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Background: Individual metal levels are potential risk factors for the development 
of preeclampsia (PE). However, understanding of relationship between multiple 
metals and PE remains elusive.

Purpose: The purpose of this study was to explore whether eight metals [zinc 
(Zn), manganese (Mn), copper (Cu), nickel (Ni), lead (Pb), arsenic (As), cadmium 
(Cd), and mercury (Hg)] in serum had a certain relationship with PE.

Methods: A study was conducted in Dongguan, China. The concentrations of 
metals in maternal serum were assessed using inductively coupled plasma mass 
spectrometry (ICP-MS). Data on various factors were collected through a face-
to-face interview and hospital electronic medical records. The unconditional 
logistic regression model, principal component analysis (PCA) and Bayesian 
Kernel Machine Regression (BKMR) were applied in our study.

Results: The logistic regression model revealed that the elevated levels of Cu, Pb, 
and Hg were associated with an increased risk of PE. According to PCA, principal 
component 1 (PC1) was predominated by Hg, Pb, Mn, Ni, Cu, and As, and PC1 
was associated with an increased risk of PE, while PC2 was predominated by Cd 
and Zn. The results of BKMR indicated a significant positive cumulative effect of 
serum metals on PE risk, with Ni and Cu exhibiting a significant positive effect. 
Moreover, BKMR results also revealed the nonlinear effects of Ni and Cd.

Conclusion: The investigation suggests a potential positive cumulative impact 
of serum metals on the occurrence of PE, with a particular emphasis on Cu as 
a potential risk factor for the onset and exacerbation of PE. These findings offer 
valuable insights for guiding future studies on this concern.
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1 Introduction

Preeclampsia (PE) is a pregnancy-specific complication with significant morbidity and 
mortality (1), and it stands out as one of the primary factors associated with maternal and 
perinatal death (2). Affecting 5–7% of all pregnant women, PE causes over 70,000 maternal 
deaths and 500,000 fetal deaths worldwide annually (1). Women with PE are usually at higher 
risk of placental abruption and intrauterine fetal death, as well as at higher risk of liver, kidney, 
brain, lungs and other organ diseases, which may further develop into eclampsia, 
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cardiovascular and cerebrovascular diseases (3, 4). Furthermore, PE 
may also associated with adverse neonatal outcomes, including 
respiratory distress syndrome, retinopathy of prematurity, necrotizing 
enterocolitis, neurodevelopmental delay, and fetal or neonatal death 
(5). Characterized by abnormal vascular remodeling in the spiral 
arteries starting in the first trimester of pregnancy, PE results in 
placental hypoperfusion and release of various deleterious factors, 
which may trigger systemic endothelial response (6, 7). Despite this, 
the etiology of PE remains incompletely defined (8). Currently, there 
is no effective method to prevent or treat PE, and the primary recourse 
is abortion or delivery (9). In light of the above, more research is 
needed to unravel the etiology of PE to provide a foundation for 
prevention and novel treatment strategies. In view of industrial 
development, women are increasingly exposed to environmental 
toxicants, including a variety of metals, recognized as a significant risk 
factor for adverse pregnancy outcomes, such as spontaneous preterm 
birth and preeclampsia (10, 11).

In order to mitigate the impact of metal pollution on human 
health, numerous studies have been conducted to further investigate 
metals, including the exploration of novel adsorbents for the removal 
of metal ions from contaminated water (12), and the therapeutic 
potential of metal dithiocarbamate complexes in certain diseases (13). 
Expanding new ideas for mitigating metal health hazards and the 
application of metals in health, however, it is crucial not to overlook 
the hazards posed by metal exposure. Elucidating the health effects 
resulting from such exposure remains a pivotal area of research. The 
term “heavy metal” is a general classification for metals and metalloids 
with relatively high density and are considered toxic to living 
organisms and the environment at certain concentrations (14, 15). 
Lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg) are some 
examples of toxic heavy metals. Pb exposures has been shown to affect 
reproductive, hepatic, endocrine, immune and gastrointestinal 
systems (16). As is a recognized neurotoxin and is classified as human 
carcinogen, causing reproductive and developmental problems, as well 
as damages to the skin, digestive and respiratory systems (17). Cd can 
accumulate in kidney, liver, bones and other organs, causing damage 
to the target organs (18). Hg may cause damages to the brain, gut 
lining, kidneys, lungs and other vital organs, while low-grade chronic 
exposures to Hg may also induce subtler symptoms and clinical 
findings (19). Zinc (Zn), manganese (Mn), copper (Cu), and nickel 
(Ni) are essential trace metals vital for many physiological functions. 
Severe Zn deficiency may result in pustular dermatitis, alopecia, 
diarrhea and other symptoms (20), whereas, Mn serve as co-factor for 
many enzymes such as arginase, glutamine synthetase, manganese 
superoxide dismutase enzymes, etc. (21). Cu is also required for the 
catalytic function of several crucial cellular enzymes (22). However, 
higher levels of Zn can lead to Cu deficiency or anemia (20), while Mn 
is toxic to humans when exposed to certain concentrations (21). 
Excessive Cu exposures could also harm cells as it potentially catalyze 
the generation of toxic reactive oxygen species (ROS) (22). Ni is widely 
present in nature (23), and Ni exposures can cause a variety of adverse 
effects to human health, such as allergy, cardiovascular and kidney 
diseases, lung fibrosis, lung and nasal cancer (24, 25).

