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Background: Bisphenol A (BPA) is an oil-derived, large-market volume chemical 
with endocrine disrupting properties and reproductive toxicity. Moreover, BPA 
is frequently used in food contact materials, has been extensively researched 
recently, and widespread exposure in the general population has been reported 
worldwide. However, national information on BPA levels in general Chinese 
people is lacking.

Methods: This study collected and analyzed 145 (104 in urine and 41 in serum) 
research articles published between 2004 and 2021 to reflect the BPA internal 
exposure levels in Chinese populations. The Monte Carlo simulation method 
is employed to analyze and estimate the data in order to rectify the deviation 
caused by a skewed distribution.

Results: Data on BPA concentrations in urine and serum were collected from 
2006 to 2019 and 2004 to 2019, respectively. Urinary BPA concentrations did 
not vary significantly until 2017, with the highest concentration occurring from 
2018 to 2019 (2.90  ng/mL). The serum BPA concentration decreased to the 
nadir of 1.07  ng/mL in 2011 and gradually increased to 2.54  ng/mL. Nationally, 
18 provinces were studied, with Guangdong (3.50  ng/mL), Zhejiang (2.57  ng/
mL), and Fujian (2.15  ng/mL) having the highest urine BPA levels. Serum BPA 
was investigated in 15 provinces; Jiangsu (9.14  ng/mL) and Shandong (5.80  ng/
mL) were relatively high. The results also indicated that males’ urine and serum 
BPA levels were higher than females, while the BPA levels in children were also 
higher than in adults (p  <  0.001). Furthermore, the volume of garbage disposal 
(r  =  0.39, p  <  0.05), household sewage (r  =  0.34, p  <  0.05), and waste incineration 
content (r  =  0.35, p  <  0.05) exhibited a strong positive connection with urine BPA 
levels in Chinese individuals.

Conclusion: Despite using a data consolidation approach, our study found 
that the Chinese population was exposed to significant amounts of BPA, and 
males having a higher level than females. Besides, the levels of BPA exposure are 
influenced by the volume of garbage disposal, household sewage, and waste 
incineration content.
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1 Introduction

Bisphenol A (BPA) is an artificial chemical compound with high 
production volume, predominantly used in manufacturing 
polycarbonate (PC) plastics, polysulfones, and epoxy resins (1, 2). 
Several studies suggest that BPA is widely applied in producing 
varying consumer products, such as thermal paper, can coatings (3, 
4), and BPA can leach from food and beverage containers, dental 
sealants, and other composites (5). Due to its widespread application, 
BPA is detected in water (freshwater, seawater, sewage, drinking 
water), soil or sediment, atmosphere, food, garbage (4, 6), and in 
humans. Furthermore, since 2007, Asia has become a significant BPA 
production and consumption region. At the end of 2018, BPA 
consumption was 1.43 million tons in China, making it the largest 
producer of BPA globally (7).

Humans are exposed to BPA through various pathways, including 
food or drinking water (8), skin contact, and breathing (9), in which 
dietary intake is the main pathway. Exposure to airborne BPA cannot 
be ignored, as shown by Ribeiro et al. (10). The study conducted by 
Rudel et  al. revealed the presence of BPA in 86% of house dust 
samples, with concentrations ranging from 0.2 to 17.6 μg/g (11). In the 
urban outdoor environment, this compound has been detected in air 
samples at an average level of 0.51 ng/m3 with mild seasonal variations 
observed (12). According to a Chinese study on the causes of urinary 
BPA exposure in young adults, dietary consumption, indoor dust, 
paper goods, and personal care items contributed 72.5, 0.74, 0.98, and 
0.22% of the overall exposure dose, respectively (13). Several 
epidemiological research have suggested that fatty foods, bracelets, 
and socks may be  sources of BPA exposure for children (14–16). 
Moreover, in a human study embedded as part of the Europe project 
EuroMix (“European Test and Risk Assessment Techniques for 
Mixtures”) it was determined that diet and thermal paper (TP) were 
the factors most responsible for BPA exposure (17). Occupational 
exposure, in addition, is an important mode of exposure to BPA. The 
study conducted by He et al. showed that workers in epoxy resin and 
BPA manufacturing factories are occupationally exposed to BPA at 
high levels (18).

