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Background: Physical frailty is an important issue in aging societies. Three 
models of physical frailty assessment, the 5-Item fatigue, resistance, ambulation, 
illness and loss of weight (FRAIL); Cardiovascular Health Study (CHS); and Study 
of Osteoporotic Fractures (SOF) indices, have been regularly used in clinical and 
research studies. However, no previous studies have investigated the predictive 
ability of machine learning (ML) for physical frailty assessment. The aim was 
to use two ML algorithms, random forest (RF) and extreme gradient boosting 
(XGBoost), to predict these three physical frailty assessment models.

Materials and methods: Questionnaires regarding demographic characteristics, 
lifestyle habits, living environment, and physical frailty assessment were 
answered by 445 participants aged 60  years and above. The RF and XGBoost 
algorithms were used to assess their scores for the three physical frailty indices. 
Furthermore, feature importance and Shapley additive explanations (SHAP) 
were used to determine the important physical frailty factors.

Results: The XGBoost algorithm obtained higher accuracy for predicting the 
three physical frailty indices; the areas under the curve obtained by the XGBoost 
algorithm for the 5-Item FRAIL, CHS, and SOF indices were 0.84. 0.79, and 
0.69, respectively. The feature importance and SHAP of the XGBoost algorithm 
revealed that systolic blood pressure, diastolic blood pressure, age, and body 
mass index play important roles in all three physical frailty models.

Conclusion: The XGBoost algorithm has a more accurate predictive rate than 
RF across all three physical frailty assessments. Thus, ML can be a useful tool for 
the early detection of physical frailty.
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Introduction

Physical frailty has become an important issue in the geriatric 
population of super-aging societies. It is a condition wherein 
susceptibility to stressors increases, especially in the older adults 
population, (1) resulting in undesirable health consequences, such as 
falling, stroke, disability, hospitalization, institutionalization, and 
death (2–5). The prevalence of physical frailty ranges from 3.9–51.4%, 
(6–8) influenced by different nationalities, socioeconomic conditions, 
and, most importantly, the assessment tool. Currently, there is no 
gold-standard diagnostic tool for assessing physical frailty. Several 
assessments have been established, including Fried’s phenotype model 
(9) and the physical frailty index in Rockwood’s cumulative deficit 
model (10). These assessments help identify persons with physical 
frailty who are at high risk of adverse consequences and provide an 
opportunity to counteract the evolution of adverse sequelae (11).

Machine learning (ML), a subset of artificial intelligence (AI), is a 
method of self-learning to provide solutions (12, 13). According to 
scholars such as Arthur Samuel, ML provides computers with the 
ability to learn without explicit programming. Therefore, ML can 
be classified as a computer science (14). Nevertheless, ML algorithms 
can be classified as “supervised” or “non-supervised” (15). Supervised 
ML involves training the model on predictions of relationships 
between features and outputs from data, whereas non-supervised ML 
involves searching for relevant structures within a dataset (15). The 
advantage of supervised ML is that it can achieve a high classification 
rate using a large amount of labeled data (16). Random forest (RF), 
initially published by Breiman, is a non-parametric learning algorithm 
wherein classification results are determined through voting on 
multiple decision trees (17). It has the advantage of reducing outliers 
and is less susceptible to overfitting, resulting in higher classification 
accuracy in many applications (18). RF is widely used in mass 
spectrometry, soil mapping, eye-state estimation, and remote sensing 
imaging (19). The extreme gradient boosting (XGBoost) algorithm, 
proposed by Chen, (20) randomly selects subsets to iteratively fit a 
single predictor and obtain a minimized loss function, and introduces 
a stochastic gradient boosting procedure. Through regularization, 
Boost can reduce the risk of overfitting and improve generalisability 
(21). It has been applied to detect abnormal satellite engineering 
parameters, personal credit risk assessment, and urban water 
resources (22).

However, there are a limited number of studies on using ML for 
predicting health conditions of the older adults, and there are no 
studies on predicting their physical frailty status. We aimed to employ 
two supervised ML methods, RF and XGBoost, to explore three 
physical frailty assessment indices and construct prediction models. 