Previous studies have indicated significant relationships between 
the Cu (26) and Pb (27) levels in the maternal circulation and 
PE. Higher Mn (28, 29) and Zn (30, 31) levels were associated with 
lower risk of PE, whereas, elevated Cd (32), As (33) and Hg (34) levels, 
on the other hand, could potentially increase the risk of PE. Most of 

previous studies have focused to explore relationships between 
individual metal exposure and PE, however, the aforementioned toxic 
heavy metals concurrently present in environment and pregnant 
women are generally exposed to a variety of these metals 
simultaneously. Therefore, it is essential to explore the relationship 
between multiple metals and PE. Few studies have reported the 
association of multiple metals with PE (35, 36), however the results 
vary significantly and more research is needed to elucidate exact 
nature of this relationship.

Current study was conducted in Dongguan city, situated southeast 
of Guangdong Province, China. It is one of the world’s largest electronics 
manufacturing centers, with severe water, air and soil pollution. 
Excessive industrial emissions in the past few decades have resulted in 
elevated levels of heavy metals in soil (37, 38). Several studies have 
reported low to high level pollution of Cd, Cu, Hg, Ni, Pb, and Zn, and 
local children are facing a slight threat from As and chromium (Cr) 
mainly through oral ingestion of soil particles (39). Therefore, this 
research selected pregnant women who lived in Dongguan city for more 
than 1 year, and determined the concentrations of eight metals [zinc 
(Zn), manganese (Mn), copper (Cu), nickel (Ni), lead (Pb), arsenic (As), 
cadmium (Cd), and mercury (Hg)] in their peripheral venous blood to 
explore whether these metals were related to the occurrence of PE.

Previous studies have predominantly investigated the correlation 
between individual metals and PE (32–34, 40–42). Furthermore, 
investigations exploring multiple metals have infrequently delved into 
their interactions (36, 43), and the results have been inconsistent. In 
our study, pregnant women were recruited from a typical metal-
contaminated area to scrutinize the relationship between multiple 
metal exposures and PE. We employed more appropriate and diverse 
methods to assess the prominence of specific metals in relation to PE 
and to explore potential interactions among multiple metals, thereby 
providing additional evidence on the mechanisms underlying the 
impact of metals on PE, offering novel insights for the prevention and 
treatment of PE.

2 Materials and methods

2.1 Study population

The study population was sourced from pregnant women attending 
Songshan Lake Central Hospital of Dongguan City in Guangdong 
Province, China, during the period from January 1, 2017 to December 
31, 2017, specifically those who were at the hospital for delivery. 
Pregnant women aged ≥18 years, without diagnosed mental illness, and 
living in Dongguan city for more than 1 year were eligible to participate 
in this study. Women were diagnosed with PE based on the following 
criteria (2013): new-onset hypertension (SBP ≥ 140 mmHg, or 
DSP ≥ 90 mmHg) on two occasions at least 4 h apart and proteinuria 
(≥300 mg/24 h) after 20 weeks of gestation. PE cases were categorized 
into mild PE or severe PE, women appeared one of the following 
characteristics were included in the severe PE group: blood pressure 
(SBP ≥ 160 mmHg, or DBP ≥ 110 mmHg), proteinuria (5,000 mg/24 h), 
thrombocytopenia, liver dysfunction, renal insufficiency, pulmonary 
edema, visual impairment, new type headache and no response to 
drugs. A total of 271 pregnant women were willing to participate in our 
study, of whom 97 were diagnosed with mild PE, 64 with severe PE, 
and 110 were normotensive healthy pregnant women. Pregnancies 
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resulting from in vitro fertilization, or women with preexistent 
hypertension, diabetes mellitus, kidney disease, cancer, severe anemia 
or other endocrine disorders were excluded. Women who did not 
donate blood samples or had missing data on crucial parameters were 
also excluded. Finally, our research comprised 28 cases of mild PE, 28 
cases of severe PE and 28 normotensive healthy pregnant women. 
Written informed consent was obtained from all eligible participants. 
This study was approved by the Ethics Committee of the Songshan 
Lake Central Hospital of Dongguan City and the Ethics Committee of 
the School of Public Health of Lanzhou University.