Upon oral treatment, pharmacokinetic investigations have 
shown that BPA is swiftly and effectively absorbed in the 
gastrointestinal tract. It is first metabolized by the gut wall and 
liver, where its primary metabolite BPA-glucuronide is produced. 
BPA-glucuronide is rapidly filtered from the blood by the kidneys 
and excreted in urine (19). Consequently, BPA has been detected 
in body fluids, including saliva, urine, serum, plasma, placental 
tissue, umbilical cord serum, placenta and breast milk (20, 21). 
Though the half-life of BPA in human urine and blood is 6 h and 
5.3 h, respectively (22, 23), urine and serum are widely used 
biological samples for biomonitoring (19).

Due to its endocrine disrupting properties and reproductive 
toxicity, BPA shows substantial damage to tissues and organs of the 
body, including those of the cardiovascular, reproductive, immune 
(24, 25), respiratory, digestive, and neuroendocrine systems (26–30). 
Previous epidemiological and toxicological studies demonstrated that 
exposure to BPA can cause endocrine disruption in humans (31), 
development of obesity (32), diabetes (33), cardiovascular disease (34, 
35), etc. Sandra studies indicate that there were no significant 
differences in BPA exposure levels among the general population 
based on sex, geographic region, or analysis technique (36). For the 

moment, developed countries such as the United States and Canada 
have carried out long-term and systematic biomonitoring programs 
for urine BPA in their populations. China has carried out biological 
monitoring of BPA exposure levels in populations in localized areas, 
such as Shanghai (37, 38), Jiangsu (39), and Guangdong (39, 40) 
provinces, so there is a lack of exposure level data for the entire 
Chinese population.

There is currently no long-term detection and spatial variation 
trend of BPA exposure in the Chinese population. The study used 
Monte Carlo simulation to estimate urine and serum BPA levels in the 
Chinese population, which our group had previously established and 
validated. We used Monte Carlo simulation to examine BPA’s regional 
and temporal distribution in urine and serum from 2004 to 2019. 
Additionally, relevant potential risk factors influencing urine and 
serum BPA levels were investigated.

2 Methods

2.1 Aim

The purpose of this study was to analyze the level of BPA exposure 
in the Chinese population from 2004 to 2019. And analyze the 
relationship between demographic factors such as age, gender, and 
region and the level of BPA exposure. In addition, the relationship 
between BPA exposure levels in the human body and BPA exposure 
in the environment were evaluated.

2.2 Design

We searched for literature on BPA exposure levels in the Chinese 
population from May 2011 onwards. Monte Carlo simulation was 
used to integrate and analyze the data.

2.3 Sample

PubMed, China National Knowledge Infrastructure (CNKI), 
Weipu (VIP), and Wanfang Data was selected as the academic 
publication source in this study.

2.4 Literature search

Four databases, such as PubMed, CNKI, VIP, and Wanfang Data, 
were searched from inception to May 1, 2021. We  identified the 
following keywords: (a) “bisphenol A” and “urine” and “human” (b) 
“bisphenol A” and “serum” and “human” was decided as the keyword 
to search the Chinese database. Literature in English searches for 
anthropological studies using “bisphenol A” and “human” and “China” 
or “bisphenol A” and “Chinese” as keywords. The duplicate articles 
were excluded from the four databases.

