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Spatial distribution and
geographical heterogeneity
factors associated with
households’ enrollment level in
community-based health
insurance

Addisalem Workie Demsash*

Department of Health Informatics, Debre Berhan University, Asrat Woldeyes Health Science Campus,

Debre Birhan, Ethiopia

Background: Healthcare service utilization is unequal among di�erent

subpopulations in low-income countries. For healthcare access and utilization

of healthcare services with partial or full support, households are recommended

to be enrolled in a community-based health insurance system (CBHIS).

However, many households in low-income countries incur catastrophic health

expenditure. This study aimed to assess the spatial distribution and factors

associated with households’ enrollment level in CBHIS in Ethiopia.

Methods: A cross-sectional study design with two-stage sampling techniques

was used. The 2019 Ethiopian Mini Demographic and Health Survey (EMDHS)

data were used. STATA 15 software and Microsoft O�ce Excel were used

for data management. ArcMap 10.7 and SaTScan 9.5 software were used for

geographicallyweighted regression analysis andmapping the results. Amultilevel

fixed-e�ect regression was used to assess the association of variables. A variable

with a p < 0.05 was considered significant with a 95% confidence interval.

Results: Nearly three out of 10 (28.6%) households were enrolled in a CBHIS.

The spatial distribution of households’ enrollment in the health insurance system

was not random, and households in the Amhara and Tigray regions had good

enrollment in community-based health insurance. A total of 126 significant

clusters were detected, and households in the primary clusters were more likely

to be enrolled in CBHIS. Primary education (AOR: 1.21, 95% CI: 1.05, 1.31), age

of the head of the household >35 years (AOR: 2.47, 95% CI: 2.04, 3.02), poor

wealth status (AOR: 0.31, 95% CI: 0.21, 1.31), media exposure (AOR: 1.35, 95%

CI: 1.02, 2.27), and residing in Afar (AOR: 0.01, 95% CI: 0.003, 0.03), Gambela

(AOR: 0.03, 95% CI: 0.01, 0.08), Harari (AOR: 0.06, 95% CI: 0.02, 0.18), and

Dire Dawa (AOR: 0.02, 95% CI: 0.01, 0.06) regions were significant factors for

households’ enrollment in CBHIS. The secondary education status of household

heads, poor wealth status, andmedia exposure had stationary significant positive

and negative e�ects on the enrollment of households in CBHIS across the

geographical areas of the country.

Conclusion: The majority of households did not enroll in the CBHIS. E�ective

CBHIS frameworks and packages are required to improve the households’

enrollment level. Financial support and subsidizing the premiums are also critical

to enhancing households’ enrollment in CBHIS.
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Background

Many countries face significant challenges in financing

healthcare (1, 2). Health services are unavailable and unaffordable

for households of poor wealth status (3, 4), leading to unequal

access to healthcare across different subpopulations (5). The

demands of medical care expenditure and utilization are different

between inpatients and outpatients (6). Poor quality, financial

constraints, absence of pre-payment financial arrangements (7, 8),

and direct user-fee charges (9) were major factors for the low

utilization of healthcare services. Globally, 50% of the world’s

population cannot access needed health services, while 100 million

people are pushed into extreme poverty each year because of health

expenses (10). Every year, 150 million people suffer from financial

catastrophes (11). Thus, the access to and utilization of healthcare

services among households is low (12, 13).

In low- and middle-income countries, over 40% of total health

expenditure is done through out-of-pocket payments (OPP), which

has resulted in a scarcity of funds to be spent on health (14).

It has been reported that 5.5%, 15%, and 2.6% of households

in Mongolia (15), Burkina Faso (16), and Uganda (17) suffer

from catastrophic health expenditure, respectively. Up to 90%

of healthcare expenditure catastrophes occurred in low-income

countries (18, 19), and OPP accounts for 37% of the total spending

on healthcare (20).

Social health insurance (SHI) is a scheme that offers an

opportunity for healthcare finance by raising and pooling funds

(21) to provide affordable, cost-effective, and equitable healthcare

services (22–24). Community-based health insurance schemes

(CBHIS) are one of the mechanisms for raising funds for access to

healthcare services (25). A CBHIS is a type of insurance in which

households or household members register and pay a premium to

the health insurance system. The head of the households or one of

the members is registered in the proposed CBHIS regardless of the

amount paid for partial or full health insurance coverage (41). Thus,

the medical and surgical expenses would be covered by the health

insurance system, which allows the members of the household to

access health services without any financial hardship (10).

