
TYPE Original Research

PUBLISHED 07 February 2024

DOI 10.3389/fpubh.2024.1334881

OPEN ACCESS

EDITED BY

Dmytro Chumachenko,

National Aerospace University – Kharkiv

Aviation Institute, Ukraine

REVIEWED BY

Kathiravan Srinivasan,

Vellore Institute of Technology, India

Ricardo Valentim,

Federal University of Rio Grande do

Norte, Brazil

*CORRESPONDENCE

Stephanie D. Roche

sroche@fredhutch.org

†These authors share first authorship

RECEIVED 08 November 2023

ACCEPTED 22 January 2024

PUBLISHED 07 February 2024

CITATION

Roche SD, Ekwunife OI, Mendonca R,

Kwach B, Omollo V, Zhang S, Ongwen P,

Hattery D, Smedingho� S, Morris S, Were D,

Rech D, Bukusi EA and Ortblad KF (2024)

Measuring the performance of computer

vision artificial intelligence to interpret images

of HIV self-testing results.

Front. Public Health 12:1334881.

doi: 10.3389/fpubh.2024.1334881

COPYRIGHT

© 2024 Roche, Ekwunife, Mendonca, Kwach,

Omollo, Zhang, Ongwen, Hattery,

Smedingho�, Morris, Were, Rech, Bukusi and

Ortblad. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Measuring the performance of
computer vision artificial
intelligence to interpret images
of HIV self-testing results

Stephanie D. Roche1*†, Obinna I. Ekwunife1†,

Rouella Mendonca2, Benn Kwach3, Victor Omollo3,

Shengruo Zhang4, Patricia Ongwen5, David Hattery2,

Sam Smedingho�2, Sarah Morris2, Daniel Were5, Dino Rech2,

Elizabeth A. Bukusi3,6,7 and Katrina F. Ortblad1

1Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States, 2Audere,

Seattle, WA, United States, 3Centre for Microbiology Research, Kenya Medical Research Institute,

Kisumu, Kenya, 4Department of Epidemiology, University of Washington, Seattle, WA, United States,
5Jhpiego, Nairobi, Kenya, 6Department of Global Health, University of Washington, Seattle, WA,

United States, 7Department of Obstetrics and Gynecology, University of Washington, Seattle, WA,

United States

Introduction: HIV self-testing (HIVST) is highly sensitive and specific, addresses

known barriers to HIV testing (such as stigma), and is recommended by theWorld

Health Organization as a testing option for the delivery of HIV pre-exposure

prophylaxis (PrEP). Nevertheless, HIVST remains underutilized as a diagnostic

tool in community-based, di�erentiated HIV service delivery models, possibly

due to concerns about result misinterpretation, which could lead to inadvertent

onward transmission of HIV, delays in antiretroviral therapy (ART) initiation,

and incorrect initiation on PrEP. Ensuring that HIVST results are accurately

interpreted for correct clinical decisions will be critical to maximizing HIVST’s

potential. Early evidence from a few small pilot studies suggests that artificial

intelligence (AI) computer vision and machine learning could potentially assist

with this task. As part of a broader study that task-shifted HIV testing to a

new setting and cadre of healthcare provider (pharmaceutical technologists at

private pharmacies) in Kenya, we sought to understand how well AI technology

performed at interpreting HIVST results.

Methods: At 20 private pharmacies in Kisumu, Kenya, we o�ered free blood-

based HIVST to clients≥18 years purchasing products indicative of sexual activity

(e.g., condoms). Trained pharmacy providers assisted clients with HIVST (as

needed), photographed the completed HIVST, and uploaded the photo to aweb-

based platform. In real time, each self-test was interpreted independently by

the (1) client and (2) pharmacy provider, with the HIVST images subsequently

interpreted by (3) an AI algorithm (trained on lab-captured images of HIVST

results) and (4) an expert panel of three HIVST readers. Using the expert panel’s

determination as the ground truth, we calculated the sensitivity, specificity,

positive predictive value (PPV), and negative predictive value (NPV) for HIVST

result interpretation for the AI algorithm as well as for pharmacy clients and

providers, for comparison.

Results: From March to June 2022, we screened 1,691 pharmacy clients

and enrolled 1,500 in the study. All clients completed HIVST. Among 854

clients whose HIVST images were of su�cient quality to be interpretable

by the AI algorithm, 63% (540/854) were female, median age was 26 years
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(interquartile range: 22–31), and 39% (335/855) reported casual sexual partners.

The expert panel identified 94.9% (808/854) of HIVST images as HIV-negative,

5.1% (44/854) as HIV-positive, and 0.2% (2/854) as indeterminant. The AI

algorithm demonstrated perfect sensitivity (100%), perfect NPV (100%), and

98.8% specificity, and 81.5% PPV (81.5%) due to seven false-positive results.

By comparison, pharmacy clients and providers demonstrated lower sensitivity

(93.2% and 97.7% respectively) and NPV (99.6% and 99.9% respectively) but

perfect specificity (100%) and perfect PPV (100%).

Conclusions: AI computer vision technology shows promise as a tool for

providing additional quality assurance of HIV testing, particularly for catching

Type II error (false-negative test interpretations) committed by human end-users.

We discuss possible use cases for this technology to support di�erentiated HIV

service delivery and identify areas for future research that is needed to assess the

potential impacts—both positive and negative—of deploying this technology in

real-world HIV service delivery settings.

