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Objective: UAV-based multispectral detection and identification technology for

ground injured human targets, is a novel and promising unmanned technology for

public health and safety IoT applications, such as outdoor lost injured searching

and battlefield casualty searching, and our previous research has demonstrated its

feasibility. However, in practical applications, the searched human target always

exhibits low target-background contrast relative to the vast and diverse surrounding

environment, and the ground environment also shifts randomly during the UAV cruise

process. These two key factors make it di�cult to achieve highly robust, stable, and

accurate recognition performance under the cross-scene situation.

Methods: This paper proposes a cross-scenemulti-domain feature joint optimization

(CMFJO) for cross-scene outdoor static human target recognition.

Results: In the experiments, we first investigated the impact severity of the cross-

scene problem and the necessity to solve it by designing 3 typical single-scene

experiments. Experimental results show that although a single-scene model holds

good recognition capability for its scenes (96.35% in desert scenes, 99.81% in

woodland scenes, and 97.39% in urban scenes), its recognition performance for other

scenes deteriorates sharply (below 75% overall) after scene changes. On the other

hand, the proposed CMFJO method was also validated using the same cross-scene

feature dataset. The recognition results for both individual scene and composite scene

show that this method could achieve an average classification accuracy of 92.55%

under cross-scene situation.

Discussion: This study first tried to construct an excellent cross-scene recognition

model for the human target recognition, named CMFJO method, which is based on

multispectral multi-domain feature vectors with scenario-independent, stable and

e�cient target recognition capability. It will significantly improve the accuracy and

usability of UAV-based multispectral technology method for outdoor injured human

target search in practical applications and provide a powerful supporting technology

for public safety and health.

KEYWORDS

UAV, multispectral detection, human target detection, air-to-ground recognition,

cross-scene multi-domain feature joint optimization
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1. Introduction

Injured or trapped human searching in outdoor environments

after natural disasters or outdoor accidents come to be important

threats to public safety with the prevalence of outdoor sports and

frequent occurrence of natural disasters in recent years, it also poses

higher challenges to public security and health technology. Outdoor

injured human searching in public security field mainly includes

two categories (1): (1) One is about the trapped survivor detection

under ruins in the abnormal post-disaster environment (earthquakes,

building collapses, landslides, etc). To address this problem, our

group firstly proposed the bio-radar detection technology (2) in the

field of Disaster Rescue Medicine and developed a series of bio-

radar equipment, which could acquire survivor’s vital sign (3–6),

locations (7) and even behaviors (8, 9) through ruins or wall. Based

on the IoT technology, our bio-radar equipment radar equipment

and other equipment together form the land-based search-rescue

IoT equipment system, which has been successfully applied in many

post-disaster search-rescue operations.

Another widespread and frequently occurring scenario is about

the injured person searching in normal outdoor environment,

namely a vast and diverse natural environment, like the lost hiker,

emergency skydiving pilot, and even the wounded soldier after a

field battle. Taking a lamentable and sensational sport accident for

example, a large number of athletes suffered a safety accident due

to the sudden change of weather in the 2021 4th Yellow River

Shilin Mountain Marathon 100 km cross-country race in China (10).

Many athletes experienced the severe Hypothermia phenomenon

and were trapped in the mountains. Unfortunately, due to the

lack of air-to-ground rapid search and location technology in the

outdoor environment, information of the trapped people could not

be sent back to the rear security center in time, resulting in a

number of deaths that could not be treated in time. Therefore, it is

necessary to develop an unmanned rapid intelligent search-rescue

IoT technology, so as to realize the automatic air-to-ground detection

and identification of ground injured human targets and automatically

transmitting information to the rear command center in time, and

finally providing efficient and novel technical support for outdoor

injured human search-rescue operation.

