasting method based on particle swarm

optimization (PSO) to enhance the accuracy of predictions. The

highly realistic data has enhanced the flexibility in choosing

modeling methods for simulation experiments, such as agent-

based models and system dynamics, this renders the improved

infectious disease model more flexible. For example, Contoyiannis

et al. (4) introduced a self-organizing mechanism-based

infectious disease model capable of adapting to various epidemic

transmission scenarios.

Currently, group simulation experiments commonly adopt

agent-based modeling, where the behavior of agents is influenced

by the external environment and individual factors (5, 6),

allowing for individual variations. Researchers have attempted to

incorporate knowledge from psychology and dynamics into the

behavior models of agents. For instance, in disaster emergency

scenarios, emotional contagion has been applied. By defining how

panic emotions affect the path planning of agents, a framework

for simulation experiments under different situations such as

earthquakes and fires can be established eliminating the need for

frequent model changes (7).

During the COVID-19 pandemic, various infectious disease

models have been proposed to assess important parameters such

as infection rates and mortality rates in response to the real

situation (8). Das et al. (9) presented an improved infectious disease

model that considered heterogeneous populations, including

asymptomatic carriers. They compared the effectiveness of two

preventive measures: social distancing and isolation. Yang et al.

(10) addressed population movement between different regions

and utilized artificial agents to analyze the pandemic’s overall trend.

Zheng et al. (11) further enhanced the accuracy of pandemic

forecasting by integrating AI models with infectious disease

models. These models have provided clear guidance for epidemic

prevention and control efforts and have led to the formulation of a

series of preventive measures. To effectively control the pandemic,

social distancing and isolation policies should be regarded as

primary strategies.

Indeed, implementing isolation policies requiresa

consideration of the local healthcare facilities, economic factors,

and residents’ willingness to comply. For example, a during the

pandemic in Shanghai, the isolation policies not only aimed

to reduce contact rates with infected individualsa but also

placed significant emphasis on residents’ mental wellbeing to

prevent panic emotions from affecting the efficiency of epidemic

prevention and control efforts. In some underdeveloped regions,

medical resources may not be sufficient to meet the theoretical

requirements for social distancing and isolation. Therefore, when

formulating isolation policies, factors like the loss of supplies

during distribution should be taken into account. Moreover,

different infectious diseases and different stages of the same

disease may require the adoption of different isolation policies

(12). Relying solely on controlling social distancing might not be

sufficient to meet the practical demands in such cases. Thus, a

comprehensive and adaptable approach should be employed to

address the complexities and variations that arise during epidemic

control efforts.

Traditional infectious disease models often evaluate isolation

policies by controlling social distancing, which essentially alters the

contact rates between agents, affecting the efficiency of information

exchange among them. However, based on the theory of group

entropy, the process of information interaction is influenced by

four aspects: transmission efficiency, population structure, agents

behavior, and the external environment. Therefore, equating the

control of social distancing with isolation policy efficiency cannot

accurately assess complex isolation policies. This paper aims to treat

the isolation policy as a comprehensive external environmental

variable and analyze the impact of the external environment and

individual differences on the transmission process during the

epidemic. By establishing an infectious disease transmission model

affected by isolation policies, the model can simulate the spread of

the epidemic under the influence of isolation policies and evaluate

different isolation strategies.

Our main contributions are as follows:

• We proposed a modified infectious disease model, it takes

into account the impact of isolation policies on the health

status of individuals (agents) and considers the heterogeneity

of residents under isolation policies.

• The model provides a method to quantitatively evaluate policy

efficiency, avoiding frequent model changes, and is more

available for analyzing the development trends of epidemics.

This approach can also be applied to other scenarios involving

group simulation models.

• The experiments utilized an agent-based modeling approach.

The characteristics of agents reflect the diversity and

heterogeneity of a coupled network. Additionally, the

experiments employed the concept of structure entropy

from swarm entropy to systematically analyze the infection

efficiency of each stage of the epidemic under different

isolation policies, it enables isolation policies to be measured

as a parameter.

The remaining sections of the paper are as follows: Section

2 introduces related work on simulation experiments. Section 3

presents the methods used for simulation modeling, with a focus

on the improvement of the SIR model and the construction of

the environmental model. Section 4 discusses the experimental

results and parameters, including control experiments, sensitivity

analysis experiments, and simulation validation against real-world

situations. The final Section summarizes the main contributions

and limitations of this paper.

2 Related work

2.1 SIR model

In traditional infectious disease models, the population within

the scope of disease transmission is divided into three categories:

susceptible individuals (S), infected individuals (I), and removed

individuals (R) (13). Among these, S represents the group that

is susceptible to infection due to lacking immunity, I represents
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the infectious group capable of transmitting the disease, and R

represents the group that has been either cured or deceased and is

no longer susceptible to or capable of infecting others. Individual

states undergo linear transitions among these three states of

susceptible, infected, and removed. The SIR model has been widely

applied in infectious disease research. Based on the SIR model,

various variant models have been developed according to different

social environments and virus characteristics. For example, the

SEIR model (14) takes into account the exposed period, and the

SIRS model (15) allows individuals to become infected again after

recovery. Additionally, the SIR model has found applications in

other fields. For instance, Kalimzhanov et al. (16) examined the

interaction between the diffusion processes and structural stability

in social networks. Mao et al. (17) established an emotional

contagion model in group simulations based on the SIR model.

Woo et al. (18) simulated the opinion propagation process on the

Internet using the SIR model.