KEYWORDS

artificial intelligence, HIV self-testing, HIV prevention, mHealth, sub-Saharan Africa,

di�erentiated service delivery, Kenya, pharmacy

Introduction

Despite significant progress toward global HIV targets, the

world is not currently on track to achieve the Sustainable

Development Goal of ending AIDS as a public health threat by

2030 (1). As of 2023, only five countries have achieved the UNAIDS

2025 targets for testing, treatment, and viral suppression—known

as “95–95–95”—which stand globally at 86% of people living

with HIV (PLHIV) knowing their status; 89% of PLHIV on

antiretroviral therapy (ART); and 93% of those on ART virally

suppressed (2). Similarly, with 1.3 million new HIV infections in

2022 (2) and only 4.3 million people ever-initiated on daily oral

HIV pre-exposure prophylaxis (PrEP) (3), significant work will be

needed to achieve the UNAIDS 2025 prevention targets to reduce

new infections to 370,000 and make PrEP available to 10 million

people (4).

Closing these gaps will likely require intensified differentiated

service delivery (DSD) strategies to mitigate barriers to accessing

and delivering HIV services at clinics, such as HIV-associated

stigma, distance, understaffing, and long wait times (5–9). DSD is

a person-centered approach recommended by the WHO for both

HIV treatment and prevention interventions that aims to simplify

delivery; reduce burden on clients, providers, and healthcare

systems; and make HIV services more accessible and acceptable

to the individuals in need (5). In practice, DSD models often

move service delivery outside of traditional health facilities, task-

shift delivery to new cadres of providers, and/or incorporate

new innovations and technologies, such as electronic adherence

monitors, SMS reminders, and decision support tools (10, 11).

HIV self-testing is one innovation that has been underutilized

in HIV DSD (12, 13). Despite HIV self-tests (HIVSTs) having high

sensitivity (93.6%−100%) and specificity (99.1%−100%) (14–17);

increasing recent and frequent HIV testing in diverse populations

(18); being largely acceptable to clients (19); and featuring in the

national policies of 98 countries (20), implementation has lagged

considerably, with only 52 countries routinely implementing HIV

self-testing (20). Additionally, the WHO only recently (in July

2023) endorsed HIV self-testing as an additional testing strategy

that should be offered at health facilities and one that should

be used for PrEP initiation, continuation, and re-starts (21). To

date, HIV self-testing has primarily been used as a screening

tool, rather than a diagnostic tool, in part, due to concerns that

the quality of test administration and interpretation would be

lower than standard-of-care rapid diagnostic testing performed by

trainedHIV testing services (HTS) providers. Of particular concern

are false-negatives that could lead to delays in ART initiation

and/or incorrect initiation on PrEP, the latter of which carries an

increased risk of developing HIV drug resistance (22). Scale-up

of DSD models that fully leverage HIVST’s accuracy, privacy, and

convenience will likely be contingent on assuaging concerns about

testing quality.

Computer vision, a field of artificial intelligence (AI) that gleans

meaningful information from visual data (e.g., digital images),

could potentially assist with ensuring HIV self-testing quality.

The peer-reviewed literature includes dozens of examples of AI

algorithms that, in research studies, have performed as well as

trained healthcare providers at diagnosing conditions based on

medical imaging data (e.g., X-rays, CT scans) (23); and in real-

world healthcare delivery settings, some proprietary AI algorithms

are already being used to assist clinicians with diagnosis (24). A

handful of studies have found AI computer vision technology to

also perform well at interpreting rapid antigen/antibody diagnostic

tests (RDTs) in the form of lateral flow devices. Such tests indicate

positivity by producing one or more test lines. Using machine

learning, an AI algorithm can be trained on a set of images of

completed tests (all of the same brand) to recognize line patterns

for positive and negative results; thereafter, when fed an image of

a completed test of that same brand, the AI algorithm can make
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a determination about (i.e., interpret) the test result. Published

examples of this use case largely focus on rapid tests for COVID-19

(25–30), with a handful of examples from malaria (31), influenza

(32), Cryptococcosis fungal infection (33), and HIV (34). The HIV

example comes from Turbé et al. (34), who trained an AI algorithm

using 11,374 images of two brands of HIV RDTs: ABONHIV 1/2/O

Tri-Line HIV RDT [ABON Biopharm (Hangzhou) Co., Ltd.,] and

Advanced Quality One Step Anti-HIV (1&2) Tri-line Test (InTec

PRODUCTS, INC.). The training set images had been collected as

part of routine household surveillance in KwaZulu-Natal, South

Africa, with the RDTs conducted and photographed by trained

fieldworkers. To assess the algorithm’s performance, 40 RDTs of

the same brands were activated using human blood samples. Each

completed test was interpreted independently by 5 healthcare

providers (2 nurses and 3 community health workers) using

traditional visual interpretation. After interpreting the test, each

healthcare worker photographed it using a Samsung tablet running

an mHealth application. The images were then independently

interpreted by the AI algorithm and by a panel of expert HIV

test readers. The final dataset included 190 images. Using the

expert panel’s interpretation as the “ground truth,” the AI algorithm

was found to have 97.8% sensitivity (due to 2 false-negatives)

and 100% specificity (i.e., 0 false-positives) and outperformed the

healthcare worker group, which had 95.6% sensitivity (due to 4

false-negatives) and 89.0% specificity (due to 11 false-positives).

The authors acknowledge several limitations of their evaluation

(e.g., small sample size) but note the potential of AI computer vision

technology to reduce the risk of false-positive and false-negative

HIV RDT results.

To date, no study has investigated how well an AI algorithm

might perform at interpreting images of HIVSTs conducted in real-

world (non-laboratory) settings by clients. Compared to images of

HIV RDTs performed by trained healthcare providers or activated

by trained lab technicians using human blood samples, images

of HIVSTs conducted by real-world clients on themselves might

vary in ways that could affect AI algorithm performance. For

example, inexperienced self-testers might apply smaller amounts

of the blood sample to the test strip, making test lines harder to

detect (35). We, therefore, sought to evaluate the performance of

an AI algorithm at interpreting images of HIVSTs collected during

routine service delivery at private, community-based pharmacies in

Kenya. Secondarily, we sought to understand how the AI algorithm

performed compared to trained pharmacy providers and clients—

two groups of individuals who are legally allowed to conduct

HIV self-testing in Kenya—to inform discussions of whether and

how the Kenya Ministry of Health (MOH) might incorporate this

technology into models of differentiated HIV service delivery.