2.2 Sample collection

The demographic characteristics of participants were obtained 
through face-to-face interview covering details such as age, 
occupational status, education, marital status and blood type. 
Information on physician diagnoses, gravidity, parity, gestational age 
and other diseases history were extracted from hospital electronic 
medical records at the hospital. Fasting peripheral venous blood 
samples were collected within 24 h before delivery, and then serum 
extracted from these samples were collected and stored at −80°C for 
further analysis. Blood samples were digested by the microwave 
digestion system (PreeKem, TOPEX+, China). Briefly, 0.5 mL blood 
sample and 3 mL HNO3 were added into the digestion tank, with the 
following temperature–time regimen: 100°C-3 min, 130°C-3 min, 
160°C-3 min, and 190°C-20 min. Following digestion, concentrations 
of metals in blood samples were determined by inductively coupled 
plasma-mass spectrometry (ICP-MS) (44). Quality control measures 
were taken into consideration by using blanks, three parallel samples 
and a standard reference material [GBW (E) 080067]. The relative 
standard deviations of the parallel samples were <10%, and the 
recovery of standard reference material was 94%.

2.3 Calculation

Continuous variables were presented as mean (x) ± standard 
deviation (SD), while categorical variables were expressed by number 
(N) and percentage (%). To compare categorical variables, Pearson 
chi-square test and Fisher exact test were used. The Kruskal–Wallis H 
test was utilized for the comparison of non-normally distributed 
continuous variables. The Spearman’s rank correlation was used to 
probe the associations of metal concentrations.

Unconditional logistic regression models were employed to 
calculate the odds ratios (ORs) and 95% confidence intervals (95% 
CIs). A univariate model explored the associations between single 
metals and PE, while a multivariate model examined the associations 
between multiple metals and PE. Each model was adjusted for 
potential confounders, specifically maternal education and gestational 
age, given the comparison of these factors were was statistically 
significant (p < 0.05) between different groups. Associations between 
PE and an overall measure of exposure to eight metals was derived by 
summing the quartile category score (1–4, with 1 representing the 
lowest quartile) for each metal to create an overall score with values 
ranging from 8 to 32 were estimated (45).

Principal component analysis (PCA) was employed to investigate 
the collective effects of multiple metals (46). PCA was intended to 

select clusters and characterized similar metals into new composite 
variables, called principal components (PCs). Loading factors that 
indicate the importance of the metals in a specific PC were estimated 
through varimax rotation, and the eigenvalues and the scree test 
determined the suitable number of PCs. The relationship between 
these PCs and PE was investigated using multivariate logistic regression.

Bayesian kernel machine regression (BKMR) was utilized to 
determine potential nonlinear effects of metals on PE and interactions 
among metals. Concentrations of metal were log-transformed to 
address skewed data after scaling. In the study, the BKMR model 
follows: Yi = h (Zn, Mn, Ni, Cu, Pb, As, Cd, Hg) + βTZi + ei, whereas the 
function h() is a dose–response function, and Z1, …, Zp are p potential 
confounders. The cumulative and single effects of the eight metals were 
plotted by comparing the estimated value of the exposure-response 
function when all of the other metals were at a particular quantile. In 
addition, a dose–response relationship of each metal with PE was 
plotted while fixing the rest of metals at their 50th percentile to show 
the nonlinear relationship. The bivariate exposure-response function for 
two metals was also visualized, with all of the other metals fixed at their 
median value, indicating potential interaction between the two metals. 
Furthermore, a hierarchical variable selection method was applied, and 
metals were divided into two groups due to the results of PCA.

The statistical analyses were performed using SPSS (version 26) 
and R studio software (R version 4.3.0). A two-sided p-value of less 
than 0.05 was considered statistically significant, indicating a 
significant difference between variables.

3 Results

3.1 Participant characteristics

The results indicated statistically significant differences in 
maternal education and gestational age among three groups (p < 0.05). 
There was significant difference between the control group and the 
mild PE group in the middle school stratification (p < 0.05), with 
women in the mild PE group having lower education level than 
controls. In the high school or above stratification, significant 
differences were observed between the control group and both the 
mild and severe PE groups (p < 0.05), with women in the control group 
being more educated than those with mild or severe PE. Overall, 
women who experienced PE were found to be  less educated as 
compared to those without PE. Gestational age showed statistically 
significant differences between the control or mild PE group and the 
severe PE group (p < 0.01), with women in severe PE group having 
shorter gestational ages. No statistically significant differences were 
observed among the three groups in maternal age, occupational status, 
marital status, blood type, gravidity and parity. Detailed demographic 
characteristics of the participants are shown in Table 1.

