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Introduction: Dengue is currently the fastest-spreading mosquito-borne viral
illness in the world, with over half of the world’s population living in areas at
risk of dengue. As dengue continues to spread and become more of a health
burden, it is essential to have tools that can predict when and where outbreaks
might occur to better prepare vector control operations and communities’
responses. One such predictive tool, the Early Warning and Response System
for climate-sensitive diseases (EWARS-csd), primarily uses climatic data to alert
health systems of outbreaks weeks before they occur. EWARS-csd uses the
robust Distribution Lag Non-linear Model in combination with the INLA Bayesian
regression framework to predict outbreaks, utilizing historical data. This study
seeks to validate the tool’s performance in two states of Colombia, evaluating
how well the tool performed in 11 municipalities of varying dengue endemicity
levels.

Methods: The validation study used retrospective data with alarm indicators
(mean temperature and rain sum) and an outbreak indicator (weekly
hospitalizations) from 11 municipalities spanning two states in Colombia
from 2015 to 2020. Calibrations of di�erent variables were performed to find
the optimal sensitivity and positive predictive value for each municipality.

Results: The study demonstrated that the tool produced overall reliable
early outbreak alarms. The median of the most optimal calibration for each
municipality was very high: sensitivity (97%), specificity (94%), positive predictive
value (75%), and negative predictive value (99%; 95% CI).

Discussion: The tool worked well across all population sizes
and all endemicity levels but had slightly poorer results in the
highly endemic municipality at predicting non-outbreak weeks.
Migration and/or socioeconomic status are factors that might
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impact predictive performance and should be further evaluated. Overall EWARS-
csd performed very well, providing evidence that it should continue to be
implemented in Colombia and other countries for outbreak prediction.

KEYWORDS

outbreak prediction, outbreak response, dengue, Colombia, climate-sensitive diseases,

vector-borne disease

1 Introduction

Dengue, an infectious disease transmitted by Aedesmosquitoes

(mainly Aedes aegypti and Aedes albopictus) is currently considered

the fastest-spreading mosquito-borne disease in the world, with

the incidence increasing 30-fold in the last 50 years (1, 2). Over

half of the world’s population live in areas at risk of dengue (3).

Annually, dengue infects over 390 million people, kills over 10,000

people, and is responsible for 1.14 million disability-adjusted life

years (DALYs) (2, 4). Dengue has seen a rise in cases due to climate

change, human mobility, trade, and unplanned urbanization (5).

Dengue’s increasing transmission rate has created a large health

burden on many communities, especially when outbreaks occur.

There is currently no effective cure for dengue and the best way

to minimize the dengue health burden is vector control measures

of the Aedesmosquito (6).

The updated EWARS-csd tool (Early Warning and Response

System for climate-sensitive diseases tool developed under the

auspices of the Special Program for Research and Training in

Tropical Diseases at the World Health Organization, TDR-WHO)

was developed to predict dengue outbreaks before they occur to

prevent potential outbreaks. The tool can utilize epidemiological,

meteorological, social, and entomological variables to predict

possible future dengue outbreaks (1). EWARS-csd includes

interactive graphical features to improve results interpretation for

users at the national (central) dashboard 1 and local (municipality)

dashboard 2 levels. The EWARS-csd tool predicts disease outbreaks

in time and space, allowing it to trigger vector control activities

in areas of high transmission risk. In addition, it quantifies the

magnitude (outbreak rate) and its certainty interval, whichwill have

significant vector control and response implications. It employs

the robust Distribution Lag Non-linear Model in combination

with the integrated nested Laplace approximation (INLA) Bayesian

regression framework (7).

The tool is operated through the open-access software “R” to

make it accessible to users in Low- and Middle-Income Countries

(LMICs). It does not require skilled users to operate it effectively.

The tool was updated from EWARS to EWARS-csd (formerly

EWARS+) in 2019 to improve the mathematical approach, provide

descriptive data for users, predict the magnitude of disease

incidence, provide confidence intervals, model all municipalities

in a country together, and have fewer calibration features (8).

Currently, EWARS-csd is being implemented in 17 countries (8).

