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Introduction: Since its emergence in late 2019, the SARS-CoV-2 virus has led to 
a global health crisis, affecting millions and reshaping societies and economies 
worldwide. Investigating the determinants of SARS-CoV-2 diffusion and their 
spatiotemporal dynamics at high spatial resolution is critical for public health 
and policymaking.

Methods: This study analyses 194,682 georeferenced SARS-CoV-2 RT-PCR 
tests from March 2020 and April 2022 in the canton of Vaud, Switzerland. We 
characterized five distinct pandemic periods using metrics of spatial and temporal 
clustering like inverse Shannon entropy, the Hoover index, Lloyd’s index of mean 
crowding, and the modified space–time DBSCAN algorithm. We assessed the 
demographic, socioeconomic, and environmental factors contributing to cluster 
persistence during each period using eXtreme Gradient Boosting (XGBoost) and 
SHapley Additive exPlanations (SHAP), to consider non-linear and spatial effects.

Results: Our findings reveal important variations in the spatial and temporal 
clustering of cases. Notably, areas with flatter epidemics had higher total attack 
rate. Air pollution emerged as a factor showing a consistent positive association 
with higher cluster persistence, substantiated by both immission models and, 
to a lesser extent, tropospheric NO2 estimations. Factors including population 
density, testing rates, and geographical coordinates, also showed important 
positive associations with higher cluster persistence. The socioeconomic index 
showed no significant contribution to cluster persistence, suggesting its limited 
role in the observed dynamics, which warrants further research.

Discussion: Overall, the determinants of cluster persistence remained across 
the study periods. These findings highlight the need for effective air quality 
management strategies to mitigate air pollution’s adverse impacts on public 
health, particularly in the context of respiratory viral diseases like COVID-19.
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Highlights

 • High spatiotemporal resolution study of SARS-CoV-2 influencing 
spread over 2 years.

 • Areas with flatter epidemics have higher total attack rates.
 • Air pollution is positively associated with SARS-CoV-2 

cluster persistence.
 • No significant link between socioeconomic index and 

cluster persistence.
 • Factors influencing SARS-CoV-2 spread are stable across periods.

Introduction

The SARS-CoV-2 pandemic has had a significant impact on the 
world’s population and understanding the spatial and temporal 
patterns of its spread and its evolution is crucial for epidemic 
surveillance and control (1–5). Techniques such as hot-spot analysis, 
spatiotemporal clustering, and space–time scan statistics have been 
widely employed to analyze georeferenced data from SARS-CoV-2 
RT-PCR testing (6–11). These analyses have revealed that the 
incidence and the mortality of the disease are not evenly distributed 
but rather cluster in certain areas and peak at certain times, indicating 
a high degree of heterogeneity in the diffusion dynamics of the virus 
(12–14).

To further understand the factors driving these patterns and 
disparities, subsequent research using methods such as regression 
modeling has provided better insights into the potential demographic, 
socioeconomic, and environmental determinants of the virus’s spread 
(7, 15–18). This research conducted since the beginning of the 
pandemic and over more than 2 years has revealed the complexity of 

the issue, highlighting the intricate and interconnected array of factors 
influencing the spread of the virus at different geographical and 
temporal scales.

Human mobility, connectivity, and transportation have been 
identified as key factors facilitating the virus’ spread (14, 19–22). 
Additionally, other reports have emphasized the importance of 
socioeconomic conditions, with socioeconomically deprived 
populations facing higher rates of exposure, incidence, and mortality 
(7, 23–25). These associations have been found to hold even at very 
local scales, highlighting the critical need to allocate more resources 
for pandemic recovery efforts on vulnerable populations as they are at 
higher risk of facing a syndemic rather than a pandemic (7, 26, 27). 
Additionally, studies have suggested that environmental factors such 
as air pollution and atmospheric conditions may play a significant role 
in the transmission of the virus (17, 28–31). “Indeed, exposure to air 
pollutants from both human-related emissions and natural events, 
such as particulate pollution and desert dust, can contribute to an 
increased diffusion of the virus” (17, 28–31).

Besides investigating the factors influencing the spread of SARS-
CoV-2, research efforts have also been focused on understanding the 
patterns and intrinsic characteristics of the different waves of the 
pandemic. For instance, a study by Rader et al. (13) found that the 
peakedness of COVID-19 epidemics was influenced by population 
aggregation and heterogeneity. Specifically, the study found that 
epidemics in crowded cities were more spread over time and exhibited 
larger total attack rates compared to less populated cities.

Our study aims to analyze the various spatiotemporal factors 
influencing the spread of SARS-CoV-2 and examine how their impact 
may have evolved between March 2020 and April 2022. SARS-CoV-2 
RT-PCR testing data georeferenced at a fine geographical scale over 
the canton of Vaud in Switzerland provide geolocated epidemiological 
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time series data on COVID-19 within various geographical settings 
(i.e., municipalities and hectares). It offers an unpreceded opportunity 
to assess the influence of local factors in determining epidemic 
behaviors. Indeed, employing high spatial resolution data may provide 
insights into local variations that would be indiscernible at coarser 
geographic scales. The enhanced granularity could help inform local 
policies, targeting public health interventions where most needed and 
finely tuning them to fit the specific conditions and needs of the 
affected communities, thereby allowing for better resource allocation 
(6, 11, 32). We investigate an extensive range of sociodemographic and 
environmental factors that may influence the diffusion dynamics and 
geographical patterns of SARS-CoV-2 using advanced spatial and 
analytical methods. This geospatial approach also helps to address 
some of the shortcomings of previous studies such as the use of 

broader geographical scale and the use of models that do not consider 
spatial effects.