Materials and methods

This study is part of a larger, observational study (hereafter,

“HIVST Performance Study”) measuring the performance

of blood-based HIVSTs, compared to standard-of-care RDTs

delivered by certified HTS providers, at private community-based

pharmacies—a venue to which the Kenya MOH is interested in

expanding HIV services as part of its HIV DSD strategy (36).

The methods of this larger study have been described elsewhere

(37). Below, we summarize the methods that are pertinent to this

present study on AI algorithm performance.

Study design and setting

This study uses cross-sectional data from the HIVST

Performance Study, which was observational in design and

conducted at 20 private pharmacies in Kisumu County in western

Kenya from March to June 2022. Kisumu has a population-level

HIV prevalence of ∼18%—one of the highest in the country (38).

Pharmacies were eligible to serve as study sites if they were privately

owned (i.e., not supported with government funding), operating

legally (i.e., currently registered with Kenya’s drug regulatory

authority), had a back room where HIV testing and counseling

could occur in private, and had on staff at least one full-time

licensed pharmacist and/or pharmaceutical technologist—two

cadres of pharmacy professionals that the Kenya MOH has

expressed interest in leveraging for HIV service delivery (36)—who

was willing to participate in research activities. We partnered with

the Kisumu County Ministry of Health to identify and purposively

select licensed pharmacies to serve as study sites (39).

Participants

Eligible pharmacy providers were ≥18 years old, worked

at one of the study pharmacies, and were willing to complete

the required training to deliver the intervention. All pharmacy

providers attended a one-day in-person training on offering and

assisting (if desired by clients) free HIV self-testing to clients

purchasing products or services related to sexual and reproductive

health (SRH), such as condoms and emergency contraception;

conducting and interpreting Mylan blood-based HIVSTs (Mylan

Pharmaceuticals Private Limited, India, manufactured in South

Africa by Atomo); and providing counseling.

Eligible pharmacy clients were ≥18 years old and self-reported

being HIV-negative or not knowing their HIV status, not currently

taking PrEP or ART, and engaging (in the past 6 months) in at

least one behavior associated with risk of HIV acquisition (e.g.,

condomless sex) included in Kenya’s eight-item Rapid Assessment

Screening Tool (40) or having a potential exposure to HIV

within the past 72 h. To recruit pharmacy clients, participating

pharmacy providers asked those purchasing the above-described

SRH products if they would be interested in participating in a

research study that was offering free HIVST services to eligible

individuals. This being an observational study intended to evaluate

outcomes of interest in their natural context, pharmacy client

participants self-selected into the study (i.e., the study did not use

probability sampling to recruit study participants).

Training of HIVST expert readers

Twenty HIVST expert readers were contracted by Audere

from IndiVillage (Bangalore, India), a B-Corp-certified company

that is compliant with US Health Insurance Portability and
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Accountability Act (HIPAA), the International Organization for

Standardization (ISO), System and Organization Controls (SOC),

and the General Data Protection Regulation (GDPR). IndiVillage

offers dataset creation, annotation, and labeling services for natural

language processing and computer vision (41). In addition to

the training and experience obtained as an expert test reader

for IndiVillage, all of the test readers contracted by Audere for

this evaluation completed a two-week training during which they

received in-depth instruction specifically on Mylan HIVST result

interpretation. To pass this training, attendees were presented with

50 images ofMylanHIVST results and needed to correctly interpret

at least 48 (96%) of them. All 20 attendees passed the training; their

role is described in the next section.

Study procedures

Figure 1 illustrates the flow of key study procedures in nine

steps. As described above, prospective study participants were

initially engaged by pharmacy providers (Step 1). In a private back

room of the pharmacy, these individuals were assessed for eligibility

by a trained research assistant (RA); eligible and interested clients

were administered informed consent and provided with pre-test

counseling by the RA, who was also a certified HTS provider

(Step 2). Pharmacy providers gave clients the option to conduct

the HIVST on their own or with their assistance on any aspect

of administration except for result interpretation (Step 3). Clients

who opted to conduct the HIVST on their own were instructed to

follow the directions included in the test kit package and let the

pharmacy provider know if they had questions. All HIVSTs were

third-generation Mylan blood-based HIVST kits supplied to the

pharmacy by the research team.

After the HIVST was completed, the RA photographed it

using a Samsung Galaxy A6 tablet, with the image automatically

uploaded to the study’s secure electronic data collection platform,

CommCare (Dimagi, USA) (Step 4). The result was interpreted

independently by the pharmacy client (Step 5), then separately

by the pharmacy provider (Step 6). These interpretations—

which could be “negative,” “positive” or “indeterminant”—were

entered into CommCare by the RA. As part of the larger HIVST

Performance Study, the client then received standard-of-care HIV

rapid diagnostic testing with the RA/HTS provider and, based

on the RA/HTS provider’s reading of the HIV RDT result, the

client received post-testing counseling, was encouraged to consider

initiating HIV prevention or treatment services, and was issued a

referral slip to a nearby public clinic offering these services for free

(Step 7). The RA surveyed each pharmacy provider and client to

capture their demographic information.

Within 1 week, each HIVST image was interpreted by a subset

of three of the 20 trained HIVST readers (hereafter, “expert panel”)

who interpreted each image independently and without access to

any additional client data (Step 8). The study treated the expert

panel’s majority consensus (i.e., the interpretation that two or

more of the three HIVST readers gave) as the “ground truth”

against which to judge the performance of the AI algorithm (and,

secondarily, the performance of the pharmacy client and pharmacy

provider). Lastly, each HIVST image was interpreted by an AI

algorithm (described in the next section), which also was not

provided with any additional client data (Step 9).