This includes Colombia, which is hyperendemic for dengue and

experiences the highest mean dengue case fatality rate in the

Americas (19 deaths per 10,000 symptomatic cases) (9). The TDR-

WHO sponsored training, installation, and technical support in

the implementation of EWARS-csd in certain municipalities of

Colombia. Overall, Colombia’s mandatory reporting of dengue

cases and available case data, made it an optimal place to perform

a validation study of EWARS-csd. A validation study is necessary

because the previous version of EWARS was unable to generate

results in Colombia due to inconsistency of disease trends caused

by the seasonal effect (as in many Latin American countries)

and because the tool did not perform well for municipalities of

low endemicity.

The overall aim of this study was to validate whether the

modernized EWARS-csd model provides reliable and operational

alarm signals for dengue outbreaks in Colombia and elsewhere.

Essentially, this study intended to assess the sensitivity and positive

predictive value metrics for EWARS-csd for municipalities of

different endemicity levels.

2 Materials and methods

2.1 Study area

The EWARS-csd validation study was conducted in partnership

with WHO, the Universities of Gothenburg and Freiburg as well

the Colombian National Institute of Health’s (Instituto Nacional de

Salud, INS), surveillance team. For the validation study, data was

used from 2 of Colombia’s 32 states (“departamentos”): Bolívar and

Cesar (Figure 1). Both states were part of Colombia’s pilot study of

EWARS-csd. The two states border each other. Cesar also shares a

border with Venezuela. Bolívar has a population of 2 million, and

Cesar has a population of 1.2 million (10). In total 11 municipalities

of varying endemicity levels were used in this study: 4 from Bolívar

and 7 from Cesar.

2.2 Data

Secondary data for this project was aggregated from Colombia’s

National Institute of Health (INS) in coordination with their

national vector-control team. INS provided data on the 11

municipalities listed above, including data from 2015 to 2020

covering the mean relative humidity (%), the number of

hospitalized cases, the population of the municipality, the mean

temperature (◦C), and the sum of rain per week (mm). The

hospitalized cases data came from hospital records and were all

lab-confirmed cases of dengue which required hospitalization, and

these were included using the case definition according to the

Ministry of Health (MoH) and INS, which was set out in the public

health surveillance protocols (12). The meteorological data, which

were the potential alarm indicators, was provided by the Institute of

Hydrology, Meteorology and Environmental Studies (IDEAM) of

Colombia. The temporal data was measured as an epidemiological
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FIGURE 1

Map of the two states analyzed in the study. Bolívar (in red) and Cesar (in blue). Reprinted with MapChart.net’s permission (11).

week (from Sunday to Saturday) and the spatial unit was based on

pre-existing administrative units (“municipios” or municipalities).

2.3 EWARS-csd

The EWARS-csd toolkit on the open software R was used

to validate the data. Dashboard 1, which is used by the national

health system level, was utilized for the validation. The tool uses

spatiotemporal covariance to provide robust estimates through

a distributed lag non-linear Bayesian framework (13). It uses

a baseline model and non-linear function of incidence-week

in order to capture seasonality or the unknown variability

annually (13). The model produces out-of-sample predicted

probabilities of exceeding the outbreak threshold from alarm

indicator parameters. It is compared with the endemic channel,

which represents the historical pattern of disease incidence or

dengue hospitalization incidence.

2.4 Validation

The model can be tested at different calibrations to see which

tool settings, such as run-in year, z-value (see below), and time-

lag or prediction period, provide the optimal model measured by

statistical metrics. In a retrospective cross-evaluation tool process,

the run-in year is the year that the data would be cut between either

being part of the historic data to build the model or to be part of the

future data, which is used to predict outbreaks (model evaluation).

The run-in years available were 2016–2020.

The z-value is a multiplier of the weekly standard deviation

of hospitalized cases (or other outbreak indicators) (14). The

importance of this calibration is to change the outbreak threshold,

or the upper line of the endemic channel, which is useful to account

for different endemic settings (15). Z-values were calibrated

between 1 and 4 in this study.

The time-lag is the period between exposure (e.g., change in the

climate condition) and the disease outbreak manifestation (8). This

is measured in weeks. For this validation, time-lags between 8 and

14 weeks were evaluated as this range is generally supported in the

literature; though, it could be expanded as the time-lag is not fully

understood, especially with different variables interacting with one

another (16, 17).