Materials and methods

Figure 1 depicts the study’s methodological workflow, illustrating 
the data sources, pre-processing operations, and analyses.

Data sources and preprocessing

COVID-19 testing and case data were obtained from the Institute 
of Microbiology (Lausanne University Hospital, CHUV). Data on 

FIGURE 1

Flowchart of the study methodology. This chart outlines the approach used in our study, depicting the progression from data collection through to 
analysis. It highlights our data sources, including epidemiological, sociodemographic, and environmental datasets, and describes the sequential data 
processing operations. The methodology culminates in a modeling phase employing XGBoost, followed by an interpretative analysis using SHAP values 
to uncover the influence of the various factors on the diffusion dynamics and geographic patterns of SARS-CoV-2.
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socioeconomic factors, air pollution (PM10, NO2), noise pollution, 
vegetation (The normalized Difference Vegetation Index—NDVI), 
temperature (Land Surface Temperature—LST), population density at 
the hectare level, and population density around each hectare were 
collected from various sources, including census records, satellite 
imagery, and air and noise pollution immission models. All datasets 
were preprocessed to ensure compatibility.

Geocoding of the residential addresses
We geocoded the residential addresses of individuals who were 

tested for SARS-CoV-2 using an in-house offline procedure based on a 
Gestalt string matching algorithm. This algorithm was chosen for its 
robustness in handling a variety of misspellings and inconsistencies in 
address formats (33). This algorithm matches each residential address 
against a comprehensive dataset of all existing addresses in the canton of 
Vaud. The match exhibiting the highest level of similarity was then 
retained if the similarity was above 80% (n = 241,775, 85.4%). An 80% 
similarity threshold was set based on preliminary analyses that 
demonstrated a balance between match accuracy and inclusion of valid 
addresses. In total, 41,360 tests were not geocoded for various reasons. 
First, individuals residing outside of the study area, namely beyond the 
canton of Vaud or in other countries, were not included in the analysis 
(n = 31,506, 11.1%). This exclusion does not impact our analysis, as these 
tests fall outside our study scope. Second, a further group whose 
residential address could not be geocoded was also omitted (n = 9,854, 
3.5%). Finally, in instances where the street number was missing, the 
addresses were geolocated at the centroid of the street (n = 5,918, 2.4%).

Filtering of consecutive SARS-CoV-2 tests
To accurately assess the incidence of SARS-CoV-2 infection in the 

study population, we filtered out consecutive RT-PCR tests performed 
within 20 days (n = 47,093, 19.5%). This prevented repeated testing of 
recent positive cases and emphasized unique infections. This approach 
helped ensuring that the dataset accurately represented distinct SARS-
CoV-2 infections throughout the study. The final dataset comprised a 
total of 194,682 tests.

Defining epidemic periods
The SARS-CoV-2 pandemic has undergone multiple waves and 

mutations of the virus, affecting transmission rates and testing 
outcomes. We divided our dataset into five periods representative of 
the five major epidemic waves to analyze their impacts: the initial 
outbreak of the pandemic in early 2020 (Period 1, Feb 3, 2020–June 
30, 2020), the second wave that occurred later that year (Period 2, July 
1, 2020–Dec 15, 2020), the third wave in early 2021 (Period 3, Dec 16, 
2020–May 7, 2021), the arrival of the severe Delta variant (Period 4, 
May 8, 2021–Nov 28, 2021), and the highly transmissible Omicron 
variant emergence (Period 5, Nov 29, 2021–April 15, 2022). This 
division allowed us to evaluate the characteristics of each wave and the 
potential evolution of the determinants of diffusion.

SARS-CoV-2 RT-PCR testing data
Our analyses included 41,672 positive SARS-CoV-2 RT-PCR tests 

from a total of 283,135 tests administered to 138,774 residents of the 
canton of Vaud (population 800,000), Switzerland, between March 2, 
2020, and April 15, 2022. The testing procedure relied only on 
quantitative real-time PCRs and has been described in detail in 
previous studies (8, 10). The study received approval from the 

Cantonal Research Ethics Commission of Vaud (CER-VD), 
Switzerland (n°2020-01302).

Sociodemographic data
Demographic data used in this study were obtained from the 

Swiss Federal Population and Household statistics (34), which 
provides detailed information on the population at the hectometric 
scale. This data include population counts and demographic 
characteristics. This data were used to provide an accurate picture of 
the population distribution in the study area.

We calculated a socioeconomic deprivation index at the hectare 
level, using socioeconomic data at the hectometric scale1 and a 
methodology developed by Lalloué et  al. (35), which has been 
previously used in studies investigating socioeconomic disparities in 
health (7, 36). This methodology involves a series of principal 
component analyses to identify and remove redundant variables, 
select key variables of interest, and combine them into a single index 
that reflects socioeconomic deprivation (35). The socioeconomic 
index was normalized to a scale ranging from 0 to 1, where a value of 
0 represents the highest level of socioeconomic deprivation, and a 
value of 1 denotes the lowest level of deprivation. This standardization 
facilitates a more intuitive interpretation of the index, aligning higher 
values with less deprivation.

Environmental data
Six environmental variables that represent the living environment of 

the population were considered: nighttime road noise, a vegetation index 
(NDVI), an estimate of ground surface temperature (LST) and air 
pollution markers (NO2, PM10, PM2.5). These factors help identify areas 
with conditions potentially promoting transmission. Nighttime road 
noise data were produced by the Swiss Federal Office for the Environment 
(OFEV) and compiled in the SonBASE database (37), served as a proxy 
for urban density and road traffic activity. Nighttime noise was selected 
as it represents the longest exposure at the residential address. This 
database provides a value in dB(A) for the whole territory with a 
resolution of 10 m. From these values, we  calculated the average 
nighttime car noise value for each populated hectare of the Vaud territory.