Development of the AI algorithm

A non-profit organization specializing in digital health, Audere

(Seattle, USA), developed a platform called HealthPulse AI

that leverages AI algorithms for rapid test identification and

interpretation. For this study, Audere developed an AI algorithm

specifically for interpreting Mylan HIVSTs. Multiple computer

vision and machine learning (ML) models comprise the AI

algorithm, including (1) an object detector that locates the HIVST

and its sub-parts within the image and identifies the HIVST type;

(2) a second object detector that examines the HIVST result

window (found by the prior object detector) and locates the test

and control line regions; (3) a classifier that examines each line

region of the result window (found by the second object detector)

and outputs line presence probability; and (4) an Image Quality

Assurance pipeline that flags adverse image conditions, like blur,

low lighting, and overexposure (42). Google’s MediaPipe (GMP)

framework is used to route images through this sequence of models

and return results (43). Customized versions of YOLOX Nano—

themselves pretrained on the COCO dataset—are used for both

object detectors. A smaller, customized version of MixNet is used

as a classifier for the final stage.

To determine how many images the AI algorithm should

be trained on to minimize the risk of bias (i.e., the risk of

creating an algorithm that only performs well on certain types of

images), a comprehensive combinatorics approach was used, taking

into consideration possible sources of variation in images when

collected in real-world settings, such as environmental conditions

(e.g., different lighting, test positioning, image backgrounds);

camera quality (affecting, e.g., focal length, image resolution);

the test result itself; and test activation (i.e., darkness of lines).

Ultimately, it was determined that a reference set of 11,074 images-

−6,074 images on which to fit and train the ML models (‘the

training set”) and 5,000 images on which to subsequently evaluate

the model (“the hold-out set”)—would suffice. The size of this

reference set is similar to that used in other studies (34).

The 6,074 images in the training set—which was 82% (n

= 4,965) negative tests and 18% (n = 1,109) positive tests—

included 6,048 images of Mylan HIVSTs that had been activated

by trained laboratory technicians using human blood samples

and 26 images of Mylan HIVSTs featuring faint positive lines

that had been conducted by clients on themselves in real-world

pharmacy settings. By design, both the training and hold-out sets

included images captured under various environmental conditions

(as described above) and using the following iOS and Android

smartphone devices commonly used in low- and middle-income

country settings (44) that vary in camera quality: iPhone 12,

SamsungA2Core, Samsung x20, Alcatel U3, Mobicel Geo Trendy

Lite, Hurricane Link, Tecno Pop2mini, Hisense U605, and Ulefone

Note 8P. Each image in the reference set was labeled as “positive,”

“negative,” or “indeterminant” by 3 human HIVST expert readers,

as described above, with the majority consensus used as the

“ground truth” result.
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FIGURE 1

Flow diagram of study procedures.

After the model was developed, its performance was evaluated

using the hold-out set. Based on the intended use case (clinical

decision-making support), the a priori accuracy goal for the AI

algorithm was a weighted F1 score of at least 95. During the first

round of evaluation, the AI algorithm’s weighted F1 score was

98.2. Based on this output and performance gaps identified in field

deployments, the AI algorithm was further tuned to reduce false-

positives and to improve its performance at interpreting images

of tests with staining in the result window. The updated model

was run against the hold-out set and found to have a weighted

F1 score of 98.9. Because the ML models had been trained on

2 mega-pixel images, 2-megapixels—an amount that exceeds the

default resolution of most smart devices—was the recommended

minimum resolution for optimal performance of the AI algorithm.

Data analysis

We assessed the performance of the AI algorithm at

interpreting the images collected in the HIVST Performance Study

on four aspects. First, to understand how well the AI algorithm

correctly identified true positives, we calculated sensitivity: the

percent of HIVST images classified as “positive” by the expert panel

that were interpreted as “positive” by the AI algorithm. Second,

to understand how well the AI algorithm correctly identified true

negatives, we calculated specificity: the percent of HIVST images

classified as “negative” by the expert panel that were interpreted

as “negative” by the AI algorithm. Third, to understand how

likely it was that the image was truly a negative result if the AI

algorithm interpreted it as such, we calculated negative predictive

value (NPV): the percent of HIVST images interpreted as “negative”

by the AI algorithm that were classified as “negative” by the expert

panel. Lastly, to understand how likely it was that the image was

truly of a positive result if the AI algorithm interpreted it as

such, we calculated positive predictive value (PPV): the percent

of HIVST images interpreted as “positive” by the AI algorithm

that were classified as “positive” by the expert panel. To assess

uncertainty around each of these estimates, we calculated binomial

95% confidence intervals (CI).

To achieve our secondary objective of understanding how well

the AI algorithm performed compared to pharmacy providers

and clients, we calculated the above-described performance
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TABLE 1 Characteristics of the pharmacy clients and providers.

Pharmacy client
characteristic

N = 854

Female 540 (63%)

Age, median (IQR) 27 (22, 31)

Average monthly income (±SD),

Kenyan Shillings (USD)

15,274± 25,109

(131.4± 215.9)

Income source

Trade/sales 303 (36%)

Laborer/semi-skilled 221 (26%)

Professional 118 (14%)

Student 108 (13%)

No income 17 (2%)

Other 87 (10%)

Relationship status

Has one primary partner 466 (55%)

Has casual sex partners only 150 (18%)

Has one primary partner and casual

partners

185 (22%)

Had more than one new sexual partner

in the last 3 months

278 (33%)

Sexual partner is living with HIV 13 (2%)

Sexual partner has other partner(s) 103 (12%)

Pharmacy provider
characteristic

N = 40

Female 16 (40%)

Age, median (IQR) 31 (27, 37)

Own the pharmacy 17 (42%)

Years in profession, median (IQR) 6 (4, 10)