CBHIS has been advocated by the World Health Organization

(WHO) to achieve universal healthcare coverage and ensure access

to healthcare services (26). CBHIS is a primary agenda for health

reform in many countries for universal health coverage (27, 28),

and it guarantees individuals’ access to healthcare services (29,

30). Moreover, CBHIS is designed for the agricultural and other

informal sectors to enhance productivity and provide food security

Abbreviations: CBHIS, Community-Based Health Insurance Scheme; CI,

Confidence Interval; CSA, Central Statistical Agency; DHS, Demographic

and Health Survey; EAs, Enumeration Areas; EDHS, Ethiopian Demographic

and Health Survey; EMDHS, Ethiopia Mini Demography and Health Survey;

EPHC, Ethiopian Population and Housing Census; EPHI, Ethiopian Public

Health Institute; GTP, Growth and Transformation Plan; GWR, Geographically

Weighted Regression; RR, Relative Risk; LLR, Log-likelihood Ratio; OLS,

Ordinary Least Square; OPP, Out of Pocket Payment; SDG, Sustainable

Development Goals; SHI, Social Health Insurance; SNNPR, South Nations and

Nationality and Peoples of the region; STATA, Statistical software for data

science; WHO, World Health Organization.

(31). The enrollment process in health insurance schemes is

voluntary, and it is a complementary or alternative source of

healthcare finance (32). Sometimes, people may be forced to pay

CBHIS premium based on the principle of social solidarity (23).

Despite health insurance being focused on whole populations,

it is used more by older adult people due to low incomes and the

absence of social security (6). Hence, CBHIS has not reached the

level of universal coverage (5). Moreover, health service utilization

is different among people in different health insurance schemes (33)

and CBHIS is ineffective in many countries (34). For instance, 45%

of people are not covered by CBHIIS in China (35).

In Ethiopia, according to the 2016 Ethiopian Demographic and

Health Survey (EDHS), health insurance coverage is shallow (10);

more than 94% of households are not covered by health insurance

(36). Primary studies in Ethiopia show that only 12.8% of the

households are enrolled in CBHIS in Sidama (37) and 33.30% of

the households in south Omo (38), while 77.9% of the population

complied with CBHIS requirements in southeast Ethiopia (39).

Educational status of the household, monthly income, sex (25),

media exposure, age, occupation, wealth status, size of family

members (10), knowledge and attitudes toward CBHIS, and trust

in CBHIS management (37) are factors for the enrollment of

households in CBHIS.

A literature search shows that studies on the assessment

of household enrollment in CBHIS are scarce. The enrollment

of households in the cold areas (low) in CBHIS has not been

identified in Ethiopia. If geographical weighted regression analysis

is employed for insufficient empirical evidence, policymakers and

stakeholders cannot decide who gets benefits from the system

and who is left behind. Hence, the policymakers require potential

evidence as a source for future enhancement of CBHIS coverage

and to take proper action. Identifying geographical variations of

households’ enrollment in CBHIS is very important to prioritize

and design a framework and install packages in the CBHIS

programs in the specific target location. Therefore, this study

aimed to explore the spatial distribution and factors associated with

households’ enrollment level in CBHIS.

Methods

Study design and setting

A community-based cross-sectional study design was

conducted across the nine regions of Ethiopia. Ethiopia is located

in the Horn of Africa and bordered by Eritrea to the north, Djibouti

and Somalia to the east, Sudan and South Sudan to the west, and

Kenya to the south. Ethiopia comprises nine regional states with

two administrative cities (10).

Data source

The 2019 Ethiopian Mini Demographic and Health Survey

(EMDHS) dataset was used from the Measure Demographic and

Health Survey (DHS) program website (https://dhsprogram.com).

The survey was conducted by the Ethiopian Public Health Institute

(EPHI) in collaboration with the Central Statistical Agency (CSA).
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According to the EMDHS report, the survey was conducted from 21

March to 28 June 2019. Shapefiles were downloaded from https://

africaopendata.org.

Sampling techniques and study population

A two-stage stratified cluster sampling was used. Each region

was stratified into urban and rural areas. In the selected

enumeration areas, a household listing operation was done, and the

results were used as a sampling frame for household selection in

the second stage. Finally, a fixed number of households per cluster

were selected. Samples from enumeration areas were selected

independently in each stratum through implicit stratification and

equal proportional allocation. The details about the methodology

are found from the 2019 EMDHS reports (40).