2.2 Swarm entropy

Swarm entropy is a metric used to measure the heterogeneity

or level of disorder within a population, reflecting the uniformity

or diversity of individual states within the group. In the

analysis of collective agents behavior in biological populations,

swarm entropy incorporates the concept of entropy theory into

the quantitative analysis of agents behavior in group systems,

considering aspects such as information transmission, system

structure, and behavioral mechanisms (19). In the context of

swarm simulation, swarm entropy equates the behavior of agents

to local information interactions, where this information exchange

is constrained by external environmental factors and internal

behavioral evolutionary dynamics.

Swarm entropy comprises four components: environmental

entropy, behavioral entropy, structural entropy, and transmission

entropy (20). Environmental entropy accounts for the influence

of the physical environment on the agents. Behavioral entropy

considers the diversity of agents, such as how individual

characteristics impact the efficiency of information transmission.

Structural entropy takes into account the influence of the agent

group’s structure. Transmission entropy, on the other hand,

considers the learning capabilities of the agents.

In existing experiments, the entropy increase effect has been

used as a means to analyze model efficiency. For instance,

Chen (21) applied the concept of swarm entropy to complex

software development involving unmanned collectives, Nie et al.

(22) discovered a correlation between information entropy and

infection rates, which can be applied to the SEIR model.

In this paper, the isolation policies primarily act on the

simulation model by altering the way infected and healthy

populations interact. Therefore, the efficiency of the infection

model can be analyzed using structural entropy. In the simulation

experiments, different agents are assigned different identities,

and when isolation policies are implemented, the variations in

identities lead to changes in the population’s structure (23),

resulting in different levels of swarm entropy for various population

structures. The paper contends that higher swarm entropy indicates

greater disorder or diversity in the individual states within the

population, implying increased opportunities for contact between

infected and susceptible individuals and consequently higher

infection intensity. Conversely, lower swarm entropy indicates a

more uniform or homogeneous distribution of individual states

within the population, resulting in reduced chances of contact

between infected and susceptible individuals and thus lower

infection intensity.

2.3 Regulatory intensity and control rate

Social distancing is a primary measure implemented during

pandemics to prevent the spread of infectious diseases. It aims

to control the range of people’s movement and limit it as much

as possible, thereby suppressing the extent and intensity of virus

transmission. Its essence lies in influencing the contact rate to

reduce the infection rate among susceptible individuals (24). The

effectiveness of social distancing depends on the degree and

timing of policy implementation, Thada et al. (25) introduced an

additional exposure state (E) to distinguish between the isolated

state and the regular infectious state.

To ensure variability in experimental results, different isolation

policies will be employed for epidemic transmission simulations.

However, different isolation policies may lead to changes

in population structure. For instance, during the COVID-19

pandemic, updated versions of the SICRmodel with isolation stages

were introduced to adapt to the evolving transmission environment

over time. Therefore, this paper assesses the effectiveness of

isolation policies by analyzing changes in population structure,

using swarm entropy to analyze variations in the entropy

of population structure. Additionally, two variables, regulatory

intensity, and control rate, are introduced to simulate the impact of

external environment and internal factors on the effects of isolation

policies on the transmission process.

Regulatory intensity represents the extent to which isolation

policies affect the contact rate. Taking into account the population

structure, the initial infection rate is set to the infection rate

at a social distance of 5 meters, which is determined based

on government recommendations for safe distancing during

the COVID-19 pandemic. On the other hand, the control rate

represents the proportion of individuals constrained by the

isolation policy within the population, influenced by asymptomatic

carriers and the willingness of agents to comply.

3 Methodology

The epidemic transmission module has established an

improved SICR model. In this model, in addition to the

conventional susceptible individuals (S), infected individuals

(I), and removed individuals (R), a new group of individuals

affected by the isolation policy is introduced, referred to as

constrained individuals (C). As shown in Figure 1, this group

undergoes changes based on the implementation of the isolation

policy, including alterations in their infection rate and contact

rate. Through the SICR model, the impact of isolation policies

on epidemic transmission can be analyzed from both external
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FIGURE 1

Framework of infection mechanism (in SICR model, we analyze the process of infection from a simulation experiment perspective, enhancing the

traditional SIR model by considering both external environmental factors and the attributes of agents).

environmental and agents behavior perspectives (26). External

behavior is primarily represented by the impact of isolation

policies, which is reflected in the infection stages of the pandemic.

Agents behavior is manifested through disease progression and

individual preferences, primarily influencing the recovery phase of

the pandemic. To evaluate the effectiveness of isolation policies,

the simulation module incorporates metrics such as swarm entropy

and the basic reproduction number, used to analyze the rationality

of the efficiency of isolation policies.

3.1 Modified SIR model

The improved SIR model possesses the following three main

characteristics:

• Introduction of constrained individuals: in the infectious

disease model, a new group of individuals called “constrained

individuals" is introduced, who are subject to various degrees

of constraint due to isolation policies. Typically, the infectivity

and contact rate of constrained individuals is lower than those

of regular infected individuals.

• Incorporation of regulatory intensity and control rate: to

evaluate the effectiveness of different isolation policies, the

experiment introduces the variable “Regulatory intensity"

(QK). It also considers the willingness of asymptomatic

carriers and residents, incorporating the “Control Rate" (A).

The combined effect of regulatory intensity and control rate

determines the impact of isolation policies on the infection

process.

• Unified consideration of removed individuals: to simplify

the model structure, removed individuals are unified and

considered. This group includes individuals who have

died, recovered, or lost the ability to infect due to other

circumstances.

The traditional SIR virus propagation model reveals the

relationships among susceptible individuals, infected individuals,

and recovered individuals. This model is a commonly used classic

model in epidemiology to describe the transmission process of

infectious diseases within a population, encompassing the growth

of infected and recovered individuals. As shown in Equations 1, 2.

S+ I + R = � (1)































△S

△T
= βSI −

△I

△T
,

△I

△T
= βSI − λI,

△R

△T
= λI.