In this paper, we propose an automatic air-to-ground recognition

technology of outdoor ground injured human target based on

the UAV-based multispectral system. Specifically, a novel Cross-

scene Multi-domain Feature Joint Optimization (CMFJO) method

based on the multispectral multi-domain features from multiple

environmental scenes is first proposed, which can not only improve

target recognition in a complex environment but also promote

the recognition robustness to dynamically changing scenes for

practical application.

2. Related work

This part refers to certain papers investigating the existing search-

rescue technologies for outdoor injured human target, and discussing

the pros and cons. For the above-mentioned severe mountain-

forest outdoor environment, the conventional constrained method

of pre-wearing auxiliary positioning device is not an ideal choice

(like the portable radio station, wearable GPS personal terminal),

which usually suffer from some inevitable deficiencies including

increasing body load and vulnerability to extreme mountain-forest

environments (11–13). Especially for soldiers, carrying equipment

would easily expose themselves to the enemy. Currently, there are

indeed some unconstrainedly unmanned aerial vehicle (UAV)-based

air-to-ground detection technologies for human target search in

ideal background environments, mainly relying on different carried

detection payloads like RGB high-definition camera (14–16) or

thermal imaging camera (17), no matter with a flat view (18–20) or

top view (21). However, the RGB camera still appears insufficient

resolution and low SNR when the detection distance is long or the

object is similar in color to the environment, and even appears

underexposure or overexposure when the ambient light changes (22).

Similarly, the thermal signal of the human body would be covered by

the halos when the ambient temperature is higher than 30◦C.

As an optimized form of hyperspectral technology, UAV-based

multispectral could relatively streamline data volume and realize real-

time imaging processing by rationally selecting 4∼10 characteristic

spectrum bands for data processing (23), while ensuring a sufficient

amount of information. By analyzing the differences in spectral

characteristic curves between target and circumstances, specific

features in different bands can be exploited to identify the target.

Relying on this advantage, UAV-based multispectral detection

technology is widely used in agricultural, forestry and environmental

monitoring under low-altitude cruise conditions, such as the damage

assessment to rapeseed crops after winter (24), decision support

system design for variable rate irrigation (25), fast Xylella symptoms

detection in olive trees (26), and inferring the spatial distribution of

chlorophyll concentration and turbidity in surface waters to monitor

the nearshore- offshore water quality (24).

However, for the rapid detection and identification of outdoor

injured human subjects in an outdoor environment, the detection

scenario is remarkably different from the above scenarios, showing

more severe detection difficulties and challenges. Specifically, there

is an unfavorable fact that the most common clothes of outdoor

travelers and soldiers are camouflage clothes, which are too similar

to the characteristics of the surrounding environment to distinguish.

Moreover, the injured human target is just a tiny target with a much

smaller size compared with the surrounding environment under an

airborne view. Target to this challenge, only a few studies were carried

out around the multispectral characteristics of camouflage and the

identification of soldiers’ camouflage equipment. For example, Wang

et al. (27) explored the hyperspectral polarization characteristics

of typical camouflage targets in desert background. Lagueux et al.

(28–30) further measured the multispectral characteristics of the

camouflage uniforms and some other soldier’s camouflage equipment

in different conditions, showing that the multispectral is promising to

detect the camouflage equipment even under deliberate camouflage.

Based on this advantage, PAR Government Systems Corporation

even tried to detect and recognize the mine-like small target by

adding a temporal dimension to the spectral processing (31) in desert

background. In this regard, our group also tried to recognize the

injured human targets in camouflage in a static outdoor environment

based on UAV-multispectral features (32). In the latest research,

researchers have even begun to study image target recognition under

changing environmental factors (like illumination, seasonal and

weather) based on deep learning (16, 33), but the object and the

environmental background objects always keep consistent.
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FIGURE 1

(A) The overall architecture of the UAV multispectral collection system,

(B) multispectral module with six specific bands.