Variables of the study

Individual and community-level independent
variables

Sociodemographic characteristics of households, such as wealth

status, and household-related variables such as age, sex, educational

status, and householdmedia exposures were considered individual-

level variables, whereas the place of residence and region were used

as community-level variables.

Dependent variable

Households’ enrollment level in the CBHIS is

dependent variable.

Operational definition

Households’ enrollment level in CBHIS : The households were

considered as enrolled in the CBHIS if they had registered for

partial or full health service cost waiver under the proposed CBHIS,

and these households were coded as “1”. Otherwise, households

that had not enrolled in CBHIS were coded as “0” (41).

Media exposure: If the households had either radio or television

or both, then we considered that they are exposed to media, and if

they did not have either of them, then we considered that they are

unexposed to media (42).

Data management and processing

The STATA version 15 software and Microsoft Office Excel

were used for data management. ArcMap version 10.7 software

was used for spatial autocorrelation detection and interpolations of

households’ enrollment levels in CBHIS in Ethiopia.

Global spatial autocorrelation: The global spatial

autocorrelation (Global Moran’s I) statistic measure was used

to assess whether the households’ enrollment level in CBHIS was

dispersed, clustered, or randomly distributed in Ethiopia (43).

Moran’s I values close to−1, close to+1, and zero (0), respectively,

indicate a dispersed, clustered pattern and random distribution

(44, 45) of households’ enrollment level in CBHIS. The Z-scores

and p-values were used to determine the hot and cold areas.

Spatial interpolation: Unsampled areas were predicted by the

spatial interpolation of the households’ enrollment level in CBHIS

based on sampled EAs. For the prediction of unsampled EAs, we

used the radial basis function interpolation technique.

Spatial scan statistics: SaTScan version 9.5 software was used for

local cluster detection (46). We employed purely spatial Bernoulli-

based model scan statistics to determine the geographical locations

of significant clusters with high rates of household enrollment

level in CBHIS (47). Those households that were enrolled in

CBHIS were treated as cases, and those that had not enrolled

were taken as controls to fit the Bernoulli model for the scanning

window that moves across the study area. The default size of

<50% of the population was used as an upper limit, allowing

both small and large clusters to be detected and ignoring clusters

that contained more than the maximum limit because of the

circular shape of the window. The log-likelihood ratio (LLR) was

used to determine whether the number of observed cases within

the potential cluster was significantly higher than expected. The

circle with the maximum LLR was defined as the most likely

cluster, and it was then compared with the overall distribution of

maximum values. The significant clusters were assigned p-values

and ranked based on their LLR value based on the 9999 Monte

Carlo replications (48).

Geographically weighted regression

Both the ordinary least squares (OLS) model and the

geographical weighted regression (GWR) model were considered

for model fitness comparison. The extracted predictor variables

were fitted into the two models. Adjusted R2 and Akaike’s

information criterion (AIC) were used to compare and

determine the best-fit model for local parameter estimation.

Variance inflation factors (VIF) were used for multicollinearity

checking by the same dependent and explanatory variables

in the OLS model. Variables with VIF values of > 0.7S were

considered redundant.

A GWR analysis model was used to determine the aggregate

effects of each explanatory variable for households’ enrollment

in the CBHIS. A GWR model was used for the estimation of

the local parameter to reflect changes that occur over space

in the spatial association between a dependent variable and

explanatory variables, as well as for relaxing the geographical

independence of explanatory variables (44, 49). Therefore,

the following GWR model linear assumption of mathematical

equations (model structure) was written. Wi = β (Xi, Yi) +

ZHα(Xi, Yi)Zi + i, where Wi is the response variable, (Xi, Yi)

are the geographical coordinates of point i, β is the intercept

at the (Xi, Yi) coordinate, α e coefficient of the covariate Z

at the (Xi, Yi) coordinate, and ǫi is the random error term.

Finally, the explanatory variables with a p < 0.05 were considered

as stationary significant factors for households’ enrollment level

in CBHIS.
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TABLE 1 Sociodemographic characteristics of households.