(2)
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where the recovery rate of an infected individual is defined as γ , �

is defined as the total population size. and β is defined in terms

of the contagiousness of the disease and the rate of exposure of

susceptible individuals to infected individuals, σ =
β
γ
, σ represents

the basic reproduction number of a disease. The process of a

susceptible individual’s movement from illness to emigration can

be expressed by a differential equation as Equation 3:

I = (S0 + I0)− S+
1

σ
ln

S

S0
(3)

The above differential equation expresses the rate of change

of susceptible individuals. The rate of change of susceptible

individuals is dependent on the number of infected individuals

and the number of susceptible individuals. Specifically, the decrease

in the number of susceptible individuals depends on the contact

rate between infected and susceptible individuals (β) and the

proportion of susceptible individuals. This differential equation

describes the dynamics of susceptible individuals over time and

is an essential equation in the SIR model for describing the

susceptible state.

During the spread of an epidemic, a primary measure taken

when the virus begins to proliferate is the isolation of infected

individuals to cut off the transmission pathways and control the

spread of the virus. However, in practice, when isolation measures

are implemented, only individuals with evident symptoms can be

identified and isolated promptly. Some agents may lack identifiable

infection characteristics, yet these unquarantined individuals can

still serve as sources of transmission, these individuals are referred

to as asymptomatic carriers. Additionally, there could be some

sources of infection that go unnoticed due to other reasons, posing

a hidden risk for virus transmission.

The presence of these asymptomatic carriers and undetected

sources of infection makes it challenging for isolation policies

to achieve comprehensive and effective coverage. Consequently,

some individuals may directly transition from the infected state to

the removed state without undergoing the isolation process. This

highlights why, in real-world scenarios, the spread of an epidemic

is influenced not only by isolation policies but also by other factors.

For example, in the later stages of the COVID-19 pandemic,

many regions implemented open policies to ensure the normal

functioning of society as much as possible. Such low-intensity

isolation policies led to the possibility that infected individuals

restricted by these policies could still transmit the virus to

uninfected individuals. Therefore, different isolation policies can

have varying degrees of impact on the transmission process. This

highlights the crucial importance of considering various factors

when formulating isolation policies. In epidemic prevention and

control, understanding the effects and limitations of isolation

policies is essential for scientifically devising and implementing

more effective control measures.

In the experiments conducted in this paper, only the impact of

isolation policies on the infectious disease model is simulated as an

external environmental variable. To avoid excessive complexity in

themodel, the group of individuals constrained by isolation policies

is defined as the “constrained individuals".

In the epidemic simulation, open policies, individual isolation,

and community isolation are commonly implemented epidemic

prevention measures. Under individual isolation policies, infected

individuals can transmit the virus to others through contact with

cohabitants. Different policies have distinct effects on the contact

rate. In the SICR model, the variables QK and A will be used to

simulate the effects of different isolation policies.

In the context of epidemic environments with isolation

policies in place, the transmission model is divided into four

stages: susceptible individuals, infected individuals, constrained

individuals, and removed individuals, as shown in Figure 2. Unlike

the traditional SIR model, R includes both the recovered group

and the infected individuals who are fully isolated and no longer

capable of transmitting the virus. Constrained individuals represent

individuals who, despite being constrained by isolation policies, can

still transmit the virus to others through certain means.

The model setting and stage division enable the simulation to

more accurately simulate the effects of different isolation policies on

the transmission process, thus providing a useful reference for the

development of more effective anti-epidemic measures. The speed

of its transformation is expressed by the Equations 4–8:

P(t) = S(t)+ I(t)+ C(t)+ R(t) (4)

dS

dT
=

(σβI(t)+ σ1β1C(t))S(t)

P(t)
(5)

dI

dT
=

(σβI(t)+ σ1β1C(t))S(t)

P(t)
− γ I(t)− AαI(t) (6)

dC

dT
= AαI(t)− γC(t) (7)

dC

dT
= (1− A)αI(t)+ γC(t) (8)

dR
dT

represents the rate of susceptible individuals getting cross-

infected by both infected individuals and constrained individuals

per unit of time. dI
dT

represents the total number of newly infected

individuals per unit of time minus the number of controlled

individuals αβI(t) and σ1β1C represents the growth rates of

infected individuals and constrained individuals per unit of time.
dC
dT

represents the rate of change of constrained individuals over

time, which is the difference between the number of constrained

individuals and the number of individuals who no longer can

transmit the virus. Here, A represents the control rate, and AαI(t)

represents the rate at which constrained individuals transform into

removed individuals due to recovery or receiving sufficient medical

resources. dR
dT

represents the rate of change of removed individuals

over time, which includes individuals who have recovered from the

infection and individuals who have transformed from constrained

individuals to removed individuals.

In the SICR model, the isolation rate will change according

to different isolation policies. Constrained individuals, due to the

impact of isolation policies, have restricted movements, and their

contact rate is lower than that of regular infected individuals.

In the formula, the post-isolation contact rate σ1 is related to the

original contact rate σ as follows: σ1 =
σ
Qk

, whereQK represents the
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FIGURE 2

SICR infection model (compared to the SIR model, under the influence of quarantine policies, infected individuals have a certain probability of

transitioning into a constrained population).

regulatory intensity, and k represents different isolation policies.

For example, if an open policy is adopted, meaning no strict

isolation measures are implemented (i.e., QK = 1), the post-

isolation contact rate σ1 will be equal to the original contact

rate σ . In this case, it is equivalent to using the SEIR infectious

disease model with an incubation period to represent the epidemic

transmission process. However, when stricter isolation policies are

implemented, the contact rate of constrained individuals will be

reduced, thereby influencing epidemic transmission.