In general, research on the multispectral characteristics analysis

and recognition of camouflage targets under a single static

background has made gratifying progress. Unfortunately, in

a practical air-to-ground searching operation, adverse ground

environmental conditions will bring two critical challenges: (1)

Complex outdoor ground environment components. During the

detection of outdoor camouflaged injured human targets, any

ground environment scene (desert, mountain forest or urban

scene) is composed of many ground components, such as trees,

green grass, yellow soil, stones and polychromatic plants, and

their spectral characteristics even change with light and seasons.

Compared to the ground environment, the injured human in

camouflage clothes is just a small target and usually with similar

camouflage color. Consequently, it’s challenging to recognize the

human target under such low target-ground contrast condition with

high accuracy and robustness. (2) Cross ground environment or

cross scene. For a practical outdoor urgent search mission, the

ground environment is diverse and keeps switching dynamically

and randomly. Consequently, traditional recognition methods and

models trained based on multispectral characteristics from a specific

single environment scene will perform poorly in an unknown scene,

showing poor robustness and weak multi-scene stability.

3. UAV-based multispectral detection
system

3.1. UAV-carrying system and ground
workstation

As illustrated in Figure 1A, the M100 Quad-rotor UAV

system (34) is adopted here for serving as a platform to carry

the multispectral camera, considering its advantages of smooth

reliability, flexibility and portability, and the reserved expansion

interfacefor convenient hardware integration and secondary

development. The ground workstation is responsible for information

transmission, target identification, and system control.

3.2. The optimized MSS module

The multispectral sensing (MSS) module on a cruising UAV

is used to acquire some specific spectral features of the target

background for suspected human targets detection during the

entire search process. In our study, a few specific multispectral

bans are selected by observing and analyzing the sensitivity of

different spectral bands to the environment and background.

Consequently, some optimal bands would be picked out from

numerous hyperspectral bands, which have the greatest ability to

distinguish suspected human targets from the natural environment

with complex background situations.

To pick out these discriminative spectral bands, a large number

of preliminary measurement experiments were carried out to obtain

the wavelength-relative reflectivity curve for green vegetation (to

simulate background) and green camouflage (to simulate suspected

injured human target outdoors) using a spectrometer. Just as what we

analyzed and validate in our previous paper (32), six specific bands,

including the blue band (450 ± 3 nm), green band (555 ± 3 nm), red

band (660 ± 3 nm), red edge (710 ± 3 nm) and near-infrared (840

± 3 nm and 940 ± 3 nm), were selected as spectrum components for

custom multispectral cameras. According to the requirements above,

the MS600 camera shown in Figure 1B was adopted in our study.

4. Cross-scene camouflaged human
targets recognition method

4.1. Modeling analysis of cross-scene target
recognition

The multispectral feature-based recognition method

demonstrates good recognition performance in its own scenario, but

the performance will be severely limited for a complex and dynamic

ground-environment scenario. In order to clarify this phenomenon

theoretically, we first model and analyze it.

In the practical application, the ground components in the

environment are more complex and environment types are different

and changeable during the searching process. Since the distribution

location of the outdoor target is unknown and random, the ground

environment in which the UAV system performs searching missions

is also randomly unknown and even dynamically transformed

(Woodland, Desert or Urban). However, it can be inferred from

Figure 2 that the recognition model ModelW trained based on

woodland scene data could only get significantly lower accuracy

for target recognition in desert scenes and urban scenes, showing

poor multi-scene universality and robustness. At a deeper level, it

is because although the set of spectral features used to describe the

environmental background and target is fixed, the importance and

contribution of the same feature element to the target recognition

result varies greatly in different scenarios. That is to say, most of

the features are environment sensitive, thus single-scene recognition

model, namely the undermentioned single-scene multi-domain

feature optimization model in “Section 5”, will inevitably undergo

poor adaptability and unsatisfactory recognition performance in

cross-environment situation. Therefore, it is of practical application

to propose a global classification model ModelGlobal and could

also maintain good classification performance simultaneously under

dynamic environment scenario.
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FIGURE 2

Schematic diagram of the relationship between di�erent scene

classification models.