The physical frailty assessment indices were the 5-Item fatigue, 
resistance, ambulation, illness, and loss of weight (FRAIL) scale; 
Cardiovascular Health Study (CHS) index; and Study of Osteoporotic 
Fractures (SOF) index.

Materials and methods

Participants

The participants were included after obtaining informed consent 
and approval from the Institutional Review Board. We  randomly 
selected community residents from three urban districts in Kaohsiung 
City, and randomly selected participants according to the proportion 
of the population over 60 years old. Participants were included to this 
study after informed consent. The inclusion criteria were: (1) aged 
60 years and above, (2) ability to respond to a questionnaire, and (3) 
allowing for a physical assessment. The exclusion criteria were: (1) 
suffering from a mental disability or psychological disease, (2) 
unwillingness to provide informed consent and inability to cooperate 
with the study, and (3) acute hospitalization within the 3 months prior 
to the study. From April–October 2022, 445 participants were 
recruited for the study. This study was approved by the Kaohsiung 
Medical University Hospital Institutional Review Board [IRB number: 
KMUHIRB-E(I)-20220048].

Measurements and questionnaire

All the participants were assessed through one-to-one interviews. 
After they completed the questionnaire and physical frailty assessment, 
we obtained their demographic characteristics, including sex, age, 
living environment, education level, and smoking and drinking habits. 
Elementary school education or no education was considered “low 
education.” The participants’ past histories were documented using 
their medical records obtained from their National Health Insurance 
cards. Physical examinations of height, weight, and blood pressure 
were also performed. The assessment indices for physical frailty 
included the (1) 5-Item FRAIL, (23) (2) CHS (Fried’s Frailty 
Phenotype), (24) and (3) SOF (25). Two researchers independently 
entered the data and confirmed their accuracy.

Three tools for physical frailty assessment

The Geriatric Advisory Panel developed the 5-Item FRAIL scale, 
which comprises five items: (1) exhaustion, (2) weakness, (3) slowness 
while walking, (4) low activity, and (5) weight loss. Two items—fatigue 
and weight loss—were considered biological factors; another two—
resistance and ambulation—were considered functional factors; and 
the last item was considered to involve deficit accumulation because 
of illness. The 5-Item FRAIL scale categorizes participants’ health 

Abbreviations: 5-Item FRAIL, 5-Item fatigue, resistance, ambulation, illness and 

loss of weight; CHS, Cardiovascular Health Study; SOF, Study of Osteoporotic 

Fractures; RF, Random Forest; XGBoost, extreme gradient boosting; SHAP, Shapley 

additive explanations.
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statuses based on their scores as physical frail (3–5), physical pre-frail 
(1–2), and physical non-frail (0) (23).

The CHS index, a biological model of physical frailty, comprises 
five components: (1) unintentional weight loss, (2) feeling of 
exhaustion, (3) decreased physical activity, (4) slow walking speed, 
and (5) weakness, which are also used to classify health statuses based 
on scores as physical frail (3–5), physical pre-frail (1–2), and physical 
non-frail (0) (9, 24).

The SOF index comprises two factors with three components: (1) 
inability to complete five chair rises or suffering from weight loss, 
representing biological factors, and (2) reduced energy levels, 
representing a functional factor, which are also used to classify health 
statuses based on scores as physical frail (2–3), physical pre-frail (1), 
and physical non-frail (0) (25).