Days worked at the pharmacy per week,

median (IQR)

6 (6, 7)

Have not provided HIV tests prior to

study implementation

5 (12%)

Counsel clients before and/or during

HIV testinga
32 (91%)

Minutes typically spent counseling a

client for an HIV test, median (IQR)

20 (15, 43)

IQR, interquartile range; SD, standard deviation; USD, United States dollar. aDenominator

out of 35 providers who answered this question.

metrics for pharmacy providers and clients. For each pair-

wise comparison of interest—the AI algorithm vs. pharmacy

providers, and the AI algorithm vs. pharmacy clients—we

calculated two performance indices: (1) a sensitivity index, and

(2) a specificity index. The former is the ratio of the sensitivity

achieved by the AI algorithm to that achieved by the human

group of interest; the latter is calculated in the same way

except using the values for specificity achieved by the groups

of interest. For both performance indices, a value >1 would

indicate that the AI algorithm outperformed the human group

in question (34). For all analyses, we used Stata v17.0 (StataCorp

LLC, USA).

Ethics

The KenyaMedical Research Institute’s Scientific Ethics Review

Unit and the Institutional Review Board of the Fred Hutchinson

Cancer Center reviewed and approved all study procedures.

All pharmacy clients and providers completed written informed

consent, which was available in English, Dholuo, and Kiswahili,

and were compensated 500 Kenyan Shillings (∼$5 US dollars

[USD]) for their time completing study activities (e.g., research

surveys). The owners of participating pharmacies received 15,000

KES (∼$129 USD) per month for use of their space and utilities.

Both the expert panel and AI algorithm received only the

HIVST image file and were blinded to (i.e., were not provided

with) additional contextual information (e.g., client demographics;

pharmacy location). To reduce the risk of harm related to

HIVST misinterpretation by the AI algorithm, the algorithm’s

interpretation was not shared back with the client, pharmacy

provider, or RA or used for clinical decision-making, with all

post-test counseling and referrals to clinic-based HIV prevention

or treatment services based on the standard-of-care HIV rapid

diagnostic testing conducted by the certified HTS provider.

Results

Participants

From March to June 2022, we screened 1,691 pharmacy clients

and enrolled 1,500, all of whom completed HIVST. Of 1500 HIVST

images uploaded to CommCare, 854 (57%) were of sufficient

quality to be interpreted by the AI algorithm (The remaining

images had been collected early in the study, prior to adjusting

an image resolution setting in CommCare, which compressed

the images prior to saving them and reduced their resolution

to below the 2-megapixel minimum required resolution to be

interpretable by the AI algorithm). Among the pharmacy clients

with interpretable HIVST images, 63% (540/854) were female, the

median age was 26 years (IQR 22–31), and 39% (335/854) reported

having casual sex partners in the past 6 months (Table 1). The

majority (75%, 640/854) of clients opted to complete HIVST with

some form of assistance from the pharmacy provider. Among 40

pharmacy providers who delivered HIVST and completed a survey,

40% (16/40) were female, the median age was 31 years (IQR 27–

31), and 43% (17/40) owned the pharmacy they worked in. The

median duration of practice among pharmacy providers was 6 years

(IQR 4–10).

Breakdown of HIVST interpretations

Figure 2A shows the proportion of HIVSTs interpreted as

negative, positive, and indeterminant by the expert panel, the

AI algorithm, pharmacy providers, and pharmacy clients. The

expert panel—the “ground truth” for this analysis—classified 95%

(808/854) of the images as negative, 5% (44/854) as positive, and

0.2% (2/854) as indeterminant. Overall, this breakdown was similar

for the AI algorithm, pharmacy clients, and pharmacy providers.

The four performance measures we assessed for each group are

listed in Table 2 and described in detail below.
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FIGURE 2

(A) Breakdown of HIVST interpretations by expert panel (ground truth), the AI algorithm, pharmacy providers, and pharmacy clients. (B) Confusion

matrices showing the number of correct, false-positive, false-negative, and false-indeterminant interpretations given by the AI algorithm, pharmacy

providers, and pharmacy clients.

Specificity and PPV

Correctly identifying HIV-negative individuals as HIV-

negative—and minimizing false-positives—saves clients the

unnecessary stress and burden of receiving a (false) positive test

result and undergoing confirmatory HIV testing. In Figure 2B,

the pink- shaded cells of each confusion matrix show the number

of false-positive interpretations that each group gave. Focusing

on each matrix’s top row—which represents the images of

HIV-negative tests—we see that the AI algorithm misclassified

10 negative tests-−7 as positive and 3 as indeterminant—and

correctly classified 798 of the 808 negative tests as negative,

giving it a specificity of 98.8% (95% CI: 98.0%, 99.5%). Because

of the 7 false-positive interpretations, the AI algorithm’s PPV was

81.5% (95% CI: 71.1%, 91.8%), meaning that if the AI algorithm

interpreted a test as positive, there was an∼82% likelihood that the

test was truly positive (and, by extension, an ∼18% likelihood that

the AI algorithm’s positive interpretation was incorrect).

By comparison, pharmacy providers and clients correctly

classified all 808 negative tests as negative (100% specificity).

Neither of these human groups had any false-positives (100% PPV),

meaning that if a pharmacy provider or client interpreted a test as

positive, there was a 100% likelihood that the test was truly positive.

For both pairwise comparisons of interest—AI algorithm vs.

pharmacy provider and AI algorithm vs. pharmacy client—the

specificity indices are slightly <1 (Figure 3, orange bar), thus

indicating that, compared to both human groups, the AI algorithm

was slightly less effective at reading negative tests.