Inclusion criteria were as follows: (1) All the subjects were Chinese 
population; (2) The study population were not patients with certain 
BPA-related diseases, such as obesity, asthma, thyroid disorders, 
neurobehavioral disturbances, changes in reproductive function, 
abnormal mammary gland development, and cognitive dysfunctions; 
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(3) Subjects were not with high BPA exposure history (described as 
living or working in areas of high BPA concentration); (4) The test 
samples were urine and serum, and strict quality control was used in 
the detection procedure. Data were filtered using the following 
exclusion criteria: (1) Research performing animal tests; (2) Studies 
including case reports, conference or poster abstracts, reviews, letters, 
or articles without containing original data; (3) Studies on substitutes 
for BPA.

A total of 145 articles published from 2004 to 2021 (including 104 
on urine BPA and 41 on serum BPA) were collected, including 78 
pieces of Chinese literature (50 on urine BPA and 28 on serum BPA) 
and 67 parts of English literature (54 on urine BPA and 13 on serum 
BPA) (see Figure 1). The sampling time ranged from 2004 to 2019. 
These articles included 64,893 subjects with sample sizes ranging from 
10 to 3,426 each (see Supplementary Tables S1, S2).

2.5 Data extraction

Eleven elements were then extracted from each paper and entered 
into an Excel spreadsheet: article title, publication year, sampling time 
and method, first author, geographical area, sample size, age, gender, 
the limit of detection (LOD), and the BPA concentration (see 
Figure 1). We divided the available urine BPA and serum BPA data 
into five periods (2006–2008, 2009–2011, 2012–2014,2015–2017, 
2018–2019) based on sampling time.

The National Health and Nutrition Examination Survey 
(NHANES) 2003–2016 provided the American urine BPA data (41). 
The Fifth Report on Human Biomonitoring of Environmental 
Chemicals in Canada 2007–2017 is the source of Canadian urine BPA 
(42). The required data on garbage disposal, domestic sewage, and 
waste incineration were found in the China Statistical Yearbooks 
(2006–2019) (43).

2.6 Data processing

2.6.1 Unit conversion of urine and serum BPA 
level

In this study, uniform unit was ng/mL. Other units were converted 
to ng/mL, e.g., 1 μg/L = 1 ng/mL; 1 ng/mL = 100 ng/dL; 1 ng/
mL = 1,000 ng/L.

2.6.2 The calculation of arithmetic means
For most studies, the median and interrogative range values were 

presented, and to a lesser extent, geometric mean or arithmetic means. 
The appropriate Monte Carlo simulation formula was determined by 
consideration for whether the data fit a normal distribution or log-
normal distribution or not. We  convert the median to arithmetic 
mean (https://smcgrath.shinyapps.io/estmeansd/).

2.7 Calculation of standard deviation

The standard deviation of urine and serum BPA level not available 
in articles was estimated by Equation (44) as follows (45):

 SD N U LCI CI= −( ) ÷ 3 92.

Where N is the sample size; UCI and LCI are the upper and lower 
95% confidence intervals, respectively.

2.8 Monte Carlo simulation

We used excel software to accomplish Monte Carlo simulation 
analysis on the data. The workflow of our approach was composed of 

FIGURE 1

Steps taken to identify articles that met our inclusion–exclusion criteria. Urine andserum BPA data were collected from Weipu (VIP) databases, PubMed, 
China National Knowledge Infrastructure (CNKI), and Wanfang. One hundred forty-five papers reported the urine and serum BPA levels from 2004 to 
2019 (sampling time).
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three steps: (1) composing a mathematical model for probability 
simulation; (2) abstracting the simulated random numbers; and (3) 
arranging statistics and getting the solution to the problem (44).

For the original data of normal distribution and lognormal 
distribution, we  adopted different calculation methods. Formulae 
used were as follows:

 
= ( )( )MAX 0 5. . (), NORM INV RAND , AM, SD

 
= ( ) ( )( )( )MAX 0 5. . (), LOGNORM INV RAND , Ln GM , Ln GSD

Where NORM.INV and LOGNORM.INV denotes interval points 
that return a given probability normal distribution or lognormal 
distribution, respectively. RAND returns evenly distributed random 
numbers greater than or equal to 0 and less than 1. The MAX function 
ensured that the urine and serum BPA levels were greater than 1/2 
LOD. Values were calculated in Excel (Microsoft). Simulations were 
computed by 100 times to ensure their exactitude (see 
Supplementary Figure S1).