Machine learning

The RF algorithm, developed by Breiman in 2001, (17) is an 
ensemble learning bagging algorithm (26). RF involves random 
sampling of the original training dataset, creating a new classifier for 
each sample, (27) and voting on the results generated by each 
classifier. The result is determined by voting on the results generated 
by each classifier, and the category with the largest number of votes 
constitutes the final result (28). RF requires minimal pruning and 
has no overfitting risk. Furthermore, it has high tolerance for outliers 
and noise, high adaptability to new samples, and good stability. 
Therefore, RF is suitable for parallel computing, even for high-
dimensional data, with faster training speed and higher computing 
performance (29). The RF decision tree is built by selecting a feature 
at the root node and partitioning the training dataset into subsets of 
values of the selected feature (30). The information gain (IG) for 
partitioning training data y into subsets (yi) is calculated as follows 
Equation (1):
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The XGBoost algorithm, developed by Chen, (20) can be applied 
to handle regression and classification problems (31). It originated 
from the gradient boosting decision tree algorithm, which was 
modified to improve its generalisability and convergence rate (32). 
Boosting is an ensemble learning algorithm that converts weak 
classifier iterative learning into a strong classifier algorithm (32). It 
produces a new decision tree at each iteration based on the residuals 
of the previous one (33). XGBoost enhances the regularization of the 
loss function as a whole to create an objective function and improve 
the performance of the algorithm, (34) which is described in 
Equation (3).

 J L Rθ θ θ( ) = ( ) + ( ) (3)

where θ is the parameter for data training, L is the loss function, 
and R is the regularization. Because the decision tree is the base 
model, the output of model yi



 is an ensemble of k  decision trees and 
is computed as follows Equation (4):
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where χi  is the ith sample in the training set and F  is the decision 
tree value.

Loss function L is calculated as follows Equation (5):
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where T  is the number of trees in the leaf and w is the leaf weight 
in Equation (6).

Evaluation metrics

To evaluate the performances of the RF and XGBoost algorithms for 
classifying the participant assessments on the 5-Item FRAIL, CHS, and SOF 
indices into robust, pre-frail, and frail, we employed the common evaluation 
indicators for ML classification: Accuracy (Equation 7), Precision 
(Equation 8), Recall (Equation 9), and F1 score (Equation 10): (35).
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Shapley additive explanations (SHAP)

SHAP, proposed by Lundberg and Lee in 2017, (36) is a framework 
for a unified interpretation of different ML prediction models (37). It 
is a Shapley value based on game theory (38) that explains the impact 
of each feature on an ML prediction (39). It is useful for both single- 
and full-feature interpretability; therefore, it can be used for the entire 
dataset to explain the influence of each feature on the prediction (39).
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Statistics

Descriptive statistics were used to analyse the mean and dispersion 
of continuous variables, including age and physical frailty scores. 
Numbers and proportions were used to evaluate categorical variables 
such as sex, smoking, and alcohol consumption. Furthermore, the 
participants were divided into groups according to their physical 
frailty status. The scores for the 5-Item FRAIL, CHS, and SOF indices 
were classified into physical non-frail, physical pre-frail, and physical 
frail groups. Statistical analyses were performed using IBM SPSS 
version 20 and Python (version 3.8.8).

Results

Demographic characteristics

In total, 445 participants satisfied the inclusion criteria. They were 
classified into physical non-frail, physical pre-frail, and physical frail 
groups according to their scores on the three indices and their 
demographic characteristics were determined, as listed in Table 1. 
According to the 5-Item FRAIL scale, 196 (44.04%), 184 (41.35%), and 
65 (14.61%) participants were classified into physical non-frail, 
physical pre-frail, and physical frail groups, respectively. According to 
the CHS index, 144 (32.36%), 145 (32.58%), and 156 (35.06%) 
participants were classified into physical non-frail, physical pre-frail, 
and physical frail groups, respectively. According to the SOF index, 
230 (51.69%), 152 (34.16%), and 63 (14.15%) participants were 
classified into physical non-frail, physical pre-frail, and physical frail 
groups, respectively. The average age of the participants was 
68.75 years, and their average body mass index (BMI) was 25.39. They 
comprised 163 men (36.63%) and 282 women (63.37%). Moreover, 
38.20% (170) had low levels of education (elementary school only or 
no education), 9.66% (40) lived alone, 4.49% (19) were smokers, and 
10.11% (41) consumed alcohol.