To analyze the relationships among various interaction

parameters, we employed statistical methods based on time-series

analysis to examine the impact of QK , cross infection rate β ,

and the peak of infected individuals (PK) on the dynamics of

the epidemic (27). Using the improved model, we generated

time-series data for the number of infected individuals under

different parameter settings. As shown in Figure 3, We found

that an increase in QK led to a decrease in PK . Additionally,

we observed a positive correlation between β , indicating that

increasing β would result in an increase in PK . Therefore, there

is a negative correlation trend between regulatory intensity and

infection rate.

This model set allows for a more accurate reflection

of the effects of different isolation policies on the

transmission process, helping to assess the effectiveness

of isolation measures and devise more effective epidemic

prevention strategies.

3.2 Swarm entropy and basic regeneration
number

In epidemiology, the basic reproduction number, denoted

as R0, is an essential parameter that describes the early stages

of an infectious disease outbreak. It represents the expected

number of secondary infections caused by introducing a single

infected individual into a completely susceptible population during

the individual’s average infectious period. The magnitude of R0
directly influences the spread of the infectious disease within

the population. In a simulation environment that does not take

into account the birth and natural mortality rates, the basic

regeneration number R0 can be estimated by the Equations 9,

10:

R0 = (1+ λT0)(1+ λTN) (9)

λ =
ln Y(t)

t
(10)

where λ is the growth rate of infected persons, R0 is calculated by

dividing the rate of infection by the rate of recovery; when R0 is

<1, the number of infected persons who can be infected during the

average period of infection is<1, and then the disease will gradually

die out on its own and the spread of the disease will stop. When R0
is >1, the number of infected persons who can be infected during

the average period of illness is >1, and the disease will continue

to spread and propagate. Therefore, controlling R0 is the key to

developing effective epidemic prevention measures and preventing

the spread of infectious diseases. Based on the basic reproduction

number, one can derive the minimum criteria that need to be met

when setting various parameters in the model. For example, Young

et al. (28) employed the SIQ infectious disease model to estimate

the minimum coping capacity during the epidemic.

In the research, considering the incubation period of COVID-

19 typically ranges from 7 to 14 days, the isolation period should

be at least as long as the incubation period. Therefore, the infection

period (TI) is set to 9 days, and the isolation period (TN) is set to

10 days.

In reality, it may not be feasible or practical to keep the

basic reproduction number (R0) below 1 during the early stages

of an epidemic, and ensuring the sustainability and flexibility of

policies can be challenging. Studies have shown that when the basic

reproduction number (R0) exceeds 2, the number of infections will

rapidly increase, and for COVID-19, the R0 value falls within the

range of (2.2, 4.2). Therefore, keeping R0 below 2 can be used

as a criterion to assess the effectiveness of isolation policies and

effectively control the spread of the epidemic.

To explore the impact of isolation policies on the growth rate,

this study introduces the concept of structural entropy from swarm

entropy theory. Swarm entropy is commonly used to analyze the

information transmission efficiency among agents in a population,

and the information transmission model can be represented by the
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FIGURE 3

The peak number of infected individuals varies with control measures and infection rates.

structure of the SIR model. This indicates that there are similarities

between the infection mechanism and information transmission

mechanism, allowing the swarm entropy theory to be applied for

quantifying the infection efficiency of the COVID-19 pandemic.

In the context of simulating population structures, the first step

is to determine the verisimilitude of the agent population ecology

in the simulation environment. In Equation 11, n represents the

sample size, Ai represents the observed values within a sample,

which is the number of samples within a specific set, and Ei
represents the expected values for a set, which signifies the quantity

of samples in that set theoretically or under a baseline condition.

A smaller PSI indicates a higher level of authenticity in the

simulation environment.

PSI =

n
∑

i=1

(Ai − Ei) ln
Ai

Ei
(11)

In the same region, where the treatment rate for COVID-19

remains the same, the number of agents remains constant, and

there are no significant behavioral differences, the structure of the

agent population becomes the main determinant of the increase

in entropy. Therefore, by analyzing the structural entropy within

swarm entropy, a better understanding of the influence of different

isolation policies on the information transmission efficiency among

agent populations during the epidemic spread can be gained.

During the simulation process, it is possible to estimate the

virus infection intensity by observing the transmission structure of

the population under different isolation policies. To introduce the

mechanism of swarm entropy, this study defines the swarm entropy

as H. H represents the collective entropy of the agent population

and serves as a measure of the diversity or disorder in the

transmission structure during the epidemic spread (Equation 12):

H = −

∑

SIC

Pi log2 Pi (12)

In the SICR model, the swarm entropy H takes into

account the probabilities of connections between different types

of individuals in the social network. Specifically, Ps represents

the probability of connections between susceptible individuals and

other individuals, Pi represents the probability of connections

between infected individuals and other individuals, and Pc
represents the probability of connections between constrained

individuals and other individuals. In the SICR model, we assume

that the probability of connections for removed individuals is 0.

The swarm entropy H considers the proportions of individuals

in each state by taking the logarithm of the proportions and

multiplying them by their respective probabilities. A higher H

value indicates more disorder or diversity in the individual states

within the population, meaning there are more opportunities for

contact between infected and susceptible individuals, resulting in

higher infection intensity. Conversely, a lower H value indicates

more uniformity or homogeneity in the individual states within

the population, meaning there are fewer opportunities for contact

between infected and susceptible individuals, resulting in lower

infection intensity.

By introducing swarm entropy, a more comprehensive analysis

of the changes in information transmission efficiency among agent

populations under different isolation policies can be conducted.

This enables quantification of the impact of isolation policies on the
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infection process, providing valuable reference for devising more

effective prevention and control strategies.