4.2. CMFJO method for cross-scene
camouflaged human targets recognition

Target to the aforementioned cross-scene recognition problem,

the CMFJO method based on the UAV multispectral multi-domain

features from multiple environmental scenes is proposed and its

entire implementation process is illustriated by Figure 3. Next, the

main steps of the CMFJO method and corresponding key methods

are described in this section.

4.2.1. The scheme of CMFJO method
4.2.1.1. 1st step

Cross-scene multispectral images acquisition. By scanning

ground targets based on the UAV multispectral camera system

in the cruising state, six corresponding multispectral images can

be acquired for each exposure. Depending on different scenes,

cross-scene multispectral images of various ground targets could

be collected. As for outdoor search applications, 3 typical ground

scenarios are considered here, including desert, mountain forest, and

urban scenes.

4.2.1.2. 2nd step

Multispectral image preprocessing. As shown in Figure 3, the

preprocessing on the above six single band images mainly includes

two operations of radiation correction and band registration.

(1) Radiation correction. As shown in Figure 4, for the 6 single-

band DN-value images acquired by the multispectral camera at

each exposure, through identifying and calculating the average

irradiance of the gray plate region based on the gray plate images,

followed by the image aberration correction using downwelling

light sensor, the original DN-value images would be correctly

converted to reflectance images.

(2) Waveband alignment. For a set of six reflectance images after

radiometric calibration, direct image merging would cause

serious pixel misalignment due to the obvious position offset

between each band camera, which will bring about difference and

ratio errors in the spectral index calculation. Therefore, high-

precision band alignment would be conducted to eliminate such

errors. Firstly, according to the geometric constraint relationship

between optical lenses, Speeded Up Robust Features (SURF)

algorithm is exploited to extract feature points. After feature

point matching and affine transformation matrix calculating, the

images are reprojected according to the affine transformation

matrix, and then the corresponding six images are combined

according to the band order, thus forming a 6-in-1 synthetic

multispectral reflectance band aligned image.

4.2.1.3. 3rd step

Multi-domain feature extraction. After dividing the ground

targets into 2 major categories, namely human target and

background, three-domain features including spectral features,

texture features, and spatial frequency features, were extracted from

the aligned 6-band images and the multispectral synthetic image,

forming a multi-domain feature description set of the ground target.

Specifically, as shown in Figure 4, a total of 50 features of these

types were extracted to form the multi-domain feature description

set FGlobal:

FGlobal =







Freflect (rb1, rb2, rb3, rb4, rb5, rb6, Findex)

Ftext (Mean,Var,Con,Hom,Dis,Ent,ASM,Cor)

Fconv
(

hpb1, hpb2, . . . , hpb6; lpb1, lpb2, . . . , lpb6
)







(1)

Findex = Findex (NDVI,NDGI,NGBDI, PSRI, SIPI,mNDVI,MSR,EVI)

(2)

① Spectral reflectance feature Freflect: rb1to rb6 are the radiation-

corrected reflectance values corresponding to those six bands

of multispectral images. Findex are eight spectral index features

and their calculation methods have been talked about in our

previous paper (32), which could enhance detail characteristics by

combining the reflectance values of multiple bands.

② Texture features Ftext: Texture is computed by the grayscale

attribute of pixels and their neighbors, which helps to distinguish

the phenomenon of “same-spectrum, different-spectrum”.

Here the principal component analysis (PCA) is firstly used

to downscale the 6 bands and only the first 3 principal

components are retained, including Imag(PCA1), Imag(PCA2)

and Imag(PCA3),. Thus each band corresponds to a set of 8

features, and then 24 texture features from Ftexture (PCA1),

Ftext (PCA2) , and Ftext (PCA3) could be extracted using the

grayscale co-generation matrix (GLCM) method, which can

characterize the image grayscale direction, interval, change

amplitude and speed, etc.