ML algorithms: RF and XGBoost

The XGBoost and RF predictions were compared based on 
accuracy, recall, precision, and F1 score. Compared with RF, XGBoost 
predicted the 5-Item FRAIL scale, CHS index, and SOF index with 
higher accuracy (Table 2). The receiver operating characteristic (ROC) 
curve was used to estimate model performance, with the ordinate and 
abscissa representing the frequencies of true and false positives, 
respectively. For the 5-Item FRAIL scale, the area under the ROC 
curve (AUC) of the RF algorithm was 0.78, and that of the XGBoost 
algorithm was 0.84, as shown in Figure 1A. For the CHS index, AUC 
of RF was 0.76, and that of the XGBoost was 0.79, as shown in 
Figure  1B. For the SOF index, AUC of RF was 0.62, and that of 
XGBoost was 0.69, as shown in Figure 1C. In summary, XGBoost had 
a better predictive ability than RF.

Feature importance

Feature importance was determined using the XGBoost algorithm. 
The F-score indicates the number of times a feature is split during 

model training (42). The higher the score, the more important the 
feature and the greater its impact on the classification results (43). 
Figures 2A–C show the feature importance in the 5-Item FRAIL, CHS, 
and SOF indices, respectively. In all three, systolic blood pressure, 
diastolic blood pressure, age, and BMI have the top four F-score values.

SHAP

SHAP shows the contribution of important features across the 
dataset. The x-axis represents the Shapley value and the y-axis 
represents the important features in the dataset, which are sorted 
according to their Shapley values. In the SHAP graph, the red points 
indicate that the value of the data is higher, and blue points indicate 
that the value of the data is lower. Figure 3A shows the SHAP values 
of the top  20 features in the 5-Item FRAIL scale, wherein the 
eigenvalues of age, diastolic blood pressure, systolic blood pressure, 
and BMI all affected the predicted value to some extent, and 
polypharmacy showed a positive correlation, indicating that the larger 
the feature value, the higher its contribution to the prediction. 
Figure 3B shows the SHAP values of the top 20 characteristics of the 
CHS index, where the eigenvalues of age, diastolic blood pressure, 
systolic blood pressure, and BMI affect the predicted value to some 
extent, and polypharmacy and urology disorders are positively 
correlated, indicating that the characteristics with larger values 
contribute more to the model prediction. Figure 3C shows the SHAP 
values of the top 20 SOF features. The eigenvalues of age, systolic 
blood pressure, BMI, and diastolic blood pressure affected the 
predicted value.

Post-stratification of HTN

Table 3 shown the proportion of HTN or non-HTN in the three 
frailty assessments. Compared with physical non-frail population, 
HTN take significantly larger proportion in physical frail population 
in all three assessment classifications.

Discussion

To compare RF and XGBoost, the same data were used for the 
training and testing evaluation. Overall, XGBoost performed better 
than RF. A significant difference was observed between high recall and 
low precision, as shown in Table 2. The recall rate is calculated by 
dividing the true positives by anything that should have been predicted 
as positive. Precision refers to the number of actual positives among 
the positive predictions, and a high recall rate indicates that the 
number of false positives are low, which is generally desirable. In 
summary, the XGBoost algorithm achieved a better prediction rate.

The exceptional predictive accuracy of XGBoost compared to 
Random Forest is the result of several unique techniques and features 
integral to XGBoost’s approach. Notably, its Gradient Boosting 
Framework allows for systematic improvements in predictions by 
specifically addressing errors from previous training rounds, 
employing gradient descent to reduce loss with each new addition 
(40). Additionally, XGBoost incorporates a regularization term in its 
objective function, which serves to prevent overfitting by penalizing 
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TABLE 1 Demographic characteristics for model prediction according to the three physical frailty indices: 5-Item FRAIL, CHS, and SOF.