3.2 Concentrations of metal in serum of 
participants

Table  2 shows concentrations of metal measured in maternal 
serum. There were statistically significant differences in the 
concentrations of metals among the three groups (p < 0.01). 
Specifically concentrations of Mn, Ni, Cu, Pb, As, and Hg gradually 
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increased from the control group to the severe PE group. However, 
concentrations of Zn and Cd in the severe PE group were lower than 
the those in control and the mild PE groups. Figure 1 illustrates the 
correlation analysis results between concentrations of metal in 
maternal serum. The Spearman correlation between blood 
concentrations of Hg, Mn, Ni, Cu, and Pb was highly significant with 
each other (p < 0.01). Additionally, blood concentrations of As 
correlated with Hg, Mn, Ni, Cu, Pb, and Cd (p < 0.05), while Zn 
correlated with Cd (p < 0.01).

3.3 Unconditional logistic regression 
analyses

The ORs and 95% CIs for PE in relationship to concentrations of 
single metal after adjustment for potential confounders are presented 
in Table 3. The results indicated that elevated concentrations of Mn, 

Cu, Pb, and Hg were associated with the risk and severity of 
PE. Specifically, the increased concentration of Zn was associated 
with an increased risk of PE in the mild PE group (OR = 6.66, 95% CI: 
1.82, 24.40 for the high vs. low group), while, elevated concentration 
of As was associated with an increased risk of PE in the severe PE 
group (OR = 15.79, 95% CI: 3.51, 70.98 for the high vs. low group). 
The elevated concentration of Cd was associated with an increased 
risk of PE in the mild PE group (OR = 24.16, 95% CI: 3.84, 151.82 for 
the high vs. low group), however, in the severe PE group, the elevated 
concentration of Cd was associated with lower risk of PE (OR = 0.08, 
95% CI: 0.01, 0.47 for the high vs. low group). The overall score, 
derived from the cumulative effects of eight metals, was associated 
with the risk and severity of PE after adjustment (p < 0.01) (Table 3). 
The high overall score was associated with an increased risk of PE 
(OR = 11.00, 95% CI: 2.71, 44.66 and 19.99, 4.20, 95.21 for the high 
vs. low group, in the mild PE group and the severe PE group, 
respectively).

Table 4 presents the ORs and 95% CIs for PE in relationship to 
concentrations of multiple metals after adjustment for potential 
confounders. An increased risk of PE was associated with elevated 
concentrations of Cu (OR = 45.37, 95% CI: 3.11, 661.15 and 159.09, 
4.53, 5590.15 for the high vs. low group, in the mild PE group and the 
severe PE group, respectively), and Pb (OR = 8.82, 95% CI: 1.08, 71.90 
and 1052.89, 17.57, 63106.99 for the high vs. low group, in the mild 
PE group and the severe PE group, respectively). Additionally, the 
elevated concentration of Hg (OR = 172.07, 95% CI: 2.96, 10021.03 for 

TABLE 1 Demographic characteristics of participants.

Characteristics Controls
(N =  28)

Mild PE
(N =  28)

Severe 
PE

(N =  28)

P-
value

Maternal age, years (x

±SD)
30.54 ± 5.11 29.07 ± 5.76 30.46 ± 7.00 0.3423

Occupational status, n (%)

  Unemployment 15 (53.60) 20 (71.40) 19 (67.90)
0.3371

  Employment 13 (46.40) 8 (28.60) 9 (32.10)

Marital status, n (%)

  Unmarried 1 (3.60) 3 (10.70) 4 (14.30)
0.5202

  Married 27 (96.40) 25 (89.30) 24 (85.70)

Maternal education, n (%)

  Primary school or 

below
2 (7.10)a 2 (7.10)a 5 (17.90)a

0.0282  Middle school 12 (42.90)a 21 (75.00)b 18 (64.30)a,b

  High school or 

above
14 (50.00)a 5 (17.90)b 5 (17.90)b

Blood type, n (%)

  A 12 (42.90) 12 (42.90) 8 (28.60)

0.5052
  B 4 (14.30) 4 (14.30) 6 (21.40)

  O 8 (28.60) 8 (28.60) 13 (46.40)

  AB 4 (14.30) 4 (14.30) 1 (3.60)

Gravidity, n (%)

  1 7 (25.00) 11 (39.30) 12 (42.90)
0.4451

  ≥2 21 (75.00) 17 (60.70) 16 (57.10)

Parity, n (%)

  Primiparous 11 (39.30) 17 (60.70) 17 (60.70)
0.2331

  Multiparous 17 (60.70) 11 (39.30) 11 (39.30)

Gestational age, weeks 

(x±SD)
38.53 ± 1.37a 38.82 ± 1.61a 36.67 ± 2.62b 0.0013

The same letter indicates no statistical difference between different groups. On the contrary, 
different letters indicate that the comparisons between different groups were statistically 
significant (such as a, b, and c). x, mean; SD, standard deviation. 1Pearson chi-square test. 
2Fisher exact test. 3Kruskal–Wallis H test.