The normalized difference vegetation index (NDVI) and land 
surface temperature (LST) were derived from Landsat 8 satellite 
images of the Lake Geneva region, taken during the summer of 2021 
(20.07.2021) (38). The NDVI is a satellite-derived measure indicating 
the presence and condition of vegetation, with higher values signifying 
healthier vegetation while LST measures the heat radiated by land 
surfaces, also derived from satellite data, informing studies on urban 
heat islands. Both these indices serve as critical environmental 
variables to quantify local variations in temperature, humidity, and 
urbanicity levels (39, 40).

Air pollution data were obtained from two sources. First, 2020 
Meteotest’s immission model commissioned by the OFEV (41) 
provided information about air pollution levels (NO2, PM10, PM2.5) 
at a 20-m resolution. Despite being anterior the COVID-19 pandemic, 
the immission model provide valuable information on the baseline 
conditions and long-term exposure to air pollutants in the study area. 
Second, to account for short-term exposure air pollution, daily 

1 www.microgis.ch
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nitrogen dioxide (NO2) levels were obtained from satellite imagery via 
Google Earth Engine (42). To obtain daily average tropospheric NO2 
concentrations, we  extracted and processed Sentinel-5 Precursor 
imagery (3.5 × 7 km2 spatial resolution) using algorithms adapted from 
Ghasempour et  al. (43). We  aggregated the daily average 
concentrations by month resulting in a time-series of monthly 
tropospheric NO2 concentrations with comprehensive coverage of the 
study area during the study period.

Characterization of the epidemic waves

Three indices were calculated for each epidemic period and 
municipality of the canton of Vaud: the Inverse Shannon entropy 
index to evaluate the temporal clustering of cases, Lloyd’s index of 
mean crowding to understand population structure, and the Hoover 
index to compare the spatial distribution of the population to the 
spatial distribution of COVID-19 cases.

Inverse Shannon entropy
To evaluate how temporally clustered COVID-19 cases are within 

each municipality, we used the Shannon diversity index. For a specific 
municipality, we established the incidence distribution as the ratio of 
COVID-19 cases j taking place on day i. The Shannon index, 
represented by (1) is based on the disease incidence curve for each 
location, making it less susceptible to variations in reporting rates 
across municipalities.

 
�

�
� � � �� �� �p pij ijlog

1

 
(1)

The index achieves its highest value when all cases occur on 1 day 
and its lowest value when the epidemic has an equal number of cases 
on each day.

Locational Hoover index
The Hoover index is a widely used measure to assess trends of 

concentration in the distribution of a population. To evaluate the 
progressive spread of COVID-19 cases, we used the locational Hoover 
index, which measures spatial imbalance between two variables in a 
given geographic area (44). It compares the proportion of the 
municipality’s total population residing in a particular hectare to the 
proportion of COVID-19 cases occurring in that same hectare during 
a specific time period. This provides a way to understand whether 
COVID-19 cases are clustered in certain areas or distributed more 
evenly throughout the municipality. Values closer to 100 indicate 
concentration in few hectares, while those close to zero suggest a more 
homogeneous spreading (44). In cases where a hectare intersected 
with multiple municipalities, it was assigned to the municipality 
having the larger population.

Lloyd’s mean crowding
To better understand differences in population structure across 

municipalities, we employed the Lloyd’s index of mean crowding (45), 
considering each hectare’s population count within each municipality. 
Higher values of Lloyd’s index indicate a more spatially clustered 
population structure while lower values indicate a population 
structure that is more evenly distributed.

Spatiotemporal cluster detection

To monitor and analyze the spatiotemporal patterns of SARS-
CoV-2 diffusion, we used the MST-DBSCAN (modified space–time 
density-based spatial clustering with application with noise) algorithm 
(46). This method, a modified version of the well-established 
DBSCAN algorithm, identifies clusters of arbitrary shapes and is adept 
at capturing complex patterns irrespective of administrative 
boundaries (47). The settings we used included a spatial distance of 
200 m, a minimum period value of 1 day, and a maximum period value 
of 14 days.

Utilizing the MST-DBSCAN algorithm, we investigated the spatial 
and temporal variations in the dynamics of COVID-19 waves. This 
allowed us to identify and monitor spatiotemporal clusters throughout 
the study period based on spatial and temporal proximity (45, 47). 
Importantly, it enabled us to monitor cluster persistence.

Cluster persistence

Cluster persistence, defined as the duration from the emergence 
to the disappearance of a cluster, was analyzed to understand diffusion 
dynamics and pinpoint areas with prolonged persistence (7). While 
clusters identified through MST-DBSCAN can take arbitrary shapes, 
we projected them onto the populated hectares in the canton of Vaud 
to capture the duration each hectare remained within a cluster. 
Hectares experiencing multiple cluster episodes (i.e., repeated 
emergence and disappearance) were assigned the cumulative duration 
spent within a cluster.

Modeling

eXtreme gradient boosting
To evaluate the associations between cluster persistence and 

sociodemographic and environmental features, we  employed the 
eXtreme Gradient Boosting (XGBoost), a widely popular machine 
learning algorithm that has been used in many supervised 
classification and regression applications (48–50), including for 
COVID-19 research (51, 52). XGBoost is a gradient boosting 
algorithm that iteratively ensembles decision trees using gradient 
descent algorithm to minimize model error (53).