5-Item FRAIL scale CHS index SOF index

Physical 
non-frail
(n  =  196)

Physical 
pre-frail
(n  =  184)

Physical frail
(n  =  65)

Physical 
non-frail
(n  =  144)

Physical 
pre-frail
(n  =  145)

Physical frail
(n  =  156)

Physical non-
frail

(n  =  230)

Physical 
pre-frail
(n  =  152)

Physical frail
(n  =  63)

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

n(%)/
Mean  ±  SD

Sex (male) 74 60 29 54 47 62 88 52 23

Age (years) 65.80 ± 5.30 69.20 ± 6.59 76.28 ± 8.38 66.04 ± 4.35 66.00 ± 6.49 73.78 ± 7.38 65.87 ± 4.84 70.96 ± 7.82 73.88 ± 8.40

elementary school or no education 39 84 46 22 46 102 56 75 39

Live alone (yes) 17 19 7 13 14 16 19 17 7

No elevator in the house (yes) 167 158 56 121 125 136 196 131 55

No religion (yes) 25 18 7 20 20 10 28 16 6

Smoke (yes) 11 6 3 9 5 6 13 4 3

Alcohol (yes) 26 14 5 16 16 13 31 10 4

Lack of exercise (yes) 8 11 3 5 9 8 10 11 1

Hypertension (yes) 69 103 44 47 59 110 87 90 39

Diabetes mellitus (yes) 49 74 33 32 47 77 61 63 32

Hyperlipidemia (yes) 47 68 23 36 45 57 62 50 26

Cerebral vascular disease (yes) 5 12 5 5 3 14 8 10 4

Heart disease (yes) 24 27 22 18 17 39 30 30 14

Pulmonary disease (yes) 32 25 22 21 22 36 33 27 19

Liver disease (yes) 19 22 4 14 19 12 22 17 6

Urology disease (yes) 11 22 27 6 10 44 16 24 20

Malignancy (yes) 13 13 5 11 4 16 13 8 10

Sleep disorder (yes) 27 44 21 27 21 44 39 37 16

Neurological disease (yes) 1 5 1 1 2 5 1 5 2

Thyroid disease (yes) 25 25 3 19 20 14 26 20 7

Gastrointestinal disease (yes) 33 43 13 25 29 35 38 36 15

Hematological disease (yes) 2 1 2 2 0 3 3 0 2

Arthritis (yes) 22 36 14 16 25 31 33 22 17

Osteoporosis (yes) 17 28 8 15 17 21 23 17 13

Spine disorder (yes) 14 22 10 9 15 22 18 14 14

(Continued)
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overly complex models, thus fostering more generalizable and robust 
predictions. It also employs a sophisticated tree pruning method, 
which ensures the retention of only the most beneficial structures. 
Furthermore, XGBoost’s built-in routine for handling missing values, 
which intelligently decides the best course of action to minimize loss, 
significantly enhances its predictive capabilities (44). These combined 
features not only enhance XGBoost’s efficiency but also establish it as 
a formidable tool in machine learning competitions and applications 
where prediction accuracy is paramount.

The uniqueness of this study is that it employed ML to explore and 
address the characteristics of physical frailty predictions. The RF 
algorithm is a widely used ML algorithm in many fields (41) and has 
high accuracy, robustness, and the ability to handle high-dimensional 
data (30). It has been applied to the Minnesota Multiphasic Personality 
Inventory scale, and resulted in better classification and prediction 
(45). The XGBoost algorithm is a new ensemble learning method with 
an excellent implementation performance. Compared to other 
classifiers, XGBoost is anti-overfitting, highly efficient, entails low 
computational cost, and has better generalisability and accuracy 
compared to other ML algorithms (46, 47). The XGBoost algorithm 
has been previously applied to mental health prediction. Six ML 
algorithms were used to predict mental health using electronic 
medical records, of which XGBoost obtained the highest AUC value 
(48). Therefore, ML, especially the XGBoost algorithm, is better for 
classification and prediction of the three physical frailty indices: 
5-Item FRAIL, CHS, and SOF.