Sensitivity and NPV

Correctly identifying individuals living with HIV as HIV-

positive—and minimizing false-negatives—is arguably even more

important, as clients living with HIV who mistakenly believe

themselves to be HIV-negative may inadvertently transmit HIV
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onward to others, experience delayed ART initiation, and/or be

inappropriately initiated on PrEP (which has potential implications

for developing HIV drug resistance). In Figure 2B, the yellow-

shaded cells of each confusion matrix show the number of

false-negative interpretations that each group gave. Focusing on

each matrix’s middle row—which represents the images of HIV-

positive tests—we see that the AI algorithm correctly classified

all 44 positive tests as positive (100% sensitivity). Because the AI

algorithm did not misclassify any positive or indeterminant tests

as negative (i.e., no false-negatives), its NPV was 100%, meaning

that if the algorithm interpreted a test as negative, there was a 100%

likelihood that the test was truly negative.

By comparison, pharmacy providers and clients missed a few

positive results, correctly classifying 43 and 41, respectively, of the

44 positive tests as positive; thus, providers and clients had slightly

lower sensitivity: 97.3% (95% CI: 96.7%, 98.7%) and 93.2% (95%

CI: 91.5%, 94.9%), respectively. Because providers misclassified

1 positive test as negative (i.e., 1 false-negative) and clients

misclassified 3 positive tests as negative (i.e., 3 false-negatives),

their NPVs were 99.9% (95% CI: 99.6%, 100%) and 99.9% (95% CI

99.2%, 100%), respectively. In other words, if a pharmacy provider

or client interpreted a test as negative, there was a 99.9% likelihood

that the test was truly negative. Both sensitivity indices are slightly

>1 (Figure 3, blue bar), thus indicating that the AI algorithm was

slightly more effective at reading positive results than both the

pharmacy provider and the pharmacy client groups.

Discussion

In this study, an AI algorithm trained to interpret images

of HIVST results demonstrated perfect sensitivity and negative

predictive value (each 100%), 99% specificity, and 86% positive

predictive value. Our findings are notable for two main reasons.

First, our evaluation found that the AI algorithm did not miss

a single HIV infection and, importantly, outperformed humans

at correctly identifying positive tests as positive. This finding

is significant because false-negatives—i.e., missed diagnoses of

TABLE 2 Performance of an AI algorithm, pharmacy clients, and pharmacy providers at interpreting HIVST results, compared to an expert panel (n = 854

HIVST result images).

Metrica AI algorithm interpretation,
% (95% CI)

Pharmacy client interpretation,
% (95% CI)

Pharmacy provider interpretation,
% (95% CI)

Sensitivity 100% 93.2% (91.5%, 94.9%) 97.7% (96.7%, 98.7%)

Specificity 98.8% (98.0%, 99.5%) 100% 100%

PPV 81.5% (71.1%, 91.8%) 100% 100%

NPV 100% 99.6% (99.2%, 100%) 99.9% (99.6%, 100%)

AI, artificial intelligence; HIVST, HIV self-testing; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. aThe reference group for all metrics was the expert

panel consensus. Sensitivity and PPV are out of a denominator of 44 HIVST images classified as “positive” by the expert panel. Specificity and NPV are out of a denominator of 808 HIVST

images classified as “negative” by the expert panel.

FIGURE 3

Performance indices comparing the sensitivity and specificity of the AI algorithm to the pharmacy provider and pharmacy client groups. An index >1

indicates that the AI algorithm performed better than the indicated human group.
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HIV infection—are detrimental to the affected individuals and

undermine efforts to control the HIV epidemic. Clients who

receive false-negative results may unknowingly transmit their HIV

infection onward to sex partners, and potentially lose precious time

in initiating HIV treatment critical to slowing the progression of

the HIV virus (45). Such clients may also be incorrectly initiated on

antiretroviral-based HIV prevention drugs (e.g., PrEP)—a scenario

that could lead to drug resistance (22) and make the client’s HIV

infection more difficult and more expensive to treat (46).

Many high HIV burden countries are striving to reach the

UNAIDS target of 95% of PLHIV knowing their status (4); however,

as countries approach this target, the more difficult and more

labor-intensive it becomes to find the remaining, often hard-to-

reach individuals (47). Because countries spend millions of dollars

each year on HIV case-finding (48), misinterpretation of any such

cases is an expensive failure (49, 50). Human error in interpreting

positive HIV test results—particularly ones with weak positive

lines—is a known and well-documented issue, and many of the

proposed interventions to mitigate this issue (e.g., more specialized

training for healthcare providers, use of a second test reader)

require additional human resources (13, 51). In our study, the AI

algorithm detected 4 HIV infections missed by pharmacy providers

and pharmacy clients, possibly due to the AI’s superior ability to

detect faint lines compared to the unassisted human eye. While

4 additional cases of HIV infection detected may appear modest,

HIV testing occurs at large scale globally, with over 100 million

HIV tests conducted annually worldwide (52). Given this, our study

findings give reason for cautious optimism that such AI computer

vision technology could potentially help countries improve their

HIV case-finding without requiring them to invest significant

additional human resources, with the caveat that the exact value

such technology provides will necessarily depend on numerous

factors, including how commonly used the AI algorithm’s specific

brand of HIV test is; the existing rate of interpretation error among

HIV test users; and the extent to which the test images being fed to

the AI algorithm differ from the set on which it was trained (i.e., AI

bias, discussed in more detail below).