We assessed multicollinearity using the Variance Inflation Factor 
(VIF), considering values above 10 to indicate high multicollinearity. 
To mitigate issues of multicollinearity, we combined Land Surface 
Temperature, NDVI, and Nighttime car noise into an “Urban type 
index” using principal component analysis. Similarly, an “Air pollution 
index” was derived from the three measures of air pollution provided 
by the immission model: NO2, PM10, and PM2.5. To further prevent 
multicollinearity, the air pollution and the socioeconomic deprivation 
indices were evaluated in separate models.

Given the significant spatial autocorrelation in the distribution of 
cluster persistence (Supplementary Figure S1, Moran’s I = 0.95, 
p < 0.001), we incorporated geographic coordinates of each hectare’s 
centroid into the multivariable models to capture these spatial 
dependencies. XGBoost models that include geographic coordinates 
have been shown to adequately capture spatial effects (i.e., spatial 
autocorrelation and spatial heterogeneity) when compared to classical 
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statistical spatial modeling methods such as the spatial lag model and 
the Multiscale Geographically Weighted Regression (MGWR); these 
spatial effects being captured through the coordinates themselves, 
their interaction (longitude * latitude) and the interaction between 
coordinates and non-spatial features (54).

In addition, machine-learning approaches like XGBoost generally 
require fewer assumptions about the underlying processes and 
perform well at identifying patterns in large datasets with complex 
nonlinear interactions (55). In comparison, model selection in spatial 
modeling can be computationally challenging, particularly due to the 
need for additional calculations such as fitting local regression at each 
location (54).

One limitation of XGBoost is that it can be difficult to interpret 
the importance of individual features in the model. To improve 
interpretability, we used SHapley Additive exPlanations (SHAP), an 
effective interpretability technique for machine learning models (56). 
SHAP is a game-theoretic approach that assigns to each model feature 
a numerical value that represents its contribution to the final 
prediction. This allows for a transparent understanding of how the 
model provides predictions. This is particularly important for 
epidemiology and public health applications where interpretability is 
critical. However, it should be  noted that SHAP values, unlike 
coefficients in a regression model, represent partial dependence. They 
characterize the contribution of a specific feature to the difference 
between the actual prediction and the mean prediction while 
accounting for other factors in the model (56). This distinction is 
crucial, as SHAP values provide a more nuanced understanding of the 
relationships between variables in our XGBoost models by considering 
complex interactions that may not be  captured by traditional 
regression coefficients (57).

Anticipating the potential for reporting bias—due to variations in 
testing rates possibly leading to more reported cases—we adjusted for 
differences in testing rates across areas and time periods to account 
for these disparities across different areas and time frames. 
We  determined the testing rate for each hectare by dividing the 
number of tests by the population and calculated rates for each time 
period to account for changing testing practices.

To estimate the XGBoost model’s performance, the dataset was 
split into an 80% training and 20% testing partition. The model was 
trained on the training set, and its generalization capacity and 
predictive accuracy were assessed using the coefficient of 
determination (R2) and root mean square error (RMSE) on the 
testing set. The hyperparameter optimization procedure is described 
in the Supplementary material Section S1: 
“Hyperparameter Optimization.”

Following the primary analysis with XGBoost, we conducted a 
sensitivity analysis to further investigate the seemingly low influence 
of the SES index on cluster persistence.

Sensitivity analyses
Given the initial results suggesting a weak association between the 

SES index and cluster persistence, we sought to assess the robustness 
of our findings by replicating the methodologies from previous work 
(7), which demonstrated a significant association between 
socioeconomic status and cluster persistence. Consequently, we used 
a Cox Proportional Hazards (PH) model, adjusting for population 
density and testing rates to control for confounding.

Results

Description of the temporal and spatial 
clustering of COVID-19 cases

The time-series of SARS-CoV-2 RT-PCR testing data allows to 
track the weekly count of tests and positive cases across the study’s five 
defined periods (Figure  2). Three distinct peaks emerged, 
corresponding to the main pandemic waves that have been 
documented in the Canton de Vaud. The first wave was observed 
during the onset of the pandemic, followed by a second wave in the 
last months of 2020 and a third peak linked to the Omicron variant in 
late 2021 and early 2022 (fifth period).

The second peak displayed the highest number of positive cases 
and volume of tests, indicative of a substantial surge in virus 
prevalence and testing capacity. The third period was characterized by 
a low positivity rate with moderate testing intensity 
(Supplementary Figure S2). The fourth period shows a decrease in 
both positive cases and test number. During the fifth period, the 
Omicron-associated peak underscored the emergence of this highly 
transmissible variant with a high positive rate of around ~50% 
(Figure  2; Supplementary Figure S2) reached around the end of 
January 2022.

The epidemic curves reveal distinct epidemic shapes across 
different geographical and temporal contexts, as shown when 
specifically looking at four major towns (Lausanne, Yverdon-les-
Bains, Montreux, and Nyon) and five epidemics waves (Figure 3A). 
The most populated area of Vaud canton, the town of Lausanne 
(population ~ 140,000) exhibited the least peaked epidemics while the 
distribution of cases over time corresponds to the one of the cantons. 
The three other municipalities showed higher peakedness but distinct 
epidemic behaviors. Yverdon-les-Bains (YLB, pop. ~ 30,000) had a 
very high peak of cases during the first period and relatively low peak 
during the second period. In Montreux (pop. ~ 26,000), cases were 
mostly concentrated in the second period with only a little fraction 
distributed in the first and fifth period while in Nyon (pop. ~ 22,500) 
cases were mostly distributed among the two first periods with a very 
low fraction present in the fifth. These two smaller cities also have in 
common the almost complete absence of cases during the 
fourth period.