2.9 Statistical analyses

Statistical analysis was conducted using SPSS version 26 
(IBM. Armonk, NY, United  States). Figures were prepared using 
GraphPad Prism 8.3.0 and ArcGIS 10.6. The Mann–Whitney U test 
was utilized to compare differences between two independent groups. 
Correlations were evaluated by Pearson’s correlation coefficient (r). 
p-values < 0.05 were considered statistically significant. Urine and 
serum BPA results were transformed using natural logarithms for 
data analysis.

3 Results

3.1 Trends of urine BPA and serum BPA 
concentration in general Chinese 
population from 2004 to 2019

The Chinese population’s urine and serum BPA concentration was 
calculated from the new database, which was generated by Monte 
Carlo simulation. Figure  2 depicts the urine and serum BPA 
concentrations in different time period (2006–2008, 2009–2011, 
2012–2014, 2015–2017, 2018–2019 for urine BPA and 2004–2007, 
2008–2011, 2012–2015, 2016–2019 for serum BPA). The geometric 
mean of serum BPA concentration decreased from 1.78 ng/mL in 
2004–2007 to 1.07 ng/mL in 2008–2011, while the geometric mean of 
serum BPA concentration increased from 1.66 ng/mL in 2012–2015 
to 2.54 ng/mL in 2016–2019 (see Supplementary Table S3).

3.2 Geographical variation of urine and 
serum BPA concentration

Figure  3 depicts the urine and serum BPA concentrations in 
different provinces across two time periods (2008–2011, 2006–2019 
for urine BPA and 2006–2011, 2012–2019 for serum BPA). Urine BPA 

concentrations (2008–2011) and serum BPA concentrations (2006–
2011) were detected mostly in coastal locations (see Figures 3A,C), 
with the area expanding inland from 2012 to 2019 (see Figures 3B,D). 
Guangdong (3.5 ng/mL), Zhejiang (2.57 ng/mL), and Fujian (2.15 ng/
mL) had greater urine BPA levels than the other provinces, whereas 
Inner Mongolia (0.8 ng/mL) had a comparatively low level (see 
Supplementary Table S4). The levels of BPA in serum differed 
substantially between provinces. Jiangxi had the lowest serum BPA 
content (0.8 ng/mL), and Jiangsu had the highest (9.2 ng/mL) (see 
Supplementary Table S5).

3.3 Gender difference

Males had higher urine and serum BPA concentrations than 
females (see Figure 4). Urine BPA concentrations in males and females 
in China were 2.12 ng/mL and 1.77 ng/mL, respectively, while serum 
BPA values were 3.03 ng/mL and 1.07 ng/mL (see Figures  4A,C, 
Supplementary Table S6). The Mann–Whitney U test showed that the 
BPA concentration of males was significantly higher than that of 
females (all p < 0.05). Additionally, slowly increase in urine and serum 
BPA concentration in both males and females was noted before 2014, 
with decrease gradually from 2015 to 2019 (see Figures 4B,D).

3.4 Age difference

Taking ages into consideration, urine and serum BPA 
concentrations in China among different age ranges were 1.80 ng/mL 
and 2.88 ng/mL in the group of 0–18 years, 1.50 ng/mL and 1.36 ng/
mL in the group of 19 and above years old (see Figures 5A,C). The 
Mann–Whitney U test showed that the BPA concentration of children 
was significantly higher than that of adults (all p < 0.05). Besides, urine 
BPA concentration was higher in school-age and young adults 
compared with people of other ages, with the geometric mean of 
2.12 ng/mL and 1.85 ng/mL, respectively (see Figure  5B, 
Supplementary Table S7). Serum BPA concentration was highest in 
groups of 0–6 years old, with a geometric mean of 6.44 ng/mL (see 
Figure 5D, Supplementary Table S7).