TABLE 2 Concentrations of metal among three groups.

Metals 
(μg/L)

Controls Mild PE Severe 
PE

P-
value

Median 
(IQR)

Median 
(IQR)

Median 
(IQR)

Zn

5794.85

(4747.16, 

6940.79)a

7502.32

(6822.97, 

9390.16)a

3956.40

(2808.63, 

6051.72)b

0.000

Mn

4176.40

(3812.12, 

4696.05)a

4980.18

(4565.15, 

5163.88)b

8118.92

(5347.99, 

9418.99)c

0.000

Ni

2893.60

(76.65, 

3453.47)a

3897.13

(3667.93, 

4038.01)b

6440.99

(4475.77, 

7777.19)c

0.000

Cu

1363.93

(1283.23, 

1509.60)a

1939.52

(1768.27, 

2006.59)b

2840.72

(2536.13, 

3131.70)c

0.000

Pb
122.38

(72.73, 152.61)a

162.44

(153.10, 

182.31)b

344.45

(249.50, 

452.75)c

0.000

As
10.21

(4.93, 12.28)a

12.53

(10.91, 14.52)b

18.42

(12.70, 24.13)c
0.000

Cd
5.97

(2.31, 8.57)a

10.11

(8.85, 12.38)b

2.29

(1.74, 4.13)a
0.000

Hg
5.05

(2.30, 6.15)a

6.58

(6.21, 6.95)b

13.20

(9.35, 16.07)c
0.000

The same letter indicates no statistical difference between different groups. On the contrary, 
different letters indicate that the comparisons between different groups were statistically 
significant (such as a, b, and c; IQR, interquartile range; P-value by Kruskal–Wallis H test.).
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the high vs. low) was associated with an increased risk of PE in the 
severe PE group.

3.4 Principal component analyses

As shown in Table 5, two PCs were identified through PCA. The 
first PC (PC1) was predominated by Hg, Pb, Mn, Ni, Cu, and As, while 
the second PC (PC2) was predominated by Cd and Zn. The ORs and 
95% CIs for PE in relationship to PCs, both before and after adjustment 
for potential confounders, are shown in Table 6. After adjustment, 
PC1 was associated with an increased risk of PE (OR = 47.97, 95% CI: 
4.64, 496.26 and 432.69, 28.17, 6645.03 for the high vs. low, in the mild 
and severe PE group, respectively), while PC2 was associated with an 
increased risk of PE (OR = 21.72, 95% CI: 3.61,130.75 for the high vs. 
low) in the mild PE group, and with lower risk of PE (OR = 0.05, 95% 
CI: 0.01, 0.46 for the high vs. low) in the severe PE group.

3.5 Bayesian kernel machine regression 
analyses

A BKMR model was employed to assess the effect of combined of 
metals exposure on PE, with adjustments made for the maternal 
education and gestational age. Posterior inclusion probabilities (PIPs) 
of metals in the BKMR model are presented in Table 7. Notably, Cu 

and Cd have larger PIPs, indicating the greater their relative greater 
importance in influencing PE. Based on the results of PCA, Mn, Ni, 
Cu, Pb, As, and Hg were grouped together, while Cd and Zn formed 
another group. The group PIPs surpassed 0.5 among all groups, 
whereas Cd in group 1 and Hg in group 2 had larger conditional PIPs.

The visualization of the BKMR model is depicted in 
Figure 2A. Cumulative toxic effect of metals is shown in Figure 2A, 
indicating a statistically significant overall effect when all metals were 
above their 50th percentile compared to when all metals were at their 
median values. Thus, elevated exposure could be associated with an 
increased risk of PE. The single effect of metals was explored by 
estimating the change in the association of a single metal with PE 
when it is positioned at the 25th and 75th percentiles, while the other 
metals were placed at the 25th, 50th, and 75th percentiles, respectively 
(Figure 2B). Notably, Ni and Cu exhibit a significant positive effect, 
with concentrations from the 25th to the 75th percentile associated 
with a significant increase in the risk of PE. To investigate the potential 
nonlinear relationship, exposure-response cross-sections for single 
metals were plotted, while fixing the levels of other metals at the 
median (Figure 2C). The plot suggested nonlinear effects of Ni and 
Cd, whereas, it showed a linear effect of Cu, while an increase in Cu 
levels is significantly associated with an increased risk of PE. To 
further investigate the potential relationship between metals, the 
bivariate exposure-response curve was plotted (Figure 2D). The curve 
illustrated the exposure-response relationship of one metal when the 
level of another metal fixed at the 10th, 50th and 90th percentiles, 

FIGURE 1

Correlation map of the serum metals.
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while remaining 6 metals were all fixed at the median. The plot 
indicates potential interaction between Cd and Ni as well as Cu and 
Ni. No evidence of interaction between other metals was observed 
based on parallel exposure-response relationships.