To predict outbreaks, theremust be defined alarm indicators, or

variables which indicate that an outbreak is coming. These variables

can be meteorological, entomological, or potentially social and

logistic alarm indicators (15). The validation study in Colombia

used the following variables as alarm indicators: rain sum (i.e.,

weekly rainfall) and mean weekly temperature. These variables

would be used to predict the outbreak indicator. This validation
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FIGURE 2

Screenshot displaying EWARS-csd dashboard 1 with di�erent calibration variables: lag weeks, model year, and Z outbreak. It also demonstrates the
outbreak variable: weekly_hospitalized_cases and alarm indicators mean temperature and rain sum. The top left indicates that it is working on the
Dashboard 1 level, and the four shape files must be uploaded and the specific data from the municipalities.

study used the outbreak indicator of weekly hospitalized cases (see

Figure 2 for depiction of EWARS-csd dashboard).

For the validation, optimization measurements and receiver

operating characteristics (ROC) were calculated to determine

the optimal calibrations of sending alarm signals. The ROC

includes cutoff probability, area under the curve (AUC), accuracy,

sensitivity, specificity, PPV, and NPV.

Sensitivity-the proportion of events that occurred (i.e.,

outbreaks) that were correctly predicted (14).

Specificity-the proportion of events that were predicted not to

occur and did not occur.

PPV-the probability of following an outbreak signal by

EWARS-csd that the period will truly have a disease outbreak. The

proportion of true alarm signals.

NPV-the probability of following non-outbreak signals by

EWARS-csd that the period will truly not have a disease outbreak.

The proportion of true non-alarm signals.

2.5 Data calibration in EWARS-csd

For this validation study, the optimal (highest) sum of

sensitivity and PPV was recorded for each municipality. To

achieve this, different calibrations of the tool were evaluated,

so each municipality was calculated at each unique cut-off

year (2016–2020) while varying the time-lag (8–14 weeks) and

then adjusting the z-value (1–4) to find the optimal level of

sensitivity and PPV. This repetitive process allowed for an in-

depth understanding of how the calibration variables interact

with each other. The highest sensitivity and PPV sum for each

municipality each year was then recorded as well as the other

information relating to that calibration such as: the endemicity

level, the cutoff probability, the AUC, accuracy, sensitivity (95%

CI), specificity (95% CI), PPV (95% CI), NPV (95% CI), run-

in year, z-value, lag-time/lag non-linear, and the sensitivity and

PPV total. If multiple calibration measures resulted in the same

sum of sensitivity and PPV, then the median calibration values

were taken.

2.6 Endemicity levels

A municipality’s outbreak threshold depends on the endemic

channel, or the number of cases a community usually (e.g.,

during the past 5 years) experiences. To generate endemicity

levels, interquartile ranges of the hospitalized cases were taken

for all the municipalities together using Stata. Category cut-

offs without “zero” cases were used to avoid the lowest range

being 0. Overall, there were 966 weeks with hospitalization

values of 0. Quartile <25% was considered low endemicity,

quartile 25–50% was considered moderate endemicity, and

quartiles >50% was considered high endemicity. The low
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endemicity municipalities are classified as having a median

of weekly hospitalized dengue cases of 1 or less, moderate

endemicity as 2 or 3, and high as over 3 hospitalizations

per week.

2.7 Analysis

Numerical and graphical statistical descriptions were sought

for each municipality and stratified by different categories. The

data was used from the most optimal sensitivity and PPV per

municipality. The median and range were calculated for sensitivity,

specificity, PPV, NPV, run-in year, z-value, and the time-lag. The

median was chosen because the data is not normally distributed,

and the median is less sensitive to skewed data. The results

were then divided by endemicity levels, provinces, and population

sizes to allow for further analysis. While there are no universally

agreed predefined cut-off points, this study considers optimization

measurements below 50% as poor, 50–70% as fair, and above 70%

as good performance results.

2.8 Disease incidence rates

For further analysis, disease incidence rate graphs, computed

from the corresponding municipalities, were produced to visualize

how well the tool predicted outbreaks (see Figure 3). The tool

predicts the magnitude of the outbreak incidence. When the

exceedance probability, predicted from the alarm indicators,

crosses the cutoff threshold, then it will be considered an alarm

signal. The cutoff threshold is based on the endemicity of the

municipality plus the standard deviation multiplied by the z-value.

The alarm signals can be compared to when outbreaks occurred

according to the disease incidence data provided.