3.5 Comparison with U.S. and Canada

In the United States and Canada, urine BPA levels showed an 
apparent downward trend, while urine BPA concentrations of the 
Chinese exhibited a significant fluctuation (see Figure 6). Before 2011, 
the concentration of BPA in urine in China was lower than that in the 
United States. However, from 2011 to 2019, the concentration of urine 
BPA in China was higher than that in the United States and Canada 
(see Figure 6).

3.6 The association between urine BPA 
concentration in Chinese and the external 
environment

Environmental factors can influence humans BPA inhalation, 
ingestion, and skin absorption. As shown in Figure 7A, possible risk 
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factors such as garbage disposal, residential sewage, and waste 
incineration content were connected to urine BPA concentration in 
Chinese provinces (see Supplementary Table S8). Guangdong had 
the highest urine BPA level, as well as the biggest volume of rubbish 
disposal and a high level of residential sewage and waste incineration. 
Domestic sewage levels are also higher in Heilongjiang and Zhejiang 
provinces. Furthermore, urine BPA levels revealed a strong positive 
connection with garbage disposal volume (r = 0.39, p = 0.003) (see 
Figure 7B), as did household sewage and waste incineration content 
(r = 0.34, p = 0.01; r = 0.35, p = 0.009) (see Figures 7C,D).

4 Discussion

Though BPA-related health problems have been attracting 
increasing attention (46), large-scale population studies with BPA 
exposure levels are still lacking in China. Several studies have shown 
that the average Chinese person had a high BPA exposure level (47). 
Furthermore, BPA has been widely investigated for its toxicity and 
shown adverse effects even at low-dose in animals and humans (48), 
making it a public health problem in China.

Urine and serum BPA level have acted as validated biomarkers to 
assess BPA exposure in humans. It mainly reflects short-term BPA 
exposure because of BPA’s relatively short-life in urine and serum. 
He  et al. reported BPA concentration in urine and serum of 952 
ordinary residents (49). In September 2010, Gao’s team conducted a 
national urine BPA level survey (13). However, most studies have been 
cross-sectional, and few have evaluated changes in human urine and 
serum BPA level over time. Based on the nationwide data investigation, 
our results suggested that the Chinese population’s urine BPA had a 
smooth fluctuation then increased to a high level, while serum BPA 
gradually increased after reaching its lowest concentration in 2011. 
Like the United States and Canada (50), China has begun to restrict 
the use of BPA. However, BPA has been banned in the use of baby 
bottles, but BPA was still permitted to be used in the production of 
food packaging materials, containers, and coatings. Before 2011, BPA 
was in considerable demand, but the imports of BPA were on the 
decline (51). It has been shown that BPA imports were 8.8% lower in 
2008 than in 2007 (52). Additionally, demand for BPA is growing in 

industries such as home appliances, electronics, urban construction, 
and automobiles (53).

Instead of focusing on the whole population in China, these present 
studies paid more attention to localized areas, such as Shanghai, Jiangsu, 
and Guangdong. This study collected urine and serum BPA data from 
different provinces. Through comparative analysis, we found that the 
Chinese population’s BPA concentration of biological samples was 
predominantly distributed in the coastal areas (2004–2011). However, 
since 2012, the monitoring of BPA has expanded to inland areas. An 
important reason is that the abundance of seafood products may 
contain BPA in coastal areas. On the one hand, BPA manufacturers are 
mainly distributed in Jiangsu, Shanghai, and Zhejiang, among which a 
chemical company in Jiangsu is the one of the major thing BPA 
manufacturer in China (54). On the other hand, BPA is extensively used 
in the production of plastics and microplastics detected in 80–100% of 
seafood in southeastern China, leading to high levels of BPA in marine 
fish (55, 56). Additionally, in the atmosphere, BPA concentration is still 
at a high level in southeast China (57).