③ Spatial frequency features Fconv: High-pass filtering and low-

pass filtering are performed on the pre-processed six multispectral

reflectance images. Consequently, hpb1to hpb6 are the high-

frequency features corresponding to those six bands, which

correspond to the edge information between different regions.

Meanwhile, lpb1to lpb6 are the low-frequency features, which

correspond to the low-frequency information of the image to

obtain the grayscale changes and image details.

In summary, the multi-domain feature Fglobal can be expressed as:

FGlobal =

{

Freflect , Findex, Ftext (PCA1) , Ftext (PCA2) ,

Ftext (PCA3) , Fconvo
(

lp
)

, Fconvo
(

hp
)

}

(3)
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FIGURE 3

Scheme of cross-scene camouflaged human targets recognition.

FIGURE 4

The diagram of multi-domain features from multispectral images.

where Ftext (PCAi) represents the grayscale co-occurrence matrix

texture feature corresponding to the i− th principal component after

PCA decomposition, Fconvo
(

lp
)

and Fconvo
(

hp
)

represent the low-

pass and high-pass frequency features respectively. Finally, all the 50

features in 3 major domains are numbered to form a global feature

vector FGlobal shown in Equation (3).

4.2.1.4. 4th step

Optimal feature vector selection from multi-scene multi-domain

feature. Targeting the problem that the single-scene recognition

model is inclined to expose poor recognition performance and weak

robustness under switching scenes, here we try to filter out the

superior feature subset from multi-domain features under multiple

scenes, whose biggest advantage is that it can be adapted to ground

human target recognition under various outdoor scenes, enhancing

its recognition performance and practicality.

Firstly, three main types of outdoor ground environments

(Woodland,Desert orUrban) are considered here, thusmulti-domain

feature description sets of different ground targets (camouflaged

human target and ground background) in different scenes were

obtained. Then, the SVM-based Recursive feature elimination (SVM-

RFE) and Relief algorithms (Both of them will be introduced in the

following part) are used to sort the original feature set according to

the contribution of different features to the recognition result from

largest to smallest, forming two sorting results FRFE and FReli. After

that, taking the selected Top-n (1 ≤ n ≤ 50) features according to the

ranking as input features, the SVM is exploited as a classifier to test

the target recognition efficiency of the Top-n feature combination.

In this way, multi-domain optimized feature vector, which can

guarantee a good recognition performance in multiple scenarios with

the smallest possible number of features, are automatically filtered.

Here, the classification accuracy (Acc) and the Area Under the

Curve (AUC) of the Receiver Operating Characteristic (ROC) curve

were calculated for each SVMmodel through 5-fold cross-validation,

which aim to evaluate each model’s classification performance.

Considering the urgency of the UAV casualty search task and

the fact that the experiments are pixel-level recognition with high

error tolerance, the principle of selecting the smallest possible

feature vector while avoiding significantly degrading the classification

accuracy was adopted in the feature selection. Therefore, four feature

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2023.999378
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Qi et al. 10.3389/fpubh.2023.999378

vectors with local optimal performance could be obtained, including

MaxAcc(Top− k− FRFE) ,MaxAcc(Top− l− FReli),MaxAUC(Top−

m − FRFE) and MaxAUC(Top − n − FReli). Accordingly, four

corresponding recognition models could be generated by training

and then verified using test dataset. Finally, the classification result

figure, key parameter table and ROC curves were exploited together

to evaluate the classification performance, which helps filter out the

optimal multi-domain feature vectors with stable and efficient target

recognition capability for cross-scene situations F∗:

F∗ = Max
{

Confusion Matrix
{

MaxAcc(Top− k− FRFE),MaxAcc(Top− l− FReli),

MaxAUC(Top−m− FRFE),MaxAUC(Top−m− FRFE)

}}

(4)

4.2.1.5. 5th step

Target classification. Based on sufficient feature datasets of

different scenes, the recognition model (here the SVM is adopted)

can be well trained and optimized. During the test stage, For a

set of multispectral images with camouflaged human targets and

environmental background detected by theUAVmultispectral system

in any scene, human targets can be recognized based on the above-

mentioned merit feature vectors combined with the well-trained

recognition model.