We assume that the efficiency of isolation policies is directly

proportional to swarm entropy, and the correlation between

isolation efficiency and population structure is represented by a

parameter e. The strength Qk of different isolation policies is

expressed as Equations 13, 14:

h =
H

S+ I + C
(13)

Qk =
8

1+ eh
(14)

The parameter e is a constant, representing the proportion of

the correlation between isolation policy efficiency and population

structure. h represents the mean structural entropy, reflecting the

efficiency of information transmission within a specific population

structure.8 is a control variable to ensure that the isolation policy’s

efficiency remains within a normal range. The intensity of the

isolation policy, represented by Qk, is a variable related to the

swarm entropy H. When Qk is 1, it indicates no isolation policies

implemented.

By introducing parameters e and swarm entropy H, the

intensity of isolation policies can be flexibly adjusted to better

simulate the impact of different isolation policies on the epidemic

transmission process in real-world scenarios. This approach

can help researchers explore the effects of different isolation

policies on disease transmission in simulation experiments and

provide reference for formulating appropriate epidemic prevention

strategies.

The model can similarly assess the strength of the isolation

policies chosen for themodel with knowledge of the efficiency of the

isolation policies. We use the SIR model as the baseline reference

model for evaluation. Q0 represents the regulatory intensity of

the basic model within the simulation environment. In the SICR

model, the isolation efficiency E is negatively related to the swarm

entropy, p represents the unit time growth rate of the basic model.

K represents the ratio of the predicted growth rate to the unit time

growth rate of the basic model, as shown in Equations 15, 16:

R0 = (1+
p

k
T0)(1+

p

k
TN) (15)

K =
Q0

Qk
(Q0 > 0) (16)

At the same time the effective regeneration number, D is the

length of time that can be propagated, from which the isolation

efficiency E can be obtained. As shown in Equation 17:

E =
σ1βD

(1+
p
k
T0)(1+

p
k
TN)

(17)

3.3 Simulation environment

Key points from the described SICR infectious disease model

and simulation mechanism are as follows.

3.3.1 Epidemic transmission mechanism
In a closed environment, a limited number of individuals

initially exist in a susceptible state. When some of these individuals

get infected with the virus, they transition to the infectious state.

Infected individuals can then become removed (recovered or

deceased) through two pathways:

• Controlled state: infected individuals are subjected to isolation

policies and are removed under low transmission intensity in

the controlled state.

• Asymptomatic State: Special individuals (e.g., asymptomatic

carriers) are not constrained by isolation policies and directly

transition from the infected state to the removed state.

3.3.2 Agents and experimental environment
To simulate the structure of agent groups under different

isolation policies, the agents should possess a hierarchical

structure. The hierarchical structure can clearly represent the social

relationships between agents and facilitate the analysis of the value

of group entropy. For example, under the policy of community

isolation, there are two ways in which infected individuals can

spread the virus:

• Infection among cohabitants: infected individuals can

transmit the virus to others through contact with cohabitants.

• Infection by Higher-Level Administrators: Under the

community isolation policy, there might be higher-level

administrators or organizers who can also play a crucial role

in spreading the virus.

The mechanisms and experimental environments described

above allow the simulation and analysis of the epidemic

transmission process under different isolation policies. The

behavior of the agents and the setting of the environment will

affect the transmission process and the value of population entropy,

thus helping researchers to better understand the effect of isolation

policy on the spread of infectious diseases and find the optimal

epidemic prevention strategy.

In the simulation of epidemic spreading under isolation

policies, the behavior of agents is influenced by multiple factors,

including their own state and the implemented isolation policies.

As shown in Figure 4, infected individuals are subject to constraints

imposed by isolation policies, which may result in the following

scenarios affecting the behavior between infected and susceptible

agents:

• Restricted behavior of infected individuals: infected

individuals may be isolated or required to adopt specific

behaviors, such as wearing masks and avoiding close contact

with others. These measures aim to reduce interactions

between infected and susceptible individuals, thereby

lowering the risk of transmission.

• Restricted behavior of susceptible individuals: under certain

isolation policies, susceptible individuals may also face

restrictions, such as lockdown measures or home isolation.

These measures may limit the mobility and social activities
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FIGURE 4

Population structure under community segregation policy. (A) Describes the population structure under consideration of a community segregation

policy in which agents are categorized into tiers based on social relationships, with lower levels having relatively lower contact rates; (B) describes

the structure of the population in a traditional infectious disease modeling simulation setting in which contact rates are determined only by the

number of other agents in the social radius).

of susceptible individuals to reduce their chances of getting

infected.

• Reduced interaction between infected and susceptible

individuals: due to the impact of isolation policies, interactions

between infected and susceptible individuals may be reduced.

For instance, under social distancing policies, people

may decrease their outdoor activities, resulting in fewer

interactions between infected and susceptible individuals.

By incorporating the complexities of human behavior and

interactions into the model, researchers can gain valuable insights

into how different isolation policies affect the dynamics of the

epidemic, the spread of infections, and the overall effectiveness

of containment measures. Such analyses can inform evidence-

based decision-making, guide the implementation of targeted

interventions, and optimize the allocation of resources to control

the outbreak.

4 Experiment

In the experiment, we used the COVID-19 pandemic as a case

study to simulate the outbreak. In the experimental section, we

employed the SICRmodel to simulate the epidemic’s spread under a

semi-open policy in the later stages of the outbreak and compared it

with the SIR model, which does not include a controlled stage. This

comparison helps us understand how the inclusion of a controlled

stage affects the epidemic transmission dynamics and containment

strategies.