2.9 Ethical considerations

This project made ethical considerations throughout the

entire process. Ethical endorsement was obtained from the Ethics

Committee of the University of Freiburg (N◦-145/18) which was

approved by local health authorities. The data validated was in

agreement with and obtained from Colombia’s INS. All data was

taken at the aggregated level with no personal information recorded

for EWARS-csd. Specific ethical approval related to the validation

study was not required. The results of this study are being shared

with the INS to better implement the tool for the evaluated

municipalities and to prevent dengue outbreaks throughout the

whole country to benefit the affected communities.

3 Results

3.1 Endemicity levels

Among the 11 municipalities studied between the years 2015 to

2020, there were 20,154 hospitalized cases of dengue. Overall, there

were five low endemicity municipalities, five moderate endemicity

municipalities, and one high endemicity municipality, which allows

for evaluation of the tool’s performance at different levels of dengue

endemicity (Table 1).

3.2 Summary statistics of the tool’s
performance

For each municipality, the highest sensitivity and PPV value

is recorded in Table 2, along with the other measurements

at the calibrations that resulted in the most optimal value.

Municipality 172, 178, 190, 446, and 464 all hadmultiple calibration

combinations that resulted in the same optimal sensitivity and PPV,

so for these municipalities, the median value of optimal calibrations

was recorded. The optimal combined sensitivity and PPV value was

2.00 in municipality 178, which was of low endemicity. The least

optimal sensitivity and PPV value was 1.46 inmunicipality 466, also

of low endemicity.

3.3 Outbreak prediction in high, middle,
and low endemicity municipalities of
Colombia

The tool provided disease incidence graphs of the outbreak

prediction scenarios. As seen in Figure 3, the tool was fairly

accurate in low endemicity municipalities as outbreak alarms

were often before the outbreak points. This is indicated with the

blue alarm dots that are produced when the green exceedance

probability line extends beyond the red cutoff probability line. If

the tool is predicting well then, the blue dots should be followed

around 12 weeks later with an orange outbreak dot showing that an

outbreak occurred. This graph can be summarized quantitatively.

In municipality 449 (low endemicity), a good sensitivity (92%),

specificity (94%), and NPV (99%) were found with a fair level of

PPV (60%) (Table 2). The predicted (purple line) and observed

incidence rate of hospitalized dengue cases (dark blue) lines also

run quite closely to each other, indicating the tool can accurately

forecast dengue incidence rates (Figure 4).

For the moderate endemic municipality 170, it also provided

strong predictions as indicated by the graph (Figure 5) and Table 2,

with good scores across all measurements: sensitivity (97%),

specificity (94%), PPV (77%), and NPV (99%). The probability

cutoff i.e., alarm threshold for municipality 170 is quite high for

a moderate municipality. This is most likely because the calibration

was set with years of higher dengue hospitalization incidence.

For the high endemic municipality 468, the disease incidence

rate graphs and results provided fair predictions for specificity

(57%) and PPV (67%) and good predictions for sensitivity (92%)

and NPV (88%) (Figure 6 and Table 2).

3.4 Optimal values

When analyzing all municipalities’ optimal calibrations, there

were good results for the median sensitivity (0.97) with a tight

range (0.80–1.00) (Table 3). It means that the model has managed
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FIGURE 3

Diagram from the EWARS+ program that the municipality medical o�cer. The red line indicates predicted incidence, in this case hospitalized cases
(the tool is currently being updated to match this heading). The blue line indicates the outbreak probability.

TABLE 1 Median weekly dengue hospitalizations by municipality and endemicity level.

Bolívar municipality Municipality name Median weekly hospitalizations Endemicity level Population in 2020

170 Cartagena 3 Moderate 1,028,736

172 El Carmen De Bolívar 2 Moderate 72,595

178 Santa Cruz de Mompós 1 Low 46,408

190 Santa Rosa del Sur 1 Low 34,568

Cesar municipality Municipality name Median weekly hospitalizations Endemicity level Population in 2020

445 Aguachica 3 Moderate 118,652

446 Agustin Codazzi 2 Moderate 64,676

449 Bosconia 1 Low 43,326

452 Curumani 2 Moderate 39,667

464 San Alberto 1 Low 28,453

466 San Martin 1 Low 28,769

468 Valledupar 9 High 454,906

to predict 97% of all outbreaks that happened that year. Specificity

also had good median results (0.94) but a wider range (0.57–1.00).