Our second notable finding is that when the AI algorithm

erred, it erred in the more conservative direction, producing some

false-positive—but zero false-negative—interpretations. For any

diagnostic test, perfect accuracy is virtually impossible to achieve

due to factors such as variation in specimen quality; as such,

there is a necessary trade-off between sensitivity and specificity

(53). Recognizing this, global- and country-level clinical protocols

for diagnosing HIV infection (12, 54) first utilize more sensitive

HIV tests as first-line assays to weed out most HIV-negative

individuals, followed by more specific HIV tests as second- and

third-line assays to eliminate false-positives among those who

tested positive (55). In our study, the AI algorithm gave seven false-

positive interpretations, most likely due to image quality issues

(e.g., blurriness), and was outperformed on this metric by the

pharmacy client and provider groups, both of which gave zero false-

positive interpretations. False-positive interpretations are, indeed,

unfavorable, and can lead to adverse consequences for clients, such

as anxiety and psychological distress (56); but from a public health

perspective, these harms are considered less alarming than those

of false-negatives, in part, because of the aforementioned three-test

clinical protocols in place that nearly always catch false-positives

on second- or third-line assays (57). In short, in the absence of

a tool that can interpret HIV tests with perfect sensitivity and

perfect specificity, the next-best scenario is, arguably, a tool with

perfect sensitivity, deployed with contingency plans for handling

its imperfect specificity (e.g., clear warnings to end-users that

positive interpretations could be incorrect and should be confirmed

via additional testing). For this reason, our study findings give

reason for cautious optimism about AI computer vision technology

and its potential to support HIV test interpretation. Below we

discuss future areas of research; key ethical, financial, and legal

considerations for this technology; and study limitations.

Future areas of research

Whether any HIV program chooses to incorporate AI

computer vision technology into its service delivery and, if

so, how will depend on a number of context-specific factors,

such as how well the algorithm in question performs; how

HIV service delivery is structured, staffed, and funded; internet

connectivity; local laws regulating the use of AI; and the

technology’s acceptability to and usability by target end-users. With

this caveat in mind, there are a number of potential use cases for

AI computer vision technology within HIV service delivery that

are worthy of further consideration—and additional research—

by HIV stakeholders working in collaboration with AI experts

and technology ethicists. These research areas—summarized in

Table 3 as Examples A through F and discussed in further

detail in the Supplementary material—touch upon potential uses

of AI computer vision technology to support the following

aspects of HIV service delivery: quality assurance and supported

implementation; commodity accountability; and provider training

and evaluation. The use cases focus specifically on models of

differentiated HIV service delivery (DSD), which—as previously

explained—oftenmove service delivery outside of traditional health

facilities, task-shift delivery to new cadres of providers, and/or

incorporate new technologies or innovations (5).

Ethical, financial, and legal considerations

How to ethically implement AI computer vision technology

and sustainably finance its development and long-term use at scale

while still ensuring that it complies with local laws, are three fast-

evolving areas that will determine whether, how, and the pace at

which this technology is incorporated into HIV service delivery.

Regulations and guidelines around the use of AI for health are

still largely nascent (58, 59). Similar to other health services, AI-

supported delivery of HIV services will require guardrails not

only to ensure that the technology complies with patient privacy

and data security laws, but also to handle situations in which

the AI returns inaccurate information, especially if inaccuracies

are more prevalent for certain groups of individuals due to bias

in the data on which the AI was trained. The growing literature

on bias in AI machine learning for medicine highlights the

importance of and need for bias mitigation strategies and for

any deployment of AI to be accompanied by routine evaluations
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TABLE 3 Future areas of research related to AI computer vision in HIV di�erentiated service delivery (DSD).

Potential uses of AI Relevance for HIV di�erentiated service
delivery (DSD)

Area 1: Quality assurance and supported implementation

Help verify test results Example A: After conducting an HIV test (or self-test),

providers (or clients) upload a photo of the result to a digital

platform. On the back end, an AI algorithm also interprets

the result and notifies parties responsible for overseeing

quality of care of any discrepancies, creating an opportunity

to change course of action, if needed.

Having a reliable way to verify that HIV tests are correctly

interpreted might convince policymakers to allow delivery

models that task-shift HIV testing to new cadres of

healthcare providers, lay providers, or clients themselves as

part of broader DSD efforts to make more efficient use of

existing health resources, lower client wait times, reduce visit

burden, and/or expand HIV services to new delivery venues.

Guide and reassure end-users Example B:Healthcare providers are given the option to

compare their interpretation of the HIV test result to that of

the AI algorithm.

Because many DSD models engage individuals not

previously involved in HIV service delivery, their success

hinges on developing end-user knowledge, skills, and

self-efficacy to engage in services as intended (e.g., to

correctly and confidently conduct HIV tests). AI algorithms

could support providers by offering a “second opinion” on

result interpretation, giving providers the opportunity to

double-check their interpretation of the test prior to making

a final determination about the result.

Assess fidelity Example C: An AI algorithm is trained to detect possible

indications of HIV self-test (HIVST)

misadministration—such as the blood sample being placed

incorrectly (e.g., in the results window) and test end-users

not waiting the recommended duration of time prior to

interpreting the result—and flag such cases for further

review.

Mechanisms for assuring the quality of HIVST

administration and interpretation may make policymakers

more willing to support HIV service delivery models that use

HIVST in lieu of, or as an additional testing option to, HIV

rapid diagnostic testing (RDT). This would benefit clients

who prefer HIVST and create potential opportunities to

move HIV service delivery, or select parts of it, outside of

traditional healthcare settings (See telehealth PrEP model in

next row).

Provide quality control Example D: An AI algorithm checks the quality of an HIV

test result photo uploaded to a digital platform. If a photo

does not meet a prespecified quality standard, the user is

prompted in real-time to re-take it (while the results are still

valid).

Telehealth PrEP delivery models involve remote clinicians

using digital data for clinical decision-making. Ensuring that

user-submitted digital data is of sufficient quality to be

usable could potentially help avoid incorrect clinical

decisions and reduce inefficiencies (e.g., time delays) related

to data re-collection.

Area 2: Provider training and evaluation

Evaluate providers Example E: After an individual completes HTS training, an

AI algorithm is run on images from the first 100 HIV tests

they conduct, with any discrepancies with the algorithm’s

interpretation flagged for review.

Compared to using human auditors, assessing HTS provider

performance remotely and in an unannounced fashion may

be more reliable, cost-saving, have better privacy for clients,

and enable regulators to quickly identify providers in need of

further training and support.