Subsequently, we conducted sensitivity analysis experiments

to assess the impact of two key factors: voluntary compliance

and regulatory intensity. By varying these factors in the model,

we analyzed their influence on the disease transmission process.

Specifically, we observed how changes in the voluntary compliance

rate and regulatory intensity affect the epidemic’s spread and

containment. This analysis helps identify the critical role of these

factors in controlling the epidemic and provides insights into their

optimal values.

The experiments in this study are conducted under the

following assumptions and conditions:

• Fixed population size: the simulation assumes a fixed

population of agents, and does not consider factors such as

birth rates and death rates. Additionally, the model is designed

to operate independently of external factors in the simulation

environment.

• Reference data: the experimental data used for the simulation

is based on COVID-19 transmission data from December

2022 (29). The simulation assumes a lenient isolation

policy, where agents voluntarily undergo nucleic acid testing.

The proportion of constrained individuals and the control

rate in the model represent the willingness of people to

comply with isolation measures. Besides, we adopted the

OxCDGRT (Observation-based xCD-GOTCHA Real-Time)

tracker as our infectious disease dataset (30). This dataset

is a comprehensive tracker that contains observational data

during the actual infectious disease outbreak, providing

detailed information on the number of infections, recoveries

and deaths. The choice of this dataset is based on its reliability

in widely applied to epidemic tracking and analysis (31).

• Infection period: the COVID-19 infection period in reality

ranges from 7 to 14 days, with a total infection period

of around one month. In this study, we adopt a total

experimental period of 25 days, and the states of infection are

recorded on a daily basis.

4.1 Comparative experiment

We simulated the transmission of COVID-19 in a population.

The simulation allows us to observe the various stages of epidemic

transmission. We compared the model with the inclusion of the

controlled stage with the traditional infectious disease model and

set different population sizes to validate the model’s reasonability.

The premise of this experiment is that people universally

comply with wearing masks when going out and have sufficient

medication and resources to support self-isolation. Within the

specified experimental environment, we set the contact rate and the

control rate, and changing these parameters can affect the results of

the simulation experiment. The parameters used in this experiment

are listed in Table 1. In Table 1, Vp represents the number of agents,

with values of (200, 300, 500). E and W represent the incubation
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TABLE 1 Parameters of the comparative experiment.

Parameter Meaning Value

σ Exposure rate

under infection

status

5

σ1 Contact rate under

constrained state

2

β Cross infection rate

of I

0.2

β1 Cross infection rate

of C

0.04

γ Remove rate 0.9

A Controlled ratios 0.7

α Controlled person

removal

0.2

W Infectious cycle 7–12

E Latency 5–10

P(t) Total population Vp

S0 Initial susceptible Vp − 3

I0 Initial infected 3

C0 Initial constrained 0

R0 Initial removed 0

Qk Regulatory intensity 5

period and infection period, respectively, and follow a normal

distribution within their respective ranges, representing the time it

takes for agents to transition from an infected state to the controlled

state C and the removed state R.

In the experiment, the infection rate and recovery rate were

configured based on the parameters specified in (16). The epidemic

cycle was modeled after the incubation period of COVID-19. The

contact rate under the constrained state was set according to the

number of people per household in the context of community

isolation.

4.1.1 SICR model simulation comparative
experiment

We conducted comparative experiments on the scale of the

agent population to explore the applicability of the SICR model by

observing variations in the model under different agent population

sizes, we also compared the number of agents in different states at

the same time to analyze the pattern of pandemic development.

In the epidemic transmission model, all individuals are in a

closed environment, including three initially randomly distributed

infected individuals. Each individual’s status is represented by four

different colors: susceptible individuals are in yellow, constrained

individuals in purple, infected individuals in red, and recovered

individuals in green. The experiment lasted for 25 time steps, with

each time step corresponding to 1 day. The simulated results of the

virus for the same time period are shown in Figure 5.

Throughout the entire simulation process, the size of the

population (P) has influenced both the epidemic transmission

period and the peak of infected individuals. When the number

of individuals is small, the speed of epidemic transmission slows

down, and the proportion of infected individuals decreases.

Additionally, it is associated with a shorter duration for ending

the epidemic. However, the overall trend remains consistent.

Therefore, when comparing the experiment with actual data, the

focus is on analyzing the overall trend of infections.

To clearly observe the trend of the number of infected

individuals and compare it with the traditional SIR model, the

experiment combined the infected and constrained individuals and

calculated the total number of infected individuals when P (t) was

set to (500, 300, 200). The results are shown in Figure 6. In the time

axis plot for P (t) = 500, the time axis is the horizontal axis, and the

total number of individuals is the vertical axis. The plot shows the

number of individuals in different states, with infected individuals

uniformly represented in red on the left side.

During the entire epidemic period, due to the regulation of the

model by the isolation policy, the number of infected individuals

reaches its peak on the seventh day, with 284 infected individuals.

It then gradually decreases over the next three weeks. In the

time axis plot with the introduction of the controlled stage, the

constrained individuals reach their peak on the 14th day, with a

growth period of about half of the total period. Compared to the

changes in the number of infected individuals, the changes in the

number of constrained individuals are more gradual, reflecting the

inhibitory effect of the isolation policy on the growth rate of the

epidemic.The experiments confirmed the adaptability of the SICR

model to populations of varying sizes and intuitively reflected the

trends in pandemic development.

In this experiment, we compared the SICR model with real-

world data and experimental data from the traditional SIR model.

We conducted an analysis of controlled ratios and regulator

intensity to determine their impact on the stages of infection.

4.1.2 Compared with SIR model and actual data
Based on the news released by the National Health Commission

of the People’s Republic of China, since December 2022, the

number of positive nucleic acid tests and the positive rate

showed an initial increase followed by a decrease. The number

of positive cases reached its peak and then gradually declined.