4.2.2. SVM-RFE and relief algorithms for feature set
optimization
4.2.2.1. SVM-RFE-based feature set optimization

The SVM-RFE constructs the sort contention based on the weight

vector W generated by the SVM during training. Each iteration

removes a feature attribute with the smallest sorting coefficient,

and finally the descending order of all feature attributes would

be acquired.

The linear kernel function-Relief is adopted here:

δj =

n
∑

i



−diff
(

x
j
i, x

j

i,nh

)2
+

k
∑

l

P∗l diff
(

x
j
i, x

j

i,l,nm

)2



 (5)

Where δj is related statistics of j attribute, x
j
i represents the value

of j attribute in sample xi, x
j

i,nh
is the value of j attribute of near-

hit xi,nh from the sample xi, Pl is the sample proportion of type l,

x
j

i,l,nm
is the value of j attribute of near-miss xi,l,nm from the sample xi,

diff
(

x
j
i, x

j

i,nh

)

means the difference between xi and xi,nh in j attribute,

and diff
(

x
j
i, x

j

i,l,nm

)

means the difference between xi and xi,l,nm in

j attribute.

4.2.2.2. Relief -based feature set optimization

Relying on the idea of “hypothesis margin,” Relief evaluates the

classification ability of features on every dimension, so that the

most useful feature subset for classification can be approximately

estimated. The “hypothesis interval” refers to the maximum distance

that the decision surface can move while keeping the sample

classification unchanged, which can be expressed as :

θ =
1

2
(
∥

∥x−M(x)
∥

∥ −
∥

∥x− H(x)
∥

∥) (6)

where M(x) and H(x) refer to the nearest neighbors that are

homogeneous with x and that is not.

Supposing that the training set is D =

{
(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xm, ym
)

, for each sample xi, the near-

heat xi,nhcould be acquired by calculate the nearest neighbor between

xi and the same-class sample. On the other hand, the near-miss xi,nm
coms from the nearest neighbor between xi and the non-similar

class sample. Consequently, the correlation statistic corresponding

to attribute j is:

δj =
∑

i

−diff
(

x
j
i, x

j

i,nh

)2
+ diff

(

x
j
i, x

j
i,nm

)2
(7)

where x
j
a represents the value of j attribute in sample xa, and

diff
(

x
j
a, x

j

b

)

depends on the type of attribute j (here is discrete

attributes):

diff
(

x
j
a, x

j

b

)

=

{

0, x
j
a = x

j

b

1, otherwise
(8)

Through Equsation (7), the evaluation value of a single sample

for each attribute can be obtained. By averaging all the evaluation

values of all samples for the same attribute, the relevant statistical

components of the attribute can be obtained, where the larger the

component value means the stronger classification ability.

4.3. Experimental setup

Here, just as shown in Figure 5, we set up a dynamic cross-

scene environment scenario set containing multiple typical ground

environments (desert, woodland, and urban) and a complex scenario,

so as to test the effectiveness and robustness of the proposed method

for recognition under practical applications. The system parameters

of the data collection system remain consistent, and only the ground

environment scene changes.The uniform flight height was 100m, and

clear and breezy weather was selected. The air-to-ground detection

data was acquired based on a small UAV multispectral system with

a flight height setting of 100m. Some key parameters were set as

follows, aerial strip spacing of 27.4m, the flight speed of 4.4 m/s,

ground image resolution of 6.25 cm/pixel, and field of view angle

width of 80 m∗60m. The automatic capture mode overlap trigger

was used, with a heading overlap rate of 80% and a side overlap of

50%. In particular, a calibrated gray plate is taken before and after

the flight for radiation correction. Simultaneously, different color

camouflage uniforms were used to simulate injured human targets

under corresponding experimental scenes, and their locations were

randomly distributed. The main characteristic ground components

in each experimental scenario are shown in Table 1.