This means that the model managed to predict 94% of all non-

outbreaks. The PPV was a lower median value (0.75) compared to

the NPV (0.99), but both were still in the good range. For PPV, 75%

of alarm signals for outbreaks were correctly predicting outbreaks

(true positive). For NPV, 99% of the lack of alarm signals were

correct in predicting an outbreak would not occur (true negative).

The optimal median run-in year was 2019 and median optimal

z-value was 2.45. The optimal median lag time was 12 (Table 3).

3.4.1 Endemicity levels
When endemicity was accounted for, the tool appeared optimal

for moderate endemicity municipalities with sensitivity, specificity,

PPV, and NPV all being highest in this level (Table 4). The tool

appeared to be least optimal in the high endemicity municipality.

2019 as the cut-off year was the median value across all three

municipality levels. A longer lag of 13 weeks was the median in

moderate municipalities, but it was 11 and 10 weeks in low and high

endemic municipalities, respectively.

3.4.2 Di�erences between states
When comparing between the two states, the tool appeared

to be more optimal in Bolívar with higher values of sensitivity,

specificity, PPV, and NPV (Table 5). The lag-time median was the

same for both at 12 weeks. The median run-in year was similar

between both. The Z-value had a median of 2.68 in Bolívar and 1.25

in Cesar but the same range throughout.
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TABLE 2 Summary table of most optimal calibrations for each municipality.

Municipality Endemicity Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95%
CI)

Run-in
year

cut-o�

Z-value Lag-
time

(weeks)

Sensitivity
and PPV
total

178 Low 1.00 1.00 1.00 1.00 2020 2.45 13 2.00

190 Low 1.00 0.88 0.75 1.00 2019 3.10 10.5 1.75

449 Low 0.92 0.94 0.60 0.99 2018 4.00 11 1.52

464 Low 0.92 0.72 0.68 0.93 2018 1.25 13 1.59

466 Low 0.83 0.94 0.63 0.98 2020 3.30 9 1.46

170 Moderate 0.97 0.94 0.77 0.99 2017 2.90 11 1.74

172 Moderate 1.00 0.96 0.75 1.00 2020 1.60 13 1.75

445 Moderate 1.00 0.84 0.81 1.00 2019 1.20 12 1.81

446 Moderate 0.80 0.98 0.80 0.98 2019 3.55 13 1.60

452 Moderate 1.00 0.90 0.85 1.00 2019 1.00 13 1.85

468 High 0.92 0.57 0.67 0.88 2019 1.10 10 1.59

FIGURE 4

Municipality 449 (low endemicity) at most optimal calibrations with a cuto� year of 2018 and Z-score of 4.0. Description of how to interpret the
graph. Endemic channel in light blue with 95%. Confidence intervals (gray area) representing the “normal” incidence rate of hospitalized dengue
cases (upper limit = z*SD of incidence in each week). Observed incidence: Notified incidence of dengue hospitalizations. Predicted incidence:
Incidence predicted by the EWARS+ tool. Cut-o� for outbreak indicator (outbreak probability). When the alarm indicator (exceedance probability)
crosses this line the alarm indicator turns into an alarm signal. Exceedance probability (i.e., outbreak probability): predicted weekly number of cases
or incidence above the expected, i.e., above the endemic channel.

3.4.3 Population e�ect
When separating the municipalities by population size, there

were quite similar values for the performance variables between

municipalities with over 100,000 people and under (Table 6). The

run-in year was the same for both in 2019. The lag-time was longer

at 13 weeks for smaller populations compared to 11 weeks for

bigger populations.

4 Discussion

4.1 Performance of EWARS-csd

This prediction tool provided reliable results, which helped

to validate its performance. The highest sensitivity (i.e., the

proportion of correctly predicted outbreaks) and PPV value (i.e.,

the proportion of true positive alarms) were the determining factors

for which calibrations to use in each municipality. When analyzing

all the municipalities, the minimum value in the validity tests was

0.57 for specificity. PPV’s minimum value was 0.60. For sensitivity,

the minimum value was 0.80 and for NPV, it was 0.88. All values

are within the predefined “fair” to “good” results category. The

high sensitivity and specificity value demonstrate the tool has good

predictive performance, which is important from a global health

perspective to not miss outbreaks. The results also indicated that

the tool showed some deficiencies regarding the proportion of

true positive alarms (PPV value) but still provided fair scores of

60 and more percent. Overall, these results demonstrate the tool

had lower scores in operations, compared to performance. PPV

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1323618
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Schlesinger et al. 10.3389/fpubh.2024.1323618

FIGURE 5

Municipality 170 (moderate endemicity) at most optimal calibrations with a cuto� year of 2017 and a Z-score of 2.9.