Variable Category Frequency
(n)

Percent
(%)

Place of residence Urban 11,019 27.1

Rural 29,640 72.9

Region Tigray 2,521 6.2

Afar 407 1.0

Amhara 8,294 20.4

Oromia 16,467 40.5

Somali 2,480 6.1

Benishangul

Gumuz

447 1.1

SNNPR 8,172 20.1

Gambela 163 0.4

Harari 122 0.3

Addis Ababa 1,342 3.3

Dire Dawa 244 0.6

Educational status of

household heads

No education 19,069 46.9

Primary 17,117 42.1

Secondary 3,090 7.6

Higher 1,382 3.4

Age of household

head

15–24 1,651 4.06

25–34 8,010 19.7

>=35 30,982 76.2

Sex of household head Male 33,462 82.3

Femen 7,197 17.7

Households’ wealth

status

Poor 16,142 39.7

Middle 8,132 20.0

Rich 16,386 40.3

Household has radio No 29,274 72.0

Yes 11,385 28.0

Households have Tv No 34,235 84.2

Yes 6,424 15.8

Multilevel fixed-e�ect logistic regression
analysis

Since the nature of the EMDHS dataset was hierarchical, the

records within the cluster might be correlated, which disturbs

the assumption of independence. A biased statistical report might

be generated by fitting a model with correlated data. Therefore,

multilevel mixed-effect logistic regression analysis was assumed to

be have been used to generate and report good results. To assess

the correlation between the clusters, four models have been set:

model A (a null model that assesses the households’ enrollment

level in CBHIS within the cluster); model B (contains individual-

level variables); model C (contains community-level variables); and

model D (the aggregate model of models B and C). The intraclass

correlation coefficient (ICC) was calculated to check the correlation

within the cluster. If the ICC value is >0.25, the data are fitted for

a multilevel fixed-effect logistic regression model (50, 51). An LLR

was used for model comparison, and the model with the highest

value was taken as the best-fit model to solve the correlation within

the cluster (52). In the multilevel fixed-effect logistic regression

analysis, a p < 0.05 and 95% CIs were used to assess the strength

of the association between independent and outcome variables.

Results

Sociodemographic characteristics of the
study

A total of 40,659 weighted sampled households were used

in this study. Four out of 10 (40.5%) and one-fifth (20.1%) of

the households were from the Oromia region and South Nation

Nationality and People of the Region (SNNPR), respectively. The

majority (72.9%) of the households were from rural areas of

the country. Of the sample, 46.9% of household heads were not

educated, and only four out of 10 (42.1%) of the household

heads had completed primary education. Four out of 10 (40.3%)

households were in the rich wealth index status. The majority

(76.2%) of household heads were more than 34 years of age, and

82.3% of household heads were men. More than seven out of 10

(70%) of households had no television (TV) or radio (Table 1).

Spatial distribution of health insurance
coverage in Ethiopia

As stated in Figure 1, 28.6% (95% CI: 28.16–29.04%) of the

households in Ethiopia had good levels of enrollment in CBHIS.

The spatial distribution of households’ enrollment level in CBHIS

was not random in Ethiopia (Global Moran’s I = 0.256697,

p < 0.00001). The spatial autocorrelation report indicated that

the spatial distribution of households’ enrollment in CBHIS was

significantly clustered across the regions of Ethiopia (Figure 2).

A good level of households’ enrollment in CBHIS was observed

in the regional states of Ethiopia such as Amhara, Tigray, SNNPR,

and Oromia, whereas households’ enrollment levels in CBHIS in

the Benishangul Gumuz, Harari, Afar, and Dire Dawa regions were

low (Figures 3, 4).

Interpolation of households’ enrollment
level in CBHIS

The radial basis function interpolation method was employed

to predict the households’ enrollment level in CBHIS. The

interpolation result indicated that the risk of households’

enrollment in CBHIS was less likely to occur in the Amhara, Tigray,

SNNPR, and Oromia regions, whereas high risk of households’

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1305458
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Demsash 10.3389/fpubh.2024.1305458

FIGURE 1

Households’ enrollment level in CBHIS.

enrollment in CBHIS was more likely observed in Benishangul

Gumuz, Gambela, Somalia, Afar, Harari, and Dire Dawa regions

(Figure 5).

Spatial SaTScan analysis

A total of 126 significant clusters for households’ enrollment

levels in CBHIS were detected. Of these, 65, 15, and 19 clusters

were primary, secondary, and tertiary clusters, respectively. The

primary clusters were located at 12.322718N, 37.959425 E within a

265.25 km radius in the north and northwest parts of Ethiopia. The

secondary clusters were located at 11.072967N, 38.884163 E within

a 135.21 km radius in the southern part of the Amhara regional

state of the country. Households in the primary, secondary, and

tertiary clusters were 3.58, 4.24, and 2.80 times more likely to have

good levels of enrollment in CBHIS than households outside the

clusters (Table 2, Figure 6).