Our study suggests that the 5-Item FRAIL is more aligned or 
similar to the SOF Index when it comes to classifying individuals who 
are physically frail. This implies that both tools might share common 
criteria or assess similar aspects of frailty, making them more 
interchangeable or comparable for identifying frail individuals. When 
it comes to classifying physical pre-frailty, the CHS Index is said to 
be  closer to the SOF Index (49). This means that for identifying 
individuals who are not fully frail but have some signs of frailty 
(pre-frail), the CHS Index and SOF Index might share more 
similarities or provide more consistent classifications compared to 
other combinations of indices or scales. The result implies a 
comparison of the effectiveness or similarity of different frailty 
assessment tools, which is crucial for research, clinical practice, and 
policy-making, as identifying and managing frailty can help improve 
quality of life, reduce healthcare costs, and delay or prevent the 
progression to disability.

In this study, we used the SHAP tool and XGBoost algorithm to 
determine feature importance for a better understanding of these 
predictors. Figures 2, 3 show that among the top 20 important features, 
the influences of age, diastolic blood pressure, systolic blood pressure, 
and BMI on the prediction of the ML algorithms can be  clearly 
understood. This indicates that a higher age is associated with higher 
physical frailty. For glioma grading, Cheng et al. applied the deep 
neural network model and SHAP tool, which not only shows the 
importance of every feature on the outcome but also indicates the 
influences of the associations between features on the predictions (50). 
For patients with severe COVID-19 intubation, Fleuren et al. applied 
the SHAP and found predictors of extubation failure, including 
ventilatory settings, inflammatory parameters, neurological status, 
and BMI (51). Hathaway et al. (52) conducted supervised learning 
through SHAP by identifying the most relevant and novel cardiac 
biomarkers for forecasting diabetes mellitus development, and 
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discovered that this approach may be  a potential guideline for 
investigating disease pathogenesis and discovering novel biomarkers 
in the future. For predicting infant autopsy outcome, Booth et al. used 
three models for model training, including decision tree, RF, and 
gradient boosting. Fundamental data items associated with 
determining the medical cause of death, including the most important 
items, such as age at death and cardiovascular and respiratory 
histological findings, were recognized using model feature importance, 
with the XGBoost algorithm being the most effective (53). The SHAP 
method and its feature importance classification can further assist 
clinicians in expanding their knowledge of the fundamental 
mechanisms by which predictors affect the output of ML models for 
health outcomes.

In our study, hypertension is recognized as one of the important 
predictive factors in the frailty among older adults. Studies have 
shown that hypertension can contribute to the development of frailty 
by affecting cardiovascular health, leading to impairments in physical 
function and an increased risk of adverse health outcomes (54). 
Research by Fried et al. (9) in the criteria for frailty, highlight the 
relationship between hypertension and frailty, suggesting that 
managing hypertension could be crucial in preventing or mitigating 
frailty in the older population. Our study represents the first instance 
of utilizing ML techniques to explore this domain, and remarkably, 
we have found results that align closely with those of previous studies.

TABLE 2 Scores for the three physical frailty indices, 5-Item FRAIL, CHS, 
and SOF predicted using RF and XGBoost.

RF XGBoost

5-Item FRAIL scale

Accuracy (%) 70.78 76.40

Recall (%) 75.31 73.48

Precision (%) 66.55 73.01

F1 score (%) 66.73 72.76

CHS index

Accuracy (%) 68.53 70.78

Recall (%) 69.89 74.44

Precision (%) 68.04 70.38

F1 score (%) 64.23 68.22

SOF index

Accuracy (%) 56.17 68.53

Recall (%) 52.59 62.72

Precision (%) 46.86 59.94

F1 score (%) 47.34 60.37

FRAIL, Fatigue, Resistance, Ambulation, Illness and Loss of Weight; CHS, Cardiovascular 
Health Study; SOF, Study of Osteoporotic Fracture; RF, random forest; XGBoost, extreme 
gradient boosting.