Under the assumption of the same infection rate, the simulation

was conducted by adopting a non-regulatory attitude toward

asymptomatic infections. The fit between the SICR model,

traditional infectious disease model, and actual data is shown in

Figure 7.

According to the experimental results, the introduction of the

controlled stage in the SICRmodel shows a consistent overall trend

with the survey data. However, when using the traditional SIR

model, even considering the impact of isolation policies on the

infection rate, it still leads to errors in predicting the proportion

of infected individuals. The SIR model also tends to produce

larger fluctuations and overestimates the peak of infections, almost

reaching the total number of samples. The SICR model exhibits

clear advantages in predicting the dynamic trend of infectious

diseases. Although the overall infection cycle in the simulation

is shorter than in reality due to limitations in the simulation
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FIGURE 5

Run chart of epidemic simulation experiment.

environment and the number of agents, the model can still better

capture the fluctuation patterns and turning points of the infectious

disease. For example, the SICR model can accurately predict the

outbreak period and the proportion of infections under isolation

policies for COVID-19, whereas the SIR model fails to accurately

reflect these changes.

The experiment also included the calculation of the deviation

between the predicted growth rate and the recovery rate with

respect to the actual data, as shown in Figure 8. Figure 8 presents

a bar chart with positive and negative bars, describing the deviation

between the predicted infection growth rate and the actual data.

The vertical axis represents the deviation percentage, ranging from

−10 to 10%, while the horizontal axis represents the days. The

deviation in the infection rate is controlled within 6%, ensuring

the accuracy of the model’s predictions. On the other hand, the

recovery rate shows larger fluctuations, but this does not affect the

accuracy of the simulation results.

The results demonstrate that the SICR model accurately

captures the infection growth rate, as the deviation remains within

an acceptable range, validating the reliability and robustness of

the SICR model in capturing the dynamics of infectious diseases.

Accurate prediction of the infection growth rate provides valuable

insights for decision-making and intervention strategies in disease

control and prevention. We also utilized swarm entropy to evaluate

the simulated isolation policies. We compared the growth rates of

the SIR model and the SICR model, according to formula (17),

rounded the isolation efficiency value to 6. This can serve as a

benchmark for specifying other isolation policies.

To verify the credibility of our proposed multi-agent modeling

method in predicting and evaluating the effects of isolation policies
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FIGURE 6

Comparison between infection status and agent status.

on infectious disease transmission, we conducted a series of

experiments, comparing the actual infectious disease data and our

model simulation results of the United States, Germany, Japan, and

China. We chose these four countries because they have significant

differences in population structure, health system and isolation

policies, which provide a more comprehensive validation.

We collected the actual data of each country at the beginning

stage of the epidemic transmission. We set the model input

parameters based on these actual data. Then, we conducted

multiple simulation experiments, simulating the transmission

situation of each country under different isolation policies. To

ensure the accuracy of the model, we adjusted the key parameters in

the model according to the actual situation, such as infection rate,

recovery rate. Meanwhile, we evaluated the setting of pandemic

efficiency-related parameters by referencing the Stringency Index

compiled in the dataset. The Stringency Index is a composite

measure derived from nine response indicators, including school

closures, workplace closures, and travel bans.

As shown in Figure 9, during the initial phase of the pandemic,

the impact of isolation policies varied significantly among countries

due to policy differences. We selected four countries, each

adopting either strict or relatively lenient policies, to illustrate

the actual number of new infections and compared it with the

curves simulated by the SICR model. By contrasting the observed

trends with model predictions, we could assess the adaptability

and accuracy of the model in predicting disease spread in

different countries. Specifically, Japan and China, implementing

strict isolation policies, exhibited a notably prolonged infectious

period, providing more favorable conditions for case management.

Meanwhile, influenced by QK , Germany experienced an earlier

recovery of individuals, thereby shortening the period of rising

new infections. Despite the United States adopting similar epidemic

prevention policies, resource shortages and issues such as protests

led to a delay in the impact of QK , resulting in disparities with the

model results. In our subsequent work, our goal is to introduce an

algorithm for real-time adjustment of the infection rate to enhance

the adaptability of the model.

4.2 Sensitivity analysis experiment

Sensitivity analysis is a powerful tool for quantifying the

impact of parameter changes on the behavior of a system (23).

In the SICR model, two important parameters affect the process

of infectious diseases. The control strength Qk represents the

external environment’s impact on the model, which influences the

infection rate and control rate to affect the infectious disease model.

The controlled ratio A represents the impact of the individual’s

willingness on themodel, which changes the epidemic transmission

trend by affecting the proportion of constrained individuals.

Therefore, in this experiment, sensitivity analysis was conducted
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FIGURE 7

Di�erent models compared to actual data in the infection stage (red and yellow bars represent actual data for infected and asymptomatic infections,

respectively. Green and blue curves represent infection trends under the SIR and SICR models, respectively).

FIGURE 8

Deviation value between simulation results of SICR model and actual data.
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FIGURE 9

Comparison of SICR model simulation and actual data in di�erent countries. (A) The United States. (B) Germany. (C) Japan. (D) China.

separately for the control strength Qk and the controlled ratio A,

using the number of infected individuals as the uncertainty for

the analysis.

4.2.1 Sensitivity analysis of controlled ratio
The experiment used time T as the x-axis and the number

of individuals in the infected state as the y-axis. The simulation

results generated data were input into the sensitivity model to plot

the curves and data for the number of individuals in the infected

state. The controlled ratio A ranged from Max = 1 to Min = 0,

with a step size of 0.2. In order to conduct the sensitivity analysis

shown in Figure 10, a total of six experiments were performed, and

the corresponding data for each experiment was displayed in the

curves. The parameter settings are as indicated in Table 2.

