Economic loss estimation is critical for policymakers to craft policies that balance economic and health concerns during pandemic emergencies. However, this task is time-consuming and resource-intensive, posing challenges during emergencies.
To address this, we proposed using electricity consumption (EC) and nighttime lights (NTL) datasets to estimate the total, commercial, and industrial economic losses from COVID-19 lockdowns in the Philippines. Regression models were employed to establish the relationship of GDP with EC and NTL. Then, models using basic statistics and weather data were developed to estimate the counterfactual EC and NTL, from which counterfactual GDP was derived. The difference between the actual and the counterfactual GDP from 2020 to 2021 yielded economic loss.
This paper highlights three findings. First, the regression model results established that models based on EC (adj-
This method allowed monitoring of economic losses resulting from long-term and large-scale hazards such as the COVID-19 pandemic. These findings can serve as empirical evidence for advocating targeted strategies that balance public health and the economy during pandemic scenarios.