FIGURE 6

Municipality 468 (high endemicity) at most optimal calibrations with a cuto� year of 2019 and a Z-score of 1.1.

and NPV are important in the operation, or usage, of the tool as

it is not effective to have an overprediction of outbreak alarms

as it will not help health systems identify true outbreaks. This

means that some extra resources may be deployed for outbreaks

that are not likely to occur. However, because EWARS+ proposes

different levels of alarm that trigger scaled-up responses, few vector

control resources will be engaged if there is a false alarm that is

not sustained. The tool proposes a stepwise response based on

initial, early, and late alarms to balance how much action should

be taken at different alarm signals; this could help to catch any false

alarm signals. It is important to note that the data received did not

provide municipality specific meteorological data but rather state-

level data. Municipality meteorological data would grossly improve

the correct prediction with a high PPV, as shown elsewhere (1).

Overall, the tool performed well in both prediction and operation.

The findings of this validation study are important to reconfirming

outbreak prediction with a simple tool as users at the municipality

level receive a simplified graph showing the alarm level (18).

The findings of this study also demonstrate successful modeling

based on mean temperature and rain sum as alarm indicators

(19). While other models also find associations between relative

humidity and fractional cloud cover, the results of this study

and its high validation scores with only two variables suggest

that temperature and precipitation might be the most influential

in predictions. Entomological indices like the Ovitrap index

will also be particularly helpful in indicating the effort by the

vector control services (20). For example, the Ovitrap index

can decrease (due to vector control) the outbreak risk, despite
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TABLE 3 Median and range of the most optimal sensitivity and PPV after

calibration for all municipalities combined.

Variable Median (range)

Sensitivity 0.97 (0.80–1.00)

Specificity 0.94 (0.57–1.00)

PPV 0.75 (0.60–1.00)

NPV 0.99 (0.88–1.00)

Run-in year 2019 (2017–2020)

Z-value 2.45 (1.00–4.00)

Lag-time (weeks) 12 (9–13)

TABLE 4 Median and range of the most optimal sensitivity and PPV value

after calibration, separated by endemicity levels.

Variable Low
endemicity

Moderate
endemicity

High
endemicity

Median
(range)

Median
(range)

Median
(only value)

Sensitivity 0.92

(0.83–1.00)

1.00

(0.80–1.00)

0.92

Specificity 0.94

(0.72–1.00)

0.94

(0.84–0.98)

0.57

PPV 0.68

(0.60–1.00)

0.80

(0.75–0.85)

0.67

NPV 0.99

(0.93–1.00)

1.00

(0.98–1.00)

0.88

Run-in year 2019

(2018–2020)

2019

(2017–2020)

2019

Z-value 3.10

(1.25–4.00)

1.60

(1.00–3.55)

1.10

Lag-time (weeks) 11 (9–13) 13 (11–13) 10

continued high temperature or rainfall. However, a study by

Ong et al. testing machine learning algorithms for dengue

prediction found that meteorological variables had better predictor

capabilities than vector indices, possibly because the indices

measure immature mosquitoes, which cannot transmit disease

(21). In addition, oftentimes vector indices data is collected

inconsistently resulting in less predictive value; however, if collected

consistently, entomological data has been found to have powerful

predictive abilities (12). Dengue’s rapid spread to new areas has

caused a variety of predictive models to be developed to test a

broader set of predictors in unique combinations to see if more

optimal results can be obtained (see Supplementary Table 1) (22).

In addition, the EWARS-csd study supports the time-lag/lag non-

linear model, describing the time needed between ideal climatic

conditions and dengue outbreaks, with 12 weeks being the median

time with the best results (23).

4.2 Endemicity levels

Across all three levels of endemicity, the tool provided strong

predictor signals. While there was only one highly endemic

TABLE 5 Median and range of the most optimal sensitivity and PPV value

after calibration, separated by the Bolívar and Cesar provinces.