Descriptive statistics provided more information on the different 
transmission dynamics. The Inverse Shannon entropy index values for 
the first, and third periods were almost equal at 0.24, and 0.22, 
respectively (Table  1). The fourth period showed the highest 
peakedness (0.29) while the second and fifth periods showed the 
lowest values at 0.14 and 0.16, respectively (Table 1). The total attack 
rate in each municipality was negatively correlated with the inverse 
Shannon entropy index in each period suggesting that flatter 
epidemics (i.e., less peaked) have a higher total attack rate (Figure 3B). 
We observed shared patterns between periods 1, 3, and 4; exhibiting 
a flatter profile and between periods 2 and 5 that have a steeper slope. 
The LOWESS curves suggest a negative relationship that tends to 
attenuate at Shannon entropy index values (log-transformed) above 0 
(Figure  3B). Lloyd’s index of mean crowding provided valuable 
insights into the spatial structure of the population in each 
municipality taking into account both population density and how 
density is distributed. For instance, Montreux has a relatively lower 
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population density compared to Nyon and YLB but exhibits a higher 
crowding value due to the patchiness of the distribution of its 
population (Figure 3C; Supplementary Figure S3).

Our analysis showed a strong correlation between population 
structure and the peakedness of the pandemic waves (Figure 4A). In 
densely populated urban areas, the crowding index was significantly 
higher and the peakedness lower compared to sparsely populated 
municipalities. The spatial distribution of the temporal clustering of 
cases for each period (Figure 4B) illustrates the wide variations of the 
Shannon index (scaled from 0 to 1) across different municipalities 
and periods.

The time-series analysis of the weekly locational Hoover index (%) 
and total positive cases, revealed that despite substantial differences in 
the number of weekly positive cases at the peak of periods 1 and 2, the 
locational Hoover index values for these two periods were strikingly 
similar (Figure 5A). This apparent paradox is likely due to different 
testing strategies, due to higher tests capacity during the second 
period. The locational Hoover index calculated for each period had 
median values of 86.5, 75.1, 81.8, 0, and 78.0 for the first, second, 
third, fourth, and fifth periods, respectively (Table 1). These findings 
suggest that the second period had the most homogeneous 
distribution of cases while the fourth period had the most unequal 
(i.e., spatially clustered) distribution of cases within the population. 
To gain more insight on it, we mapped the locational Hoover index 
across different periods, allowing for an easy comparison of the spatial 
patterns of case concentration (Figure 5B).

Spatiotemporal cluster detection and 
cluster persistence

The MST-DBSCAN analysis identified a total of 3,175 clusters 
with periods 2 and 5 exhibiting the highest number of clusters 

(Table 1). Figure 6 illustrates the emergence and disappearance of 
these clusters throughout the study period. Among the 3,175 clusters, 
3,158 emerged and disappeared within the same period, while 17 
overlapped between two periods (P1-P2: 1, P2-P3: 7, P3-P4: 3, and 
P4-P5: 6). The differences in median cluster persistence across periods 
were statistically significant (Table  1). Cluster persistence was 
positively associated with the number of positive RT-PCR tests from 
cluster emergence to disappearance (Pearson’s r = 0.36, 95% confidence 
interval (CI), 0.33 to 0.36, p < 0.01) (Supplementary Figure S4). 
Additionally, the number of clusters persisting for more than 30 days 
varied considerably among the periods. Only two were present in 
period 1, while 28 emerged in period 2, none in periods 3 and 4, and 
27 appeared in period five (Figure 6).

The spatial distribution of cluster persistence shown on the map 
reveals a pronounced concentration of longer-lasting clusters in urban 
areas, particularly around the city of Lausanne (Supplementary  
Figure S1). This pattern underscores the potential influence of higher 
population density and urban activity on the sustained transmission 
of SARS-CoV-2, factors that were considered in the subsequent 
modeling analyses.

Determinants of cluster persistence

Univariate analyses
We first conducted univariate XGBoost model analyses for each 

demographic, socioeconomic, and environmental feature 
independently and for the whole study period. This step involved 
fitting separate XGBoost models for each individual feature, which 
allowed us to explore the potential relationship between each feature 
and cluster persistence in isolation. This initial univariate analysis 
served as a preliminary assessment of the relevance and potential 
importance of each feature in predicting the outcome of interest. The 

FIGURE 2

Weekly distribution of total SARS-CoV-2 RT-PCR tests and positive tests throughout the study period. Dotted lines correspond to the five defined 
periods.
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following features were evaluated: population density (Population) in 
the hectare, population density in the surroundings (Lagged 
population 200 m, Lagged population 8-NN, Lagged population 24-NN), 
testing rate [Testing rate (%)], socioeconomic deprivation index (SES 
index), vegetation index (NDVI), the land surface temperature (LST), 
the nitrogen dioxide concentration (NO2), the 10 and 2.5 microns or 
less particulate matter concentration (PM10 and PM2.5) extracted 
from the immission models (see section Data sources and 
preprocessing), the tropospheric NO2 concentration average for each 
period [Tropospheric NO2 (periodic avg)], the nighttime car noise 

(Nighttime car noise), and the longitude (E) and latitude (N). The 
lagged population 24-NN corresponds to the average population in 
the 24 nearest populated hectares. This number was chosen to match 
the radius of 200 m used in the MST-DBSCAN analysis used for 
spatiotemporal cluster detection and thus the cluster persistence  
definition.