In general, the difference in gender and age has influenced the 
distribution of BPA. This study shows that urine and serum BPA 
concentrations were higher in males than females, which was in 
agreement with the previous studies (49). The elevated level of BPA in 
male urine may be  associated with the glucuronide-conjugated 
coupling of BPA in urine (58). Moreover, a study in Korea found that 
gender differences in serum BPA concentrations may involve 
androgen-related BPA metabolism (59). In the 2015–16 period serum 
levels were higher in women and in the 2016–18 period females 
exhibited higher urine levels compared to other periods. On the one 
hand, the sample size in the urine BPA study conducted between 2016 
and 2018 on women (n = 2,204) was significantly larger compared to 
men (n = 439). The size of the serum Bisphenol A exposure sample 
was smaller in 2015–2016. On the other hand, factors that cannot 
be assessed, such as a person’s employment, lifestyle choices, or even 
biological factors, were significant in this regard. BPA levels were two 
times higher among female employees, according to research by 
González et al. (0.68 g/L in men and 1.20 g/L in women), although this 
variation did not achieve statistical significance (p > 0.05), which may 
be connected to the fact that the study’s gender-specific workplaces 
were different (60).

FIGURE 2

The temporal trend of urine ad serum BPA levels in general Chinese population from 2004 to 2019. (A) Overview of the general Chinese population’s 
urine BPA levels in different periods. (B) Overview of the general Chinese population’s serum BPA levels in different periods.
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Otherwise, we  also found that urine and serum BPA 
concentrations were higher in children than that in adults. High 
concentrations of BPA in children may be associated with their 
high food consumption (such as fried food and snacks), relevant 
product usage (such as plastic toys), air inhalation rates in 
relation to their body weight and different toxic dynamic of their 
absorption, distribution, metabolism of BPA (61–63). Sugar and 
confectionery consumption were positively correlated with serum 
BPA levels in a Spanish sample (64). Additionally, Larsson et al. 
reported greater BPA levels in kids who consumed chocolate 
frequently and hypothesized that this could be due to a higher 
frequency of food consumption tainted by food packaging 

materials (65). There is BPA levels discrepancy between urine 
and serum values in the age groups 0–6, and 7–18 years. Children 
under the age of six are more probable to be exposed to plastic 
toys, and school-age children between the ages of seven and 18 
spend more time in school as a result of dietary and airborne BPA 
exposure. These differences in lifestyle may be the primary cause. 
Additionally, differences in one’s own health, the economy, and 
other underlying factors may have an impact. Therefore, public 
health interventional measures should be tailored to the needs of 
different populations.

From 2011 to 2019, the concentration of urine BPA in China 
was greater than in the United States and Canada, according to the 

FIGURE 3

The spatial and temporal distribution of Urine and serum BPA concentration of different provinces in China. Urine BPA concentration in different 
provinces, (A) 2008–2011, and (B) 2012–2019 were exhibited. Serum BPA concentration in different provinces, (C) 2006–2011, and (D) 2012–2019 
were exhibited.
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current study. Based on a great number of animal trials and 
epidemiological studies in Europe and the United  States 
established the daily intake of BPA at 50 g/kg bw/day, but China 
has no equivalent legislation (66, 67). Furthermore, Wu et  al. 
examined BPA exposure concentrations in natural surface water 
(freshwater, estuaries, and beaches) in 55 nations. They discovered 
that BPA exposure concentrations in China were greater than in 
the United States and Canada (68). The widespread use of BPA in 
China is the primary reason BPA exposure in the human body is 
higher than in the United States and Canada, highlighting the 
need for lowering BPA requirements and use. We collected data 
from May 2003 and May 2006 as part of the German 
Environmental Survey (GerES IV). A total of 599 youngsters were 
chosen, and the BPA level in their urine was 2.66 ng/mL (69). 
Between 2014 and 2017, the urine levels of BPA in German 
children were 1.905 ng/mL (70), which was still higher than in 
Chinese children.