Variable Bolívar Cesar

Median (range) Median (range)

Sensitivity 1.00 (0.97–1.00) 0.92 (0.80–1.00)

Specificity 0.95 (0.88–1.00) 0.89 (0.57–0.98)

PPV 0.76 (0.75–1.00) 0.68 (0.60–1.00)

NPV 1.00 (0.99–1.00) 0.98 (0.88–1.00)

Run-in year 2019.5 (2017–2020) 2019 (2018–2020)

Z-value 2.68 (1.60–3.10) 1.25 (1.60–3.10)

Lag-time (weeks) 12 (10.5–13) 12 (9-13)

TABLE 6 Median and range of the most optimal sensitivity and PPV value

after calibration, separated by populations over and under 100,000

people per municipality.

Variable Population
<100,000

Population
>100,000

Median (range) Median (range)

Sensitivity 0.96 (0.80–1.00) 0.97 (0.92–1.00)

Specificity 0.94 (0.72–1.00) 0.84 (0.57–0.94)

PPV 0.75 (0.60–1.00) 0.77 (0.67–0.81)

NPV 0.997 (0.932–1.0) 0.99 (0.88–1.00)

Run-in year 2019 (2018–2020) 2019 (2017–2019)

Z-value 2.78 (1.00–4.00) 1.20 (1.10–2.90)

Lag-time (weeks) 13 (9-13) 11 (10–12)

municipality to analyze (a limitation of this study), this study

provided insights into how the tool works at different endemicity

levels. It also supported the assumption that the tool is independent

of endemicity levels. For example, the tool yielded the highest

validity in moderate municipalities, thoughmunicipalities with low

endemic levels also had the tool perform well. The high-endemic

municipality, municipality 468-Valledupar, also performed well,

but it had the lowest ROC scores across all four categories. For

example, there was a noticeable low specificity value of 0.57,

compared to the low and moderate municipalities having a value

around 0.90. The initial hypothesis was that the tool performs

better in highly endemic areas, due to more cases for run-in

years and more equipped municipalities for case reporting etc.

Furthermore, the vector control activities may be different in the

study municipalities.

One possible reason the tool may have performed more poorly

in the highly endemic municipality is because there may be

more routine vector control activity already here which would

have prevented the outbreaks from occurring. Retrospective data

was used, and it did not contain information on vector control

activities, which would be important information for future studies.

Some other possible reasons for this are that Valledupar is highly

populated as the capital of the Cesar municipality with over

450,000 residents. Dengue has been found to spread quicker

in more populated areas (24). However, when looking at other
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municipalities with high populations, it did not seem to have an

effect on the tool’s performance. It is also possible that municipality

468’s close location to the Venezuelan border and its ongoing

refugee crisis impacts the dengue burden in this region in ways the

tool cannot predict. Another factor could have been that the health

system was overwhelmed because of the high caseloads and may

have led to errors in case reporting as the low specificity indicates

that it did not predict non-outbreak windows as well.

The high endemic municipality also had a shorter lag time

of 10 weeks compared to the other municipalities, which would

mean that vector control responses would need to be faster.

Overall, all median values across the highly endemic municipality

were still over the 0.50 mark, indicating the tool still performed

well. Future studies should further examine how the tool works

in highly endemic municipalities by employing a larger sample

of municipalities and including other alarm indicators. Overall,

it is promising that the tool performance is independent across

endemicity levels, and it supports the idea that it can be used in

places of all different endemicity, being data driven.

4.3 Di�erences between states

The 11 municipalities used in this study came from two states:

Cesar and Bolívar. The two border each other and are part of the

greater Atlantic Coast region of Colombia (9). They also should

receive equal health funding from centralized, national resources.

Though geographically close to each other, the tool performed

differently between the two states. It performed better across all

four measurements in Bolívar compared to Cesar. There are a

variety of possible reasons why this may have occurred, and it is

possible it was outside of the tool’s predicting capabilities.

4.3.1 Migration e�ect
Cesar, which is directly on the border with Venezuela, had a

higher percentage of Venezuelan migrants per total population (4.3

vs. 3.8%) (25). The greater influx of migrants and refugees both

living and passing through Cesar compared to Bolívar could impact

Cesar’s poorer performance on the EWARS-csd tool. Venezuelan

migration has spread and increased arboviruses throughout Latin

America and this could increase dengue’s impact in Colombia (26).

In 2021, 77% of Venezuelans living in Colombia lacked access

to healthcare and many also suffered from food insecurity (25).

These make people more prone to suffering from dengue and could

increase themunicipality’s overall risk of dengue outbreaks. Human

mobility, such as migration, is an issue that might encourage the

development of a human mobility variable for EWARS-csd.