Individual and community-level factors for
household’s enrollment level in CBHIS

As stated above, ICC and LLR were used for multilevel fixed-

effect analysis. A comparison revealed that 68.7% of the ICC values

in Model D confirmed that there was a significant correlation

among respondents within the cluster on households’ enrollment

level in CBHIS. Additionally, model D was the best-fit model as

its LLR score was higher (−12941.701) than other models shown

in Table 3. Therefore, a multilevel fixed-effect logistic regression

analysis model was employed to determine the correlations within

the cluster among respondents based on their enrollment in

CBHIS. In the multilevel fixed-effect logistic regression analysis,

educational status, age of the household head, wealth status, media

exposure, and regions were statistically associated with households’

enrollment in CBHIS.

Household heads older than 35 years were 2.5 (AOR: 2.47, 95%

CI: 1.04, 3.02) times more likely to be enrolled in CBHIS than

household heads younger than 35 years. Households that hadmedia

exposure were 1.4 (AOR: 1.35, 95% CI: 1.02, 2.27) times more likely

to be enrolled in CBHIS than their counterparts. Household heads

with secondary education were 1.3 (AOR: 1.25, 95% CI: 1.89, 2.44)

times more likely to enroll in CBHIS than household heads with

no education. Households under the poor wealth index were 69%

(AOR: 0.31, 95% CI: 0.21, 0.81) less likely to enroll in CBHIS than

rich households. Households in Afar, Gambela, Harari, and Dire

Dawa regions were 99% (AOR: 0.01, 95% CI: 0.003, 0.03), 97%

(AOR: 0.03, 95% CI: 0.01, 0.08), 94% (AOR: 0.06, 95% CI: 0.02,

0.18), and 98% (AOR: 0.02, 95% CI: 0.01, 0.06), respectively, less

likely to enroll in CBHIS (Table 3).

Ordinary least squares and GWR model’s
comparison

As shown in Table 4, the GWR model was the best-fit model

as compared with the OLS model, with a low AIC (3053.37)

as compared with the AIC value of 3162.63 in the OLS model.

Additionally, the GWR model was best explained by the predictor

variables with an adjusted R2 value of 66.72% as compared with

the adjusted R2 value of 37.44% in the OLS model. The variables

that had multicollinearity (redundancy) in the GWR model were

removed from the GWRmodel (Supplementary material).

Geographical heterogeneity factors
associated with households’ enrollment
level in the community-based health
insurance scheme

In the geographically weighted regression model, explanatory

variables such as secondary education status, poor wealth status,

and household media exposure were statistically associated with

households’ enrollment in CBHIS. The significant explanatory

variables have a positive and negative effect on the households’

enrollment level in CBHIS across the region of Ethiopia. In

addition, the strength of the association between heterogeneity

predictors and outcome of interest varies geographically.

As shown in Figure 7, the secondary education status of

household heads exhibited different levels of statistical significance

in different parts of the country for the enrollment of households in

CBHIS. The coefficients of secondary education vary geographically

between −0.347 and 0.193 significantly. Keeping all the other

predictors constant, the enrollment level of households in CBHIS

significantly increased from 34.7% (−0.347) to 80.4% (0.196),

with an increase in the number of household heads with

secondary education.

As shown in Figure 8, the poor wealth status of the households

exhibited different levels statistical significance in different parts

of the country for the enrollment of households in CBHIS. The

coefficients of poor wealth status in households vary geographically
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FIGURE 2

Spatial autocorrelation report of households’ enrollment level in CBHIS.

FIGURE 3

Households’ enrollment level in CBHIS stratified by region.

between 0.056 and 0.452. Keeping all the predictors constant, the

households’ enrollment level in CBHIS significantly decreased from

45.2% (0.452) to 5.6% (0.056) as their wealth status decreased by

one unit.

As shown in Figure 9, the households’ media exposure

had different statistical significance effects in different parts of

the country for the households’ enrollment in CBHIS. The

coefficients of households’ media exposure vary geographically and

significantly between 0.033 and−0.354. This finding indicated that

the media exposure had significant negative and positive effects on

households’ enrollment level in CBIHS. Keeping all the predictors

as constant, as households become more exposed to media, the

risk of enrollment level of households in CBHIS decreased from

3.3% (0.033) to 35.4% (−0.354). Except for the vertical intercept of

Tigray, Amhara, Oromia, and SNNPR regions, media exposure was

not a geographically significant factor in other parts of the country.