4 Discussion

In this study, we  initially employed traditional unconditional 
logistic regression model to analyzed the relationship between 
multiple metals and PE. The associations between individual metals 
and PE showed that elevated serum levels of Mn, Cu, Pb, and Hg were 
associated with the risk and severity of PE, while elevated serum levels 
of Zn and As were associated with the risk of mild and severe PE, 
respectively. Our results are in-line with a number of previous studies 
which have reported the relationship between individual metals 
including Cu (26, 41), Pb (47), Hg (34), and As (33) and their 
association with PE. In contrary, there a study has reported an inverse 
dose–response relationship between Mn and PE (28), and a 

meta-analysis found significantly lower serum levels of Zn in PE 
patients (30). These discrepancies might be attributed to variations in 
the study population, region, presence of other metals and influencing 
factors, thus further analysis is needed. The logistic regression results 
indicated a dissimilar connection between Cd and mild or severe PE, 
so we  hypothesized that there might be  a nonlinear relationship 
between Cd and PE, which was explored in subsequent 
BKMR analyses.

Considering the current situation of metal pollution in Dongguan, 
we hypothesized that people are not simply exposed to a single metal, 
but to multiple metals at the same time. Therefore, we investigated the 
relationship between the overall effect of multiple metals and PE, and 
our findings revealed that an elevated overall score of metals was 
associated with the risk and severity of PE, indicating an association 
between exposure to multiple metals and PE. A study conducted in 
Taiyuan, China provided supporting evidence for similar results (35). 
The results from multivariate logistic regression showed that elevated 
concentrations of Cu and Pb were associated with the risk and severity 
of PE, while elevated concentration of Hg was associated with risk of 

TABLE 3 Associations between single metals and PE.

Metals (μg/L) Mild PE Severe PE

OR (95%CI) P-value OR (95%CI) P-value

Zn

  Low (<6111.84) 1.00 – 1.00 –

  High (≥6111.84) 6.66(1.82,24.40) 0.004 0.53(0.15,1.89) 0.325

Mn

  Low (<4991.59) 1.00 – 1.00 –

  High (≥4991.59) 5.03(1.23,20.61) 0.025 40.39(6.97,234.06) 0.000

Ni

  Low (<3804.87) 1.00 – 1.00 –

  High (≥3804.87) 9.86E+08(2.10E+08,4.63E+09) 0.000 3.53E+09(3.53E+09,3.53E+09) –

Cu

  Low (<1926.55) 1.00 – 1.00 –

  High (≥1926.55) 34.96(3.94,310.61) 0.001 227.64(19.06,2718.40) 0.000

Pb

  Low (<165.15) 1.00 – 1.00 –

  High (≥165.15) 7.07(1.53,32.72) 0.012 334.13(24.27,4601.10) 0.000

As

  Low (<12.40) 1.00 – 1.00 –

  High (≥12.40) 2.50(0.72,8.68) 0.148 15.79(3.51,70.98) 0.000

Cd

  Low (<6.55) 1.00 – 1.00 –

  High (≥6.55) 24.16(3.84,151.82) 0.001 0.08(0.01,0.47) 0.005

Hg

  Low (<6.58) 1.00 – 1.00 –

  High (≥6.58) 11.33(2.13,60.19) 0.004 278.87(24.38,3189.41) 0.000

Overall score

  Low (<21.00) 1.00 – 1.00 –

  High (≥21.00) 11.00(2.71,44.66) 0.001 19.99(4.20,95.21) 0.000

Adjusted for maternal education and gestational age.
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severe PE. However, existing studies on the effect of Cu on PE have 
yielded inconsistent. Some studies align with our results, suggesting a 
relationship between Cu and PE (26, 41). Moreover, maternal blood 
pressure was positively correlated with the concentration of Cu (48). 
In contrast, a study in Bangladesh reported significantly reduced 
concentration of Cu in PE patients (49), and a study in Saudi Arabia 
proposed that the reduction of Cu might be one of the causes of PE 
(50). Regarding the association of Pb (51) and Hg (34) with PE, our 
results are consistent with some studies while conflicting with others 
that found null associations between Pb, Hg, and PE (36, 43). Notably, 
most available studies have utilized traditional statistical analyses, 
such as logistic regression and linear regression, the outcomes of 
which may be  influenced by sample size and interactions among 
exposure factors.