4.3.2 Socioeconomic status e�ect
The literature on poverty’s relation to dengue is mixed as

poor housing infrastructure and inadequate water storage both

could increase a community’s risk of an outbreak (27). However,

increased mobility, which may also affect those of higher SES

has also been associated with outbreaks (3). In 2021, Bolívar had

higher scores in human development index (0.74), health index

(0.82), educational index (0.69), and income index (0.72) (28).

Cesar comparatively had lower scores across all categories: human

development index (0.72), health index (0.79), educational index

(0.65), and income index (0.71) (28). When comparing the tool’s

performance between Bolívar and Cesar, Bolívar performed better

across all measurements. This could suggest that the tool performs

better in communities that have higher development levels as the

tool does not consider sociological factors, which could also drive

dengue outbreaks and response, and lead to the tool’s discrepancies.

While climate conditions are especially important for the tool

prediction, societal influences may also impact the probability

of dengue outbreaks by better informing the model of most-

disadvantaged hot-spots of disease transmission. This relation

should be evaluated further, and future research could explore if

socioeconomic status could be a predictive measure in the tool.

4.3.3 Population e�ect
The tool performed quite similarly for municipalities with

populations over 100,000 and below. The literature often supports

that mosquitoes have adapted well to urban environments (5).

Some have even considered dengue an urban disease (20). However,

studies still find that rural communities play an increasingly

important role in dengue transmission, and studies have found that

urban and rural transmission rates are similar (20). The results of

this study support that the tool plays similar roles for rural and

urban areas. However, when looking at the operationalization, the

lag time is shorter at 11 weeks for bigger populations compared to

smaller populations, which would mean that local vector control

teams would have less time to respond to outbreaks. This study

demonstrates that the tool works for both environments and that

the population of a municipality is less important to include in the

tool’s optimization.

4.4 Limitations

One of the major limitations of this study is that the

meteorological data collected from Colombia was not specific

to each municipality. While Colombia has installed many local

municipality meteorological stations to better analyze local

conditions and support the knowledge about local climate

conditions, there were administrative complications, which meant

that this data was not received. Instead, the data received was

homogeneous for each municipality in the same province. This

resulted in the tool predicting mainly from the overall province

seasonality, instead of being specific to the specific climatic

conditions of the municipality. In addition, the municipalities

examined within each department did not have selection criteria

based on representativeness, so this is important to note for

department-level analyses. Another limitation of the study is that

for Bolívar’s four municipalities evaluated, there was 0mm of

rainfall for each week in 2020. Although drought is a natural

phenomenon which reflects a real-life scenario in Colombia during

some years, the human behaviors associated with drought including

how people may store water, which create hotspots for mosquitoes,

may have impacted the evaluation by the model (7). For two of
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the four municipalities in Bolívar, 2020 as the cut-off year was

most optimal, which is interesting because it has only considered

temperature for the prospective data.

Another limitation of the study is that it did not consider

relative humidity due to technical issues. The success of the tool’s

optimization without this third indicator is very promising and

future studies are warranted to see if adding relative humidity

could increase optimization. Also, the true number of dengue

cases is unknown as many cases are not reported, so only weekly

hospitalized cases were used as an outbreak indicator, which could

also be underestimated due to the COVID-19 pandemic, which

overlaps with the study period. This is only a small proportion

of all cases, and it means less data was available to monitor

dengue levels.

5 Conclusion

With dengue spreading around the world and its burden being

felt in more communities, it is crucial that community control

services are equipped with the right resources and knowledge

to combat the disease. This study provides important validation

of the EWARS-csd tool and specifically how it predicts dengue

outbreaks in Colombia. The tool performed well across all 11

Colombian municipalities measured, across various endemicity

levels and population sizes. The tool did perform slightly better

in Bolívar municipalities compared to Cesar which could be due

to Cesar having lower human development indexes and/or having

higher migration rates from Venezuela. Colombia and the 16 other

countries currently implementing the EWARS-csd tool are working

to fully integrate the tool within their national surveillance program

to better focus their dengue efforts on the communities most

impacted. However, 128 countries are affected by dengue. This is

an unfinished regional, national, and global agenda, and this study

provides crucial assurance to these countries of the tool’s validity.

WHO has promoted EWARS-csd in predicting dengue outbreaks,

and this study should provide confidence on their decision and

allow them to continue expanding this tool to better prepare other

communities (29).
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