While the three predictors capturing population density in the 
surroundings demonstrated strong performance, the “Lagged 
population (24-NN)” was the most promising predictor and was 
retained for the multivariable models. The “Testing rate (%)” presented 

FIGURE 3

Epidemic curves, temporal clustering, and population structure. (A) Examples of epidemic curves across the study period for four municipalities of the 
canton and showing the percentage of the total cases happening on any given day. Lausanne and Yverdon-les-Bains (YLB) have less peaked epidemics 
than Montreux and Nyon. (B) Relationship between the Shannon index and the final attack rate for municipalities of the canton of Vaud and each 
period (p1 = first period, ..., p5 = fifth period). Lines correspond to LOWESS curves fitted for each period. (C) Lloyd’s index of mean crowding for each 
municipality of the canton of Vaud.

https://doi.org/10.3389/fpubh.2024.1298177
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


De Ridder et al. 10.3389/fpubh.2024.1298177

Frontiers in Public Health 09 frontiersin.org

TABLE 1 Characteristics of the five periods.

Period Overall P1(First 
wave)

P2 (Second 
wave)

P3 (Third 
wave)

P4 (Delta) P5 (Omicron) p-value

Number of clusters 3,175 280 1,482 121 47 1,228

Peakedness, 

median [Q1, Q3]

0.20 [0.09, 0.39] 0.24 [0.13, 0.39] 0.14 [0.08, 0.29] 0.22 [0.12, 0.40] 0.29 [0.13, 0.42] 0.16 [0.07, 0.31] <0.001

Hoover index, 

median [Q1, Q3]

79.8 [0.0, 92.5] 86.5 [69.4, 94.5] 75.1 [50.1, 87.9] 81.8 [0.0, 93.8] 0 [0.0, 92.9] 78.0 [55.0, 91.4] <0.001

Cluster persistence 

(days), median 

[Q1, Q3]

4 [2, 9] 6 [3, 10] 4 [2, 9] 5 [2, 9] 5 [2, 10] 4 [2, 9] 0.004

Number of positive 

tests, median [Q1, 

Q3]

1 [1, 3] 2 [1, 3] 2 [1, 4] 1 [1, 2] 1 [1, 3] 1 [1, 3] 0.518

Descriptive statistics, including number of clusters, peakedness, hoover index, cluster persistence, and number of positive tests of the pandemic overall and over the five different periods.

FIGURE 4 (Continued)
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a moderately high F-score of 1,402 and an R2 value of 0.34, indicating 
the importance of adjusting for it in subsequent analyses. Air pollution 
features such as NO2, tropospheric NO2, PM2.5 and PM10 displayed 
reasonable F-scores, R2 and, RMSE values, pointing to their usefulness 
in predicting cluster persistence (Table 2).

However, some features like SES index, NDVI, Nighttime car 
noise showed low R2 values and limited predictive power. 

Interestingly, SES index has a high F-score of 1,900 but a negative 
R2 value, suggesting that it may not contribute meaningfully to the 
model’s explanatory power (Table  2). The sensitivity analyses 
evaluating the relationship between the SES index and cluster 
persistence revealed a significant association between the SES 
index and cluster persistence [Hazard Ratio (HR) = 0.49, p < 0.005], 
but a low Concordance index (C-index = 0.54), which is only 

B

Period 3 Period 4

Period 5

Period 1 Period 2

FIGURE 4

Population crowding and epidemic peakedness. (A) Relationship between the Shannon index and the Lloyd’s index of mean crowding. (B) Maps of the 
Shannon index (scaled from 0 to 1) for each defined period of the study. Municipalities with no reported cases during a period are shown in gray.
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FIGURE 5

Locational Hoover index. (A) Weekly locational Hoover index over the study period. (B) Maps of the locational Hoover index for each defined period of 
the study. Values closer to 100 indicate concentration of SARS-CoV-2 cases in few hectares of the municipality, while those close to zero suggest a 
more homogeneous spreading of cases in the municipality.
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TABLE 2 Overall model accuracy of the univariate XGBoost models.

Feature F-score R2 RMSE

Population 814 0.33 34

Lagged population (8-NN) 1,492 0.58 26.8

Lagged population (24-NN) 1,666 0.66 23.6

Lagged population (200 m) 1,709 0.57 27

Testing rate (%) 1,402 0.34 33.6

SES index 1,900 −0.03 42

NDVI 1,736 0.02 40.8

LST 1,830 0.03 40.9

NO2 2,198 0.24 36.1

PM10 2,144 0.29 34.8

PM2.5 1,828 0.36 33.2

Tropospheric NO2 1,796 0.2 37.1

Nighttime car noise 1,995 0.006 41.3

E 1,374 0.28 35.2

N 1,243 0.28 35

For each analyzed features, model’s accuracy (F-score), the proportion of variance in the dependent variable that can be explained by the independent variable (R2) and the root of the Mean 
Square Error (RMSE) are computed.

FIGURE 6

MST-DBSCAN clusters. Timeline of MST-DBSCAN clusters identified throughout the study period. Each cluster is indicated as a line going from the date 
of its emergence to the date of its disappearance. Clusters that persisted for more than 30  days are highlighted in red.
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slightly better than a random guess (0.5), indicating limited 
predictive accuracy.

Finally, we complemented these results with multivariable models 
to account for potential interactions and combined effects of 
multiple features.

Multivariable analyses
We estimated the joint effect of all spatial and non-spatial features 

on cluster persistence by fitting separate multivariable XGBoost 
models corresponding to each period.

Supplementary Figure S5 shows the SHAP summary plots for the 
16 top contributing features at each of the five periods. The lagged 
population was a key feature, highlighting the importance of adjusting 
for surrounding population density in our models. The location effects 
were also essential in the model, as illustrated by the range of SHAP 
values of the E and N geographic coordinates 
(Supplementary Figure S5). The contribution of the location effect on 
cluster persistence, measured by SHAP values of E and N is shown in 
Supplementary Figure S6. These display a clear spatial pattern with 
locations in red representing hectares contributing positively, while 
those in blue depict hectares with a negative impact. It is crucial to 
emphasize that these effects account for all other features in the model, 
highlighting the unique contribution to cluster persistence stemming 
only from the location effect. The areas with positive contribution on 
cluster persistence are mainly located in the urban area of Lausanne 
and to its East side.