The Spearman correlation analysis revealed highly significant 
correlations between serum concentrations of various metals. 
Subsequently, we utilized PCA for dimensionality reduction of metals 
and found that PC1 was predominated by Hg, Pb, Mn, Ni, Cu, and As, 

while, PC2 was predominated by Cd and Zn. Our study supported the 
association of PC1 with increased risk of PE, suggesting that pregnant 
women exposed to a combination of these metals might face an 
increased risk of developing PE. Correlations between combination of 
metals have also been reported in previous studies, with one study 
reporting that levels of Cu, Zn, Mg, and Mn were positively associated 
with Pb and Cd (52). It is known that toxic heavy metals such as Hg, 
Pb, and Cd might interfere and compete metabolically with essential 
metals such as Cu, Zn (53, 54), and Zn has been recognized for its 
protective role against Cd toxicity (55). Thus, when multiple metals 
are exposed simultaneously, there may be antagonistic, competitive, 
and promoting relationships between them, rather than a singular 
metal effecting the human body (56, 57). Pregnancy represents a 
unique physiological period, characterized by distinct sensitivity and 
adaptability compared to non-pregnant individuals, thus the effect of 
metals during this period may be more complicate. Establishment of 
inter-metal relationships may suggest a disturbance in element 
homeostasis among PE patients, potentially operating through shared 
pathways. More research is needed to explore the mechanism of 
interaction among metals in pregnant women and their role in PE.

In this study, we also employed a novel nonparametric BKMR 
model to further investigate the relationship between multiple metals 
and PE. The BKMR model unveiled a significant positive cumulative 
effect of serum metals on prevalence of PE when concentrations 
exceeded the 50th percentile. It is known that, if exposure surpasses a 
critical level, both essential and non-essential metals could exert a 
wide range of toxic effects on living systems (14, 58), including 
immune system dysfunction (59), reproductive performance (60), 
multifunction of neuronal systems (61), cancers (62), and induction 
of oxidative stress (63, 64), which may explain the cumulative effect of 
metals on the development of PE. The bivariate cross-sections of 
exposure-response functions indicated potential interactions between 
Cd and Ni, as well as Cu and Ni. Previous studies have suggested that 
certain metals, such as Cd, Cu and Ni can act as endocrine disruptors 
by mimicking the action of estrogens, thus metal ions with “estrogenic 
activity” are also termed as metalloestrogens (MEs) (65, 66). MEs may 
influence estrogen receptor function by binding to cellular estrogen 

TABLE 4 Associations between multiple metals and PE.

Metals (μg/L) Mild PE Severe PE

OR (95%CI) P-value OR (95%CI) P-value

Mn

  Low (<4991.59) 1.00 – 1.00 –

  High (≥4991.59) 0.49(0.06,4.20) 0.515 1.40(0.09,21.12) 0.809

Cu

  Low (<1926.55) 1.00 – 1.00 –

  High (≥1926.55) 45.37(3.11,661.15) 0.005 159.09(4.53,5590.15) 0.005

Pb

  Low (<165.15) 1.00 – 1.00 –

  High (≥165.15) 8.82(1.08,71.90) 0.042 1052.89(17.57,63106.99) 0.001

Hg

  Low (<6.58) 1.00 – 1.00 –

  High (≥6.58) 8.43(0.87,82.08) 0.066 172.07(2.96,10021.03) 0.013

Adjusted for maternal education and gestational age.

TABLE 5 Principal component analysis results of metals.

Metals PC 1 PC 2

Hg 0.991 0.046

Pb 0.990 0.040

Mn 0.965 0.124

Ni 0.955 0.143

Cu 0.943 0.090

As 0.894 0.304

Cd 0.107 0.908

Zn 0.101 0.894

Characteristic root 5.515 1.764

Percentage of total variance 68.941 22.051

Cumulative contribution rate 68.941 90.992

Used the rotated component matrix. PC, principal component.
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receptors, thereby mimicking the action of physiological estrogens. 
This modulation of the hormonal status in the organism by MEs can 
induce disturbances in human organism homeostasis (67–69). The 
shared mechanism of action may explain the observed interactions 
between metals.

The strength of BKMR lies in its capability to address both the 
cumulative mixture effect and the dose–response impact of individual 
metal when other metals fixed a particular percentile (70). Our study 
identified a significant positive single effect of Cu and Ni on the risk 
of PE. It is suggested that the association between PE and serum Cu 
and Ni is stable and not affected by other metals. The findings for Cu 
in the BKMR model were consistent with the traditional logistic 
regression, both indicating that Cu exposure increases the risk of 
developing preeclampsia. A meta-analysis also supported the notion 
that plasma or serum Cu level in PE patients was significantly higher 
than that in healthy pregnant women (71). However, a systematic 
review indicated that Cu was associated with PE, but the levels of Cu 
leading to increased risk of PE varied across regions and economic 
development (72). Cu is an essential trace element that is involved in 
many biochemical processes and the function of several cuproenzymes 
and also acts as a powerful antioxidant to protect cells from damage. 