Area 3: Commodity accountability

Mitigate fraud Example F: A country’s ministry of health or a donor agency

agrees to support HIV service delivery in a private-sector

setting by providing commodities (e.g., HIV test kits, PrEP

drugs). For accountability purposes, providers are required

to write unique client identifiers on used commodities and

upload photos of them. An AI algorithm is trained to detect

potential signs of fraud, such as upload of duplicate photos

and erasure of the unique client identifiers (to re-use test

kits).

To date, few countries with high HIV burden have partnered

with the private sector to deliver HIV services at scale, in

part, because the necessary legislation and systems for

cross-sector service delivery (e.g., health information system,

supply chain) are not yet in place. Used as a fraud mitigation

strategy, AI computer vision could potentially provide an

extra measure of accountability that might address

policymaker and donor hesitation to support private

sector-based HIV DSD models.

AI, artificial intelligence; DSD, differentiated service delivery; HIVST, HIV self-testing; RDT, HIV rapid diagnostic testing; HTS, HIV testing services; PrEP, pre-exposure prophylaxis; RDT,

rapid diagnostic testing; HTS, HIV testing services.

of its performance and impact on patients and providers (60–

63). Thinking through the potential ethical issues (59) (e.g.,

inequitable access to AI technologies exacerbating existing health

disparities) and liability risks (e.g., the risk of client self-harm

after receiving a false-positive result from an AI algorithm)—

and deciding on risk mitigation measures (e.g., limiting client

exposure to AI; deciding the content of user agreements for

HIVST apps)—will influence this technology’s incorporation into

HIV service delivery, which will undoubtedly vary by setting and

use case.

Similarly, financing AI computer vision algorithms is bound

to take many forms. There are three primary costs to consider:

(1) the development of the algorithm (a one-time cost); (2) the

integration of the algorithm into a digital platform, such as an

app or electronic medical record system (also a one-time cost);

and (3) the operating costs of running and maintaining the

algorithm (an ongoing cost). The development of the algorithm

assessed in this study was funded by a private philanthropic

organization as a global public good. As such, the governments

of low- and middle-income countries can obtain the algorithm
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from the parent company free of charge. These governments, in

turn, are responsible for covering the one-time cost (typically

∼$10,000 USD) of integrating the algorithm into their digital

health platform of choice. Lastly, governments and/or donors

need to budget for the ongoing operating costs, the amount of

which would depend on the scale at which the algorithm is used.

For example, early data from pilot studies suggests that, when

deployed at scale, the cost of running the algorithm could be

kept as low as a few cents per test image assessed. Moreover,

if an algorithm is deployed in multiple settings (e.g., multiple

countries), then the cost for routine algorithm maintenance

could be shared, with updates pushed to all end-users. Specific

approaches to cost-sharing the development and maintenance of

AI computer technology among governments, donors, third-party

payers (e.g., private health insurers), and clients is an area for

further investigation.

Study limitations

This study has limitations. First, because this study was

conducted within a larger study on HIVST performance, pharmacy

providers received comprehensive training on conducting and

interpreting HIVST and pharmacy clients were given the option to

receive provider assistance conducting HIVST. These factors may

have increased the performance of pharmacy clients and providers,

thus underestimating the degree to which an AI algorithm might

outperform these human groups at HIVST interpretation. Second,

due to the previously described error on behalf of the research

team early on during data collection whereby an image resolution

setting was not adjusted in the electronic data collection platform,

the first 646 HIVST images collected during the study did not

meet the 2-megapixel minimum required resolution prespecified

by the algorithm developer; as such, 646 of the 1,500 total images

collected (43%) were excluded from this evaluation. Although our

remaining sample size (n = 854) was still robust, this may have

given the provider group a slight advantage if their performance

interpreting the tests whose images were discarded (collected early

on in implementation when providers may have still been honing

their test interpretation skills) was lower than it was for the

tests included in our final analysis. Third, like all observational

studies that do not employ probabilistic sampling, our pharmacy

provider and client groups—and their respective performances at

interpreting HIVSTs—may not be representative of all pharmacy

providers and clients; as such, our findings about the performance

of those two human groups are not generalizable to other pharmacy

providers and clients in Kisumu County or, more broadly, Kenya

and similar settings. Lastly, because our study assessed only one

AI algorithm trained on a single brand of HIVST kits and only

on images of at least 2-megapixel resolution, our findings are

not necessarily generalizable to other AI algorithms, types of

HIVSTs, or to images below 2-megapixel resolution. However,

because the Mylan HIVSTs used in this study have the same

general format of many other common biologic tests (e.g., positive

results are indicated by two lines), our study findings may be a

reasonable indicator of how this technology might perform on

other similar tests.

Conclusions

AI computer vision technology shows promise as a quality

assurance tool for HIV testing. Such technology may be especially

useful for enabling HIV services to be delivered outside of

traditional healthcare settings, by new cadres of providers, and/or at

different cadences to better meet client needs and preferences and

to use existing health resources more efficiently. Future research

could measure the effect size of making AI algorithm result

interpretations available to end-users in real-time compared to a

control group unassisted by AI (e.g., effect on rate of false-negatives,

on provider confidence); assess the feasibility, acceptability, and

unintended consequences of using this technology (e.g., ethical

issues related to AI interpretation errors, patient privacy, and

healthcare worker job security)—among different end-user groups

(e.g., community health workers) and in different settings; and

conduct cost-effectiveness studies (e.g., quantify the cost per

additional case of HIV identified). Future research should also

explore AI biases, with an eye toward minimizing biases that

may compromise care quality, fairness, and equity. Stakeholders

of HIV service delivery should carefully consider leveraging AI

computer vision technology as part of broader efforts to make

services more client-centered and expedite progress toward HIV

epidemic control.
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