Air pollution—captured by the air pollution index and 
tropospheric NO2—was an important feature in all periods 
(Supplementary Figure S5). In period 1, 3, and 5, the air pollution 
index was the most contributing features after the lagged population 
density. In period 2, the air pollution index was most important 
feature of the model. In period 4, tropospheric NO2 had a great 
contribution to the model. The other features, the urban type and SES 
indices, and the testing rate, contributed only very slightly to the 
models. There were several interactions between spatial and 
non-spatial features but of relatively low contribution to the models. 
Regarding overall fit, R2 and RMSE values are summarized in 
Supplementary Table S1.

In addition to the comprehensive XGBoost model incorporating 
all features, we also fitted separate models that focused on each air 
pollutant and on the SES index individually, along with location effects 
(E and N) and adjustments for population density [“Population” and 
“Lagged population (24-NN)”; Figure  7]. These analyses were 
conducted for the whole study period and specifically within the 
Lausanne urban area to ensure a purely urban context, avoiding 
potential residual confounding effects arising from urban versus rural 
comparisons. By conducting these separate analyses, we isolated the 
potential impact of each air pollutant on cluster persistence and 
examined their relationships with location and population density.

Across all air pollutants derived from the immission model, there 
was a clear pattern where higher concentrations were generally 
associated with higher cluster persistence. However, their relationships 
are non-linear and present a threshold at around 10.0 μg/m3 for PM2.5 
(Figure 7A), 14.0 μg/m3 for PM10 (Figure 7B), and 16.0 μg/m3 for NO2 
(Figure  7C). For PM10 and NO2, these thresholds are below the 
annual average immission limit values defined by the Swiss Air 
Pollution Control Ordinance (i.e., 20 μg/m3 for PM10 and 30 μg/m3 
for NO2) (41). For PM2.5, the relationship’s threshold was right at the 

annual average immission limit value of 10.0 μg/m3. The relationship 
between tropospheric NO2 was less clear with a slight positive 
relationship until 2.7 mol/m2 followed by a negative relationship 
(Figure 7D), potentially due to the coarser spatial resolution.

In terms of variable importance, the analysis showed patterns 
similar to the multivariable models fitted for the whole study area and 
by period, with air pollutants showing a high contribution to the 
model and the SES and urban type indices showing a relatively modest 
contribution (Supplementary Figure S7).

Discussion

Summary of main findings

Our study examines the demographic, socioeconomic, and 
environmental determinants of SARS-CoV-2 diffusion and 
spatiotemporal dynamics at high spatial resolution. Most existing 
studies examine demographic (e.g., density, human mobility), 
socioeconomic, or environmental factors in isolation. Our work 
advances a more holistic approach by combining these variables with 
precisely geolocated SARS-CoV-2 testing data and advanced modeling 
techniques. Our main findings reveal a positive non-linear relationship 
between air pollution and cluster persistence with thresholds equal or 
below the annual average immission limit values for PM2.5, PM10, 
and NO2. Additionally, we identified stable diffusion characteristics 
across periods and no significant contribution of the socioeconomic 
index to cluster persistence.

Comparison with existing literature

Our analysis using epidemic peakedness, Hoover index, and 
Lloyd’s mean crowding reveals SARS-CoV-2’s spatiotemporal 
diffusion dynamics, providing insights into case spatiotemporal 
distribution, population structure, and degree of clustering. While our 
findings on peakedness aligns with previous work conducted on 
influenza at the city-scale (58) and SARS-CoV-2 at the prefectural 
level in China (13), we were able to identify these patterns at much 
higher spatial resolution.

There is an ongoing debate about the association between air 
pollution, SARS-CoV-2 infection, and COVID-19 severity. While the 
study of this relationship is complex (59), several potential biological 
mechanisms underpinning these associations have been identified, 
ranging from air pollution’s influence on the transport and viability of 
viral particles to its impact on the body’s innate defense mechanisms 
and long-term immune function (60–62).

The relationship we identified between air pollution and cluster 
persistence is consistent with several studies in the literature that have 
reported associations between SARS-CoV-2 infection and COVID-19 
severity, and mortality with both short and long-term exposure to air 
pollution (17, 18, 31). For example, a recent study conducted in 
Switzerland found an association between long-term exposure to air 
pollutants and COVID-19 severity and mortality, but only during the 
first major wave of the pandemic when the national health system was 
not fully prepared to face the virus (18). However, this study focused 
exclusively on severity and mortality, while our findings suggest a 
potential link between air pollution, an increased risk of SARS-CoV-2 
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infection and prolonged epidemics. In a recent nationwide cohort 
study in Denmark, Zhang et al. (63) found that individuals facing 
long-term exposure to air pollution were at an elevated risk of SARS-
CoV-2 infection but did not consider the infection dynamics.

Notably, our study presents the advantage of identifying this 
association consistently over a two-year period and at a very high 
spatial resolution which reveals that nearby populations may face very 
unequal risks. This result was confirmed by the models focusing on 
the Lausanne urban area, suggesting that even within a city, with 
relatively similar population densities and socioeconomic conditions, 
local spatial variations in air pollution levels can lead to significant 
disparities in the spread and persistence of the virus. Furthermore, 
we also found that flatter epidemics (i.e., lower peakedness) were 
associated with higher total attack rates. This observation may indicate 
that areas with higher air pollution levels could be more susceptible to 
widespread and prolonged outbreaks, further emphasizing the 
importance of understanding and mitigating the effects of air pollution 
on public health.