Discussion

In this study, 28.6% of households had a good level of

enrollment in CBHIS in Ethiopia. The finding was in line with
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FIGURE 4

Hot spot analysis for households’ enrollment levels in CBHIS in Ethiopia.

FIGURE 5

Interpolation of households’ enrollment levels in CBHIS in Ethiopia.

studies conducted in Nigeria (15.5%) (53), Kenya, where 93%

of women have no access to any type of health insurance (54),

and Ethiopia (12.8%) (37). However, the evidence indicated

lower level of enrollment than the studies conducted in Ethiopia

(45%) (55) and Uganda (44%) (56). This difference might

be due to household members’ compliance with the CBHIS

requirements (39), household members’ unwillingness to renew

their membership (57), and households’ inadequate perception

of CBHIS (58). In addition, poor government financial support,

the high dropout rate from CBHIS (59), lack of clear legislative

and regulatory frameworks (54), and an unrealistic enrollment

requirement (60) might be possible reasons for the low household

enrollment level in CBHIS.

The spatial distribution of households’ enrollment level in

CBHIS was not random, and the jeopardy of households’

enrollment in CBHIS was less likely to occur in Amhara,

Tigray, SNNPR, and Oromia regions, whereas high jeopardy of

households’ enrollment level in CBHIS was more likely observed

in Benishangul Gumuz, Gambela, Somalia, Afar, Harari, and

Dire Dawa regions. Households in the primary, secondary, and

tertiary clusters were more likely to be enrolled in CBHIS

than households outside of these clusters. This evidence was

strongly supported by a similar spatial study done in Ethiopia

(10). This disparity might be due to the difference in access

to tertiary-level care and premium payment methods across

regions (61).
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TABLE 2 Significant spatial scan statistics clusters for households’ enrollment levels in CBHIS, 2019 EMDHS dataset.

Types of
clusters

Detected cluster Coordinate/ Radius Population Case RR LLR P-value

Primary 83, 82, 57, 84, 56, 78, 58, 59,

54, 81, 74, 61, 60, 62, 75, 53, 9,

22, 18, 70, 76, 23, 65, 20, 71, 7,

13, 2, 8, 14, 21, 72, 55, 24, 85,

1, 5, 51, 79, 63, 12, 19, 52, 11,

165, 80, 46, 29, 17, 44, 6, 25,

73, 162, 77, 66, 36, 3, 64, 45,

16, 10, 163, 4, 67

(12.32271N, 37.959425)/

265.25 km

8094 1700 3.58 2156.4 <0.001

Secondary 65, 51, 63, 60, 66, 61, 58, 67,

71, 64, 62, 70, 73, 76, 68

(11.07296N, 38.884163)/

135.21 km

1773 1381 4.24 1393.2 <0.001

Tertiary 2, 14, 11, 13, 17, 12, 23, 5, 7,

16, 3, 25, 10, 1, 36, 20, 9, 24, 15

(13.64134N, 38.981085)/

106.17 km

2403 1276 2.80 644.5 <0.001

Fourth 77, 80, 79 (10.5112 5N, 36.855595)/

36.15 km

336 278 4.04 296.2 <0.001

Fifth 85, 55, 21, 84, 4, 56, 22, 82, 74,

75

(12.98563N, 36.239465)/

188.33 km

1284 655 2.55 292.3 <0.001

Sixth 116, 203 (7.531183N, 38.662596)/

34.42 km

352 260 3.60 227.8 <0.001

Seventh 173, 196, 192, 198, 199, 204,

191, 197, 190, 189

(6.272978N, 36.862733)/

124.08 km

1481 654 2.20 208.4 <0.001

Eight 103, 104 (7.648661N, 39.688764)/

61.78 km

345 214 3.00 137.3 <0.001

FIGURE 6

SaTScan analysis of households’ enrollment levels in CBHIS in Ethiopia.

In the multilevel fixed-effect logistic regression analysis,

secondary education status, age of the household head ≥ 35

years, poor wealth status, media exposure, and regions were

significantly associated with households’ enrollment level in

CBHIS. Additionally, geographical heterogeneity factors were

assessed according to the GWR analysis report. Thus, predictors

such as secondary education status, poor wealth status, and

media exposure had significant positive and negative effects on

households’ enrollment in CBHIS across various geographical

areas. The strength of the association between the predictors

and outcome of interest was locally independent and varied

geographically across the regions of Ethiopia.