Considering the closed social environment, population size,

population mobility, and high infectivity of the virus, the sample

size for sensitivity analysis was set to 500 individuals. The number

of infections on the 10th day and the 16th day were separately

recorded. As shown in Table 3, the controlled ratio does not

significantly affect the trend of epidemic transmission in the first

8 days. However, after 8 days, as the controlled ratio increases, the

number of infected individuals reaching the peak decreases, and

this change is more significant in the range of A = (0, 0.4).

Based on the results of the sensitivity analysis on the controlled

ratio, the following conclusions can be drawn:

• The impact of the controlled ratio on the transmission process

is mainly evident during the decline phase of the number of

infected individuals, and it can also have a certain effect on the

peak value of the infection.

• The residents’ willingness to comply with the control measures

is directly proportional to the value of the controlled ratio.

The stronger the compliance of the individuals, the better
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FIGURE 10

Sensitivity analysis experiment of constrained rate.

TABLE 2 Parameters of the sensitivity analysis experiment.

Parameter Meaning Value

P(t) Total population 500

S0 Initial susceptible 497

I0 Initial infected 3

C0 Initial constrained 0

R0 Initial removed 0

A Constrained rate 0–1

Qk Regulatory intensity 1–5

TABLE 3 Results of the of controlled ratio sensitivity analysis experiment.

Experiment Constrained
rate

10 days 16 days

Run0 0 140 115

Run1 0.2 143 100

Run2 0.4 141 97

Run3 0.6 140 60

Run4 0.8 140 28

Run5 1.0 137 20

the epidemic can be controlled. In this experiment, when

the controlled ratio of the individuals reaches 1, the decline

period of the epidemic is shortened by half. Therefore, when

implementing policies, it is essential to take into account

the residents’ willingness to cooperate and comply with the

measures.

4.2.2 Sensitivity analysis of regulatory intensity
Based on the sensitivity analysis results on the controlled

infection rate (Qk), the following observations can be made: As

shown in Figure 11 and Table 4, the impact of the controlled

infection rate on the transmission process is mainly evident in the

later stages of the infection cycle. It has a smaller effect on the

initial phases of the epidemic; As the controlled infection rate (Qk)

increases, the growth rate of infected individuals slows down, and

the duration of the infection cycle becomes longer; When there is

a significant difference in infection intensity (i.e., high Qk values),

the number of infected individuals at the peak decreases.

Based on the results from both the sensitivity analysis

experiments on the controlled infection rate (A) and the regulatory

intensity (Qk), the following conclusions can be drawn:

• The impact of the controlled infection rate (A) on the

transmission process is mainly evident in the phase of

increasing infected individuals, and it also affects the peak

number of infections. Larger values of A result in more

significant effects on the transmission dynamics.

• Increasing the regulatory intensity (Qk) is a direct means

to control the growth trend of the epidemic. However,

in reality, high regulatory intensity may lead to reduced

willingness of individuals to comply with the measures.

Therefore, the regulatory intensity should be set at a

minimum level that still significantly affects the growth of the

infected population.

Overall, the combined results suggest that both the controlled

infection rate (A) and the regulatory intensity (Qk) play

crucial roles in controlling the transmission of the epidemic.

A balance needs to be struck between effective control and

public acceptance of the measures. Finding the optimal values

for A and Qk can help design efficient and feasible epidemic

control strategies.
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FIGURE 11

Sensitivity analysis experiment of regulatory intensity.

TABLE 4 Results of the regulatory intensity sensitivity analysis

experiment.

Experiment Regulatory
intensity

10 days 16 days

Run0 1 433 320

Run1 1.2 360 300

Run2 1.4 300 300

Run3 1.6 290 290

Run4 2.1 112 225

Run5 3 50 95

5 Conclusion

The study presents an improved SIR model to simulate

the impact of isolation policies on epidemic transmission. The

results demonstrate that utilizing population entropy allows for

a quantitative analysis of the effectiveness of various isolation

policies, enabling the integration of different policies into the

infectious diseasemodel to adapt to diverse scenarios. Furthermore,

through a comprehensive analysis of regulatory intensity and

controlled infection rate, we emphasize the importance of

considering residents’ willingness in specifying isolation policies.

The intensity of the policies can influence the voluntary compliance

of the population, and inappropriate policies may lead to a

significant extension of the epidemic transmission cycle. The

primary contributions of this paper are as follows:

• We introduce the concepts of regulatory intensity and

controlled infection rate into the improved SIR model,

accounting for the interaction between individuals and the

external environment, as well as the influence of individuals’

own willingness on the infectious process. By incorporating

these two essential parameters, the model can effectively

regulate isolation policies and residents’ compliance without

requiring complex model structures to accommodate different

policies.

• The application of the population entropy mechanism ensures

the credibility of the simulated experimental data, providing a

valid means to verify the efficiency of epidemic transmission.

Moreover, the estimation of regulatory intensity through

structural entropy validates the applicability of this approach

to simulate the development trends of epidemics. Given

the similarities between epidemic models and information

transmission models, this methodology can also be extended

to simulations in other contexts, such as network information

dissemination.

The study has made significant contributions by incorporating

isolation policies into the improved SIR model and quantitatively

analyzing their impact using population entropy. The model

considers both external control factors and individual compliance,

offering a flexible framework for different isolation strategies.

However, limitations include the assumption of a closed

environment and homogeneous population, which may not fully

reflect real-world complexities. Future research should consider

demographic dynamics, individual heterogeneity, and real-time

data updates to enhance the model’s accuracy. Additionally,

expanding the scope to regional or global interactions and

integrating vaccination and variant effects will improve the model’s

applicability.
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