FIGURE 1

Results of the two machine learning algorithms for the (A) 5-Item Fatigue, Resistance, Ambulation, Illness, and Loss of Weight (FRAIL) scale prediction, 
(B) Cardiovascular Health Study (CHS) index prediction, and (C) Study of Osteoporotic Fracture (SOF) index prediction.
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This study had several limitations. First, it was a cross-sectional 
study that could only demonstrate associations and not infer causality. 
Further longitudinal studies are required to determine the causality 
between the possible risk factors and physical frailty. Second, we used 
self-reported questionnaires, and the results may have been influenced 
by recall biases such as memory, mood, or cognition. Third, ML 
models require a large amount of historical data for training to ensure 
that the model is not biased, (55) and it must be  combined with 
datasets from other medical institutions to improve their predictive 
ability (56), such as Goh’s study, which aim to develop a predictive 
model for bacteremia in septic patients using machine learning 
methods, analysing data from an emergency department (57). 
Fourthly, the economic factor, a critical determinant that could 
significantly influence physical frailty through insufficient access to 
nutrition and healthcare, was omitted from the machine learning 
models. This oversight highlights the necessity of integrating economic 
considerations into future research. Incorporating this factor into 
subsequent studies will allow for a more comprehensive analysis, 
potentially uncovering deeper insights into the dynamics between 
economic status and physical frailty. Fifth, because the dataset is 
inherently predictive, when the sample size is small, models may face 
challenges. One of these challenges is the high sensitivity to outliers, 
which may overly emphasize anomalies in the samples, leading the 
ML model to believe that these outliers have a greater impact (52). 
Due to limitations in the dataset, the model may overfit to the training 
data, especially when using derived models like classification trees. 
This means that during training, the model may generate a branch for 
each patient sample, and such a complex model may not generalize 
well to new, (58) unseen data because it overly caters to the details and 
noise in the training data. Furthermore, training ML models is costly, 
and stakeholders, such as governments and major hospitals, must 

be persuaded, trained, and educated on ML applications; therefore, 
the adoption of ML algorithms is another challenge. These issues must 
be addressed to obtain the optimal gains in predictive accuracy (55). 
In light of these limitations encountered in this study, there are several 
promising avenues for deepening future research. Primarily, 
undertaking longitudinal studies emerges as a critical next step to 
establish causality between risk factors and physical frailty, moving 
beyond the associations observed in a cross-sectional framework. 
Additionally, future studies should consider employing objective 
measures alongside or in place of self-reported questionnaires to 
mitigate the impact of recall bias and enhance the reliability of data. 
The integration of economic factors into ML models is another vital 
area for exploration, aiming to capture the nuanced impacts of 
socioeconomic status on physical frailty. This inclusion promises a 
more rounded analysis and could reveal intricate dynamics that have 
been previously overlooked. Expanding the datasets for ML training 
by incorporating data from a variety of medical institutions will also 
be crucial in improving the models’ predictive accuracy and reducing 
bias. Lastly, addressing the challenges related to the cost and 
complexity of ML model training, as well as fostering stakeholder 
engagement, are essential steps for the broader adoption and 
application of ML in healthcare research. These focused directions not 
only aim to rectify the limitations of the current study but also pave 
the way for more comprehensive and impactful future research on 
physical frailty.

Conclusion

This study demonstrated that two machine learning models are 
used for physical frailty assessing by the 5-item FRAIL scale, CHS 

FIGURE 2

Feature importance for the (A) 5-Item FRAIL scale, (B) CHS index, and (C) SOF index.
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index, and SOF index. XGBoost model is more precise predictive 
rate than RF model in all the three physical frailty models. Machine 
learning might be a useful instrument for early detection of physical 
frailty in the future. Furthermore, this study highlights the 
transformative potential of machine learning, especially the 
XGBoost algorithm’s efficacy in frailty assessments, for advancing 
early detection practices in healthcare. By integrating the XGBoost 
model, this research not only promises significant improvements in 
health care but also emphasizes the importance of such findings in 
informing health policy development. Furthermore, it offers 
practical guidance for healthcare professionals on leveraging these 
insights to enhance frailty management strategies for the 
aging population.
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