The secondary education status contributed to 30% of

households’ enrollment level in CBHIS. Additionally, the secondary

education level status of the household head had the impact

of decreasing the jeopardy of households’ enrollment level in
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TABLE 3 Multilevel fixed-e�ect logistic regression analysis of factors associated with households’ enrollment in CBHIS in Ethiopia.

Variables Model A Model B Model C Model D

AOR (95% CI) AOR (95% CI) AOR (95% CI)

Education status Primary 1.23 (0.05, 1.31) 1.21 (0.04, 1.31)

Secondary 1.26 (1.89, 2.46)a 1.25 (1.89, 2.44)b

Higher 0.89 (0.35, 1.85) 0.88 (0.34, 1.84)

No formal education 1 1

Age of the household head 25–34 years 1.90 (0.54, 2.33) - 1.90 (0.53, 2.32)

≥35 years 2.48 (1.04, 3.03)a - 2.47 (1.04, 3.02)b

15–24 years 1 - 1

Wealth status Poor 0.32 (0.12, 1.82)a - 0.31 (0.12, 0.81)b

Middle 0.13 (0.18, 1.97) - 0.42 (0.17, 1.85)

Rich 1 1

Household head sex Female 0.91 (0.83, 0.99)a - 0.92 (0.84, 1.002)

Male 1 1

Media exposure Yes 1.36 (1.02, 2.28)a - 1.35 (1.02, 2.27)a

No 1 1

Region Afar - 0.01 (0.003, 0.02)a 0.01 (0.003, 0.03)b

Amhara - 1.5 (0.60, 3.89) 1.55 (0.60, 3.97)

Oromia - 0.14 (0.06, 1.37) 0.14 (0.05, 1.36)

Somali - 0.6 (0.02, 1.12) 0.5 (0.02, 1.11)

Benishangul - 0.3 (0.1, 1.09) 0.3 (0.1, 1.08)

SNNPR - 0.12 (0.05, 1.32) 0.12 (0.05, 1.30)

Gambela - 0.03 (0.01, 0.07)a 0.03 (0.01, 0.08)b

Harari - 0.06 (0.02, 0.19)a 0.06 (0.02, 0.18)b

Addis Ababa - 0.06 (0.02, 0.19)a 0.58 (0.02, 0.18)

Dire Dawa - 0.02 (0.01, 0.06)a 0.02 (0.01, 0.06)b

Tigray 1 1

Residency Rural - - 1.11 (0.63, 1.95) 1.42 (0.80, 2.51)

Urban 1 1

AIC - 26077.19 26178.36 25927.4

LLR - −13027.594 −26178.36 −12941.701

ICC 0.687 0.681 0.503 0.502

Variance 0.77 0.75 0.37 0.36

aSignificant at model B and C. bSignificant at model D.

TABLE 4 Model comparison between OLS and GWRmodel with AIC and

adjusted R2.

Values OLS model GWR model

AIC 3162.63 3053.37

Adjusted R2 37.44% 66.72%

CBHIS by 45.7%. Additionally, the enrollment level of households

in CBHIS significantly increased from 34.7% to 80.4% as the

household head’s secondary education status increased. This

finding indicated that the secondary education of household heads

had both negative and positive impacts on the enrollment level of

households in CBHIS across the regions of Ethiopia. Moreover,

secondary educational status of the household heads was not a

geographically significant factor in most parts of Somali, Gambela,

SNNPR, Tigray, and southwest parts of Oromia regions. The

evidence was in line with studies conducted in Ethiopia (37, 62),

Senegal (63), and Asia (64). This evidence might be due to the

fact that educated people understand the principles and benefits of

CBHIS easily (65) and have more knowledge about the advantages

of health insurance. In addition, educated households might be
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FIGURE 7

Geographically weighted regression model of households’ enrollment level in CBHIS with secondary education status.

FIGURE 8

Geographically weighted regression model of households’ enrollment level in CBHIS with poor wealth status.

FIGURE 9

Geographically weighted regression model of households’ enrollment level in CBHIS with households’ media exposure.
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more concerned about their health and insure themselves against

unexpected out-of-pocket payments (10).