The lagged population density, the location effects, and air 
pollutants had a major contribution in each period while other 

predictors only had a slight contribution. Overall, we only identified 
slight variations in the importance of determinants of cluster 
persistence across periods indicating stable determinants of SARS-
CoV-2 diffusion despite new variant emergence.

Our univariate and multivariate XGBoost models revealed a 
relatively modest influence of the socioeconomic index on cluster 
persistence within the study area, indicating that socioeconomic 
factors may have limited predictive power for this specific aspect of 
SARS-CoV-2 diffusion dynamics. This outcome contrasts from 
previous research such as studies (7, 23, 24), which identified a 
significant relationship between socioeconomic status and COVID-19 
outcomes such as case numbers and mortality rates. Notably, our 
analysis differs in focus: while Sun et al. (23) and Mena et al. (24) 
investigated case numbers and mortality rates at the local authority 
district and municipality level, our study examines the persistence of 
SARS-CoV-2 clustering, offering a perspective on the virus’s spread.

To address the possibility that the SES index’s low importance in 
our comprehensive model might stem from shared variance with 
other features, potentially overshadowing its effect, we conducted an 
additional analysis. A simpler multivariate XGBoost model, structured 

FIGURE 7

SHAP dependence plots showing the relationship between air pollutants and cluster persistence. (A) PM2.5, (B) PM10, (C) NO2, and (D) Tropospheric 
NO2.
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similarly to those used for air pollutants, was fitted. The results from 
this streamlined model aligned with our initial findings, further 
substantiating the SES index’s modest role in predicting cluster 
persistence. Importantly, our modeling approach prioritizes the 
practical significance of variables in predicting cluster persistence, 
rather than their statistical significance. This distinction is key to 
understanding the nuanced contribution of the socioeconomic index 
in our analysis. Complementing this, our sensitivity analysis with a 
Cox PH model, replicating the methodology from our previous work 
(7), showed a statistically significant association between the SES 
index and cluster persistence (HR = 0.49, p < 0.005), yet the model’s 
predictive accuracy, as reflected by the C-index of 0.54, remained 
modest. Other factors such as public health interventions or 
population behavior may have a more substantial influence. 
Alternatively, the very low association could be due to limitations in 
the study design, measurement, or data quality. Further research is 
needed to confirm these findings and explore the underlying reasons, 
potentially using alternative measures of socioeconomic status and 
examining different geographic regions or time periods.

Strengths and limitations

While previous research has established a link between air pollution 
and respiratory diseases, including COVID-19, these studies have 
typically focused on broader regional impacts, often overlooking micro-
level variations within small areas. Our findings contribute a novel 
perspective by revealing significant local spatial variations in the risks 
associated with air pollution, even within small regions. This granular 
insight is crucial as it underscores that within a region considered to 
have overall good air quality, there can still be  pockets where air 
pollution reaches levels that significantly increased the persistence of the 
virus. These local disparities in air pollution exposure and related health 
risks highlight the limitations of averaging air quality measures over 
larger areas, which can mask such critical hotspots of air pollution and 
associated health risks. The policy implications of these findings suggest 
that current air quality standards and public health strategies when 
designed and implemented on a regional basis, may not adequately 
protect all citizens. Policymakers need to consider implementing finer-
scale air quality monitoring systems capable of detecting and addressing 
these micro-level variations (64). Additionally, it is essential to targeted 
public health interventions that reflect this fine-scale information, 
ensuring that preventive measures and resources are specifically 
allocated according to localized risk levels.

Several methodological strengths of our study include the use of 
various measures of diffusion dynamics, a long study period (> 
2 years), the inclusion of spatial effects, and air pollution data from two 
different sources (immission model and remote sensing estimation of 
tropospheric NO2). Moreover, our study focuses on a relatively small 
geographical area with good epidemiological surveillance and 
presenting diverse sociodemographic and environmental conditions.

Additionally, the methodological approach employing advanced 
modeling techniques such as XGBoost models and SHapley Additive 
exPlanations (SHAP) values for model interpretation offered several 
advantages over traditional spatial methods like spatial lag models or 
GWR/MGWR (54). The XGBoost allowed us to capture complex 
non-linear and spatial effects, providing a more comprehensive 
understanding of the determinants of COVID-19 diffusion dynamics. 
Moreover, the use of SHAP values enabled a more interpretable and 

robust assessment of the importance of each feature in our models. 
SHAP values provided a unified measure of feature importance, 
considering both the magnitude and direction of the effect, as well as 
complex interactions between features. This approach made it possible 
to better understand the contribution of each variable in predicting 
cluster persistence.

However, our study also shows some limitations. Although we were 
able to include testing rates in the model, testing bias could still be a 
concern. The source and place of infection were unavailable, and 
we  could only rely on the place of residence. Additionally, the 
tropospheric NO2 estimation can be subject to biases, which may affect 
the accuracy of our results for this feature. Lastly, the generalizability of 
our findings might be limited due to the specific context of our study area.

Conclusion

Our study highlights the complex spatiotemporal dynamics of 
COVID-19 diffusion and its association with demographic, 
socioeconomic and more particularly environmental factors across 
2 years of the pandemic. The use of advanced modeling techniques 
and a wide set of variables allowed us to gain a more detailed 
understanding of the determinants of COVID-19 spread. Air pollution 
appears to have played an important role in the COVID-19 pandemic 
in particular in relation to cluster persistence. Our study underscores 
thus the importance of implementing effective air quality management 
strategies to mitigate the potential adverse impacts of pollution on 
public health, particularly in the context of infectious diseases 
affecting the upper & lower respiratory tract, like COVID-19.
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