However, an excess of Cu can harm cells due to its potential to catalyze 
the generation of toxic reactive oxygen species (22). In conclusion, 
we  propose the existence of a safe dose range of Cu in pregnant 
women, emphasizing that elevated levels of Cu are associated with the 
development of PE. The BKMR model indicated nonlinear effects of 
Ni and Cd, providing an explanation and correction of anomalous 
results in logistic regression. A study in South  Africa showed no 
significant differences in the hair and serum levels of Ni between the 
PE group and the control group (42). Ni as a metalloestrogen, may 
impact on PE by modulating the hormonal status, however, further 
research is needed to explore to potential relationship. A study has 
found that elevated Cd levels in maternal circulation could potentially 
increase the risk of PE (32), whiles another study indicated that there 
were no significant differences in the plasma concentrations of Cd 
between different concentration groups (43). An in vivo study even 
reported Cd-induced immune abnormalities, possibly contributing to 
PE pathogenesis and offering insights into treatment strategies (73).

A significant strength of our study lies in its focus on exploring 
the association of multiple metals with PE, aligning more closely with 
the natural exposure of pregnant women to these metals. Moreover, 
we employed novel and flexible statistical methods (BKMR), allowing 
us to quantify and visualize the cumulative effect of the serum metals, 
investigation of dose–response relationship, and overcome the 
limitations associated with traditional analyses including challenges 
of high degree of correlation between compounds. While most of the 
current studies on metal toxicity predominantly focus on occupational 
groups, our research emphasizes the potential harm of metal exposure 
to the general population in heavily polluted areas. Our study was 
conducted in an electronics manufacturing city with varying degrees 
of metal pollution, local pregnant women may have a higher exposure 
to metals. Therefore, our study shed lights on the health effects of 
regional metal pollution on the pregnant women living in the area. 
Since our study is pre-exploratory and the sample size was relatively 
small, limiting our ability to assess subgroup effects. However, these 
preliminary findings provide valuable insights and encourage us to 
establish a cohort study in the later stage to study this issue further 
with expanded sample size. Moreover, subsequent research is needed 

TABLE 6 Associations between PCs and PE.

Model PCs Mild PE Severe PE

OR (95%CI) P-value OR (95%CI) P-value

Model 1

PC 1

<−0.77 1.00 – 1.00 –

≥−0.77 36.00(4.27,303.44) 0.001 225.00(21.94,2307.07) 0.000

PC 2

<−0.08 1.00 – 1.00 –

≥−0.08 15.00(2.97,75.70) 0.001 0.09(0.02,0.45) 0.003

Model 2

PC 1

<−0.77 1.00 – 1.00 –

≥−0.77 47.97(4.64,496.26) 0.001 432.69(28.17,6645.03) 0.000

PC 2

<−0.08 1.00 – 1.00 –

≥−0.08 21.72(3.61,130.75) 0.001 0.05(0.01,0.46) 0.009

Model 1 was an unadjusted model. Model 2 was adjusted for maternal education and gestational age.

TABLE 7 Posterior inclusion probabilities of metals in BKMR model.

Metals PIPs Group Group 
PIPs

Conditional 
PIPs

Zn 0.51 1 1 0.00

Mn 0.37 2 1 0.00

Ni 0.96 2 1 0.25

Cu 1.00 2 1 0.00

Pb 0.54 2 1 0.00

As 0.21 2 1 0.00

Cd 1.00 1 1 1.00

Hg 0.59 2 1 0.75

PIPs, posterior inclusion probabilities.
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to investigating the primary intake routes and sources of metals in 
pregnant women, contributing to the management of metal exposure 
and the prevention of PE.

5 Conclusion

This study unveiled a potential positive cumulative effect of serum 
metal levels on the risk of PE, with a particular emphasis on Cu as a 
potential risk factor for the onset and exacerbation of PE. Our findings 
suggest that pregnant women should maintain vigilance regarding the 
combined exposure to multiple metals, especially concerning elevated 
levels of Cu, Pb, Hg, and Ni. The results of this study offer valuable 
insights for directing future research on this issue and provide an 
additional foundation for preventing and treating PE. Nevertheless, 
larger cohort studies and experimental studies are required to 
investigate the risk of PE associated with exposure to multiple heavy 
metals. Furthermore, these studies should delve into potential 

interactions among different metals and elucidate the underlying 
mechanisms influencing the effects of metals on PE.
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FIGURE 2
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exposure-response functions.
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