Having poor wealth status reduces the households’ level of

enrollment in CBHIS by 69%. Furthermore, the households’

enrollment level in CBHIS significantly decreased from 45.2% to

5.6% as their wealth status decreased by one unit. This finding

indicates that the poor wealth status of households had different

levels of statistical significance in different parts of the country for

the enrollment of households in CBHIS. Inmost parts of the Somali

region, poor wealth status was not geographically significantly

associated with household enrollment in CBHIS. This finding was

in line with studies conducted in Ethiopia (10, 62), Burkina Faso

(66), and Ghana (67). This similarity might be because the payment

of premium may not be affordable for poor households (68),

and high premiums might deter poor households from renewing

their membership (69). Moreover, financial constraints and lack of

money might be major constraints for households’ enrollment in

CBHIS (14) in addition to the absence of subsidies in place to cover

the premiums (70).

Households exposed to media were 1.4 times more likely to

be enrolled in CBHIS. Furthermore, as households become more

exposed to media, the risk of enrollment level of households

in CBHIS decreased from 3.3% (0.033) to 35.4% (−0.354). This

indicated that media exposure had significant negative and positive

effects on the enrollment level of households in CBIHS across

various geographical areas. The household’s media exposure had

a significant geographical impact on households’ enrollment levels

in CBHIS and varied geographically. As households had more

media exposure, the households’ enrollment level in CBHIS

increased by 9.6%. This finding was supported by studies done

in Ethiopia (10, 71), Nigeria (72), Uganda (56), and Kenya (54).

Since household media exposure has a direct implication for

households’ access to information about CBHIS, those households

that access information about CBHIS directly correlate with good

awareness of CBHIS enrollment (57). This correlation might be

due to themedia creating awareness among communities regarding

the principles and implementation of CBHIS (73). Households

with good awareness of CBHIS might make informed choices and

engage themselves in different knowledge enhancement activities

through reading materials (10); individuals with better information

may ask for details of the services and get a better understanding

of the advantages of CBHIS that drive them to be enrolled

(62). Moreover, the health insurance advertisements by health

extension workers during their health facility visits also contribute

to information about CBHIS (73).

Household heads aged older than 35 years were 2.5 times more

likely to be enrolled in CBHIS than household heads who are

between 15 and 24 years of age. This evidence was supported by

various studies (39, 74, 75). This difference in enrollment might

be because older people might be less compliant with CBHIS

requirements (39), and they might be less likely to pay membership

premiums for shared health insurance than younger people (53).

Households in Afar, Gambela, Harari, and Dire Dawa regions

were, respectively, 99%, 97%, 94%, and 98% less likely to be enrolled

in CBHIS. This finding was supported by a study that stated that

geographical location is a factor in inequality in access to CBHIS

(76). Household members in these regions might be less willing

to enroll in the CBHIS (77), and health insurance workers and the

government in those regions might be less perceived as consistent

with insurance activity. Additionally, household members in these

regions might have access to other subsidy packages (61).

Conclusion

Households’ enrollment level in the CBHIS is inadequate.

Households in Benishangul Gumuz, Gambela, Somalia, Afar,

Harari, and Dire Dawa had a high jeopardy of enrollment in

CBHIS. Educational status, age of the household heads, wealth

status, media exposure, and regions were statistically significant

factors for households’ enrollment in CBHIS. The secondary

education status of household heads, poor wealth status, and media

exposure had positive and negative geographical effects on the

households’ enrollment in CBHIS.

Recommendation and future research
direction

Priority attention needs to be paid to the enrollment of

households in cold areas in CBHIS. Enhancing the educational

status of household members, providing financial support, and

premium subsidies would enhance households’ enrollment

levels in CBHIS. It is recommended that health policymakers

and implementers propose good CBHIS implementation

frameworks and packages. Quantitative and qualitative

research is needed considering contextual, technological,

behavioral, and structural factors of households’ enrollment level

in CBHIS.

Limitations and strengths of the study

A cross-sectional study may have a temporal relationship

between the outcome and independent variables. The data

for EMDHS were gathered based on the respondents’ recall

ability, which might be subjected to recall bias. Moreover,

important variables that can significantly determine the

households’ enrollment level in CBHIS may not be included

as limited variables are found in the 2019 EMDHS data

sets. Despite these limitations, the data for the study were

collected across the country, and the results can be nationally

representative. Furthermore, multilevel analysis was employed,

which is more appropriate for cluster data to solve data

dependency. The geographically weighted regression analysis

was performed. The findings and various data analysis

techniques used in this study could be used as inputs in

future research.
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