Previous research has demonstrated that BPA has become 
ubiquitous in the environment as a result of its widespread 

manufacture, ingestion, and application (71). In addition, BPA 
environmental sources can be classified as pre-consumer sources for 
BPA synthesis, BPA-containing items, and post-consumer sources (6). 
Post-consumer sources, such as garbage disposal, incineration, and 
sewage discharge, are significant exposure pathways for the general 
population. BPA levels in landfills in the United States and Japan have 
been deemed high (72). This study found a link between garbage 
cleansing and incineration, sewage outflow, and human BPA exposure. 
As a result, more specific BPA control strategies should be maintained 
as a public health priority.

Nevertheless, the main limitation of the study is the lack of 
original work such as experimental or epidemiological 
investigations. The data of this study were mainly derived from the 
published literature, which itself resulted from outcome bias. Some 
provinces have less study data (such as Hongkong, Liaoning) thus 
the data from a few provinces may not be representative enough of 
the whole nation. As a result, a population-based epidemiologic 
survey should be carried out in China to determine the level of 
BPA exposure there as well as to look into any potential influencing 

FIGURE 4

Changes in Chinese urine and serum BPA concentration by gender. (A) An overview of Chinese urine BPA concentration in different gender. 
(B) Histogram of Chinese urine BPA concentration of male and female in different time. (C) An overview of Chinese serum BPA concentration in 
different gender. (D) Histogram of Chinese serum BPA concentration of male and female in different time. *p  <  0.05.
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factors, such as lifestyle choices, residential location, health status, 
age, and gender. We may have omissions in the literature search 
screening process, resulting in biased results. For example, the 
study of neonatal urinary BPA exposure by Wang et  al. (73). 
Therefore, we further screened the literature and combined it with 

epidemiologic studies in the next study. In addition, detection bias 
may exist in this study. For example, it is detected primarily by 
ultra-performance liquid chromatography tandem mass 
spectrometry (UPLC–MS/MS) (32%) and high-performance liquid 
chromatography (HPLC) with tandem mass spectrometric (MS/

FIGURE 5

Age distribution of BPA levels in the general Chinese population (from 2004 to 2019). (A,B) Age changing trend of urine BPA concentration. (C,D) Age 
changing trend of serum BPA concentration. Children are 0–18  years old and adults are ≥19  years old. *p  <  0.05.

FIGURE 6

Urine BPA concentration in China compared with foreign countries. * Denotes that the source of American urine BPA data is NHANES 2003–2016; # 
Means that the data of urine BPA of Canadian are from The Fifth Report on Human Biomonitoring of Environmental Chemicals in Canada 2009–2016.
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MS) (47%), whereas serum BPA is detected by linked 
immunosorbent assay (ELISA) (32%) and HPLC–MS/MS (46%). 
The LOD values of all those methods reported from 2004 to 2019 
for BPA in human urine samples varied greatly (0.001–1.0 ng/mL). 
LC-MS/MS is the most sensitive and extensively used method for 
BPA detection in human urine (74). In addition, it was shown that 
there was A strong correlation between HPLC/FLD and LC/MS/
MS for the determination of BPA levels (75). Even so, the detection 
bias hardly affected the results due to the high detection 
consistency and strict quality control.

5 Conclusion

Data mining and analysis based on Monte Carlo simulation showed 
wide fluctuation in the urine of BPA in the Chinese population; serum 
BPA showed an apparent decrease during 2004–2011, and a noticeable 
increase during 2012–2019. In addition, the exposure level of urine BPA 
in the Chinese population was significantly higher than in the 
United States and Canada. In space, the detection of BPA was mainly in 
coastal areas, but the scope was extended to the inland. Males’ urine and 
serum BPA levels were higher than females and children higher than 
adults. In addition, household garbage cleaning and sewage discharge 
may affect human BPA levels. In conclusion, this study recommends 
strengthening the biological detection of BPA and comprehensive 
management of garbage and sewage discharge to mitigate BPA exposure.
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