Based on the above uniform ground experimental setup,

three typical outdoor scenes were selected for data acquisition.

(1) For the desert scene, we selected the Han Chang’an City

Ruins Park for similar desert scene data acquisition in December

2021 (winter), and could obtain 2,220 spectral images with

different observation angles after multiple flight acquisitions.

(2) For woodland scenes, 3 typical outdoor scenes were selected

for data acquisition in the outskirts of Huxian, Shaanxi In

June (summer), October (autumn) and March (spring) of

2020, a total of 2,214 multispectral remote sensing images of

woodland scenes were collected several times. (3) For urban

scenes, the stadium and surrounding buildings in the Fourth
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FIGURE 5

Experimental scenarios under di�erent environments. (A) desert scenario; (B) woodland scenario; (C) urban scenario; (D) complex scenario.

TABLE 1 Main characteristic ground components of di�erent experimental

scenarios.

Experimental
scene

Main components Simulated
injured human
targets

Desert scene Waste ground, shrubs, dead

trees, dead grass, rocks

Desert camouflage

Woodland scene Grass, trees, bare earth, weeds Woodland

camouflage

Urban scene Buildings, roads, vehicles,

vegetation

Urban camouflage

Complex scene Buildings, tarmac,

grass, vegetation Moorland,

shrubs, dead grass, dead trees

Three kinds of

camouflage

Military Medical University were selected as the background to

simulate urban scenes for spectral data acquisition, and a total

of 1,182 multispectral remote sensing images were obtained in

December 2021.

Although a large number of spectral images from different

observation angles are available for each scene, here only

images from aerial orthogonal views are selected to maintain

consistency in the impact parameters. For each image, multi-

domain features are extracted to form the experimental data,

and pure pixels are selected as experimental samples. Specifically,

in the feature data acquisition stage of this study, the human

target and background environmental components are first

manually calibrated and segmented from the collected original

data, then nd then the relevant spectral features are extracted

automatically based our designed feature extraction algorithm.

Since the feature species are fixed, the feature dimension

is consistent.

In particular, after checking for sample integrity and removing

outliers, the sample size is controlled by equally spaced sampling

of the background samples to minimize the differences arising

from the imbalance between positive and negative samples, so

that the target and background sample sizes are close to a 1:1

ratio. In addition, we set the desert environment feature label as

negative sample “0” and the camouflage target label as positive

sample “1”. Finally, we obtain the number of environmental

samples and target samples for different scenes. Further divided

into training set and test set, we can obtain Desert dataset (3,665

environmental samples and 3,371 desert camouflage samples in

the training set; 7,533 environmental feature samples and 7,184

desert camouflage samples in the test set), Woodland dataset

(16,227 environmental samples and 13,187 woodland camouflage

samples in the training set; 6,164 environmental feature samples

and 5,502 woodland camouflage samples in the test set) and

Urban dataset (10,568 environmental samples and 8,001 urban

camouflage samples in the training set; 8,762 environmental

feature samples and 7,700 woodland camouflage samples in the

test set).

Based on the corresponding feature data sets of the

above three typical scenes and an additional complex

scene (shown in Figure 5D), the subsequent cross-scene

recognition experiments based on the single-scene multi-

domain feature optimization (SMFO) model and the cross-scene
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FIGURE 6

Classification results based on the Top-n features via two ranking methods of SVM-RFE and Relief, (A) Acc value, (B) AUC value.

FIGURE 7

(A) Desert test scene with three desert camouflages, (B) Recognition results of di�erent recognition models based on 4 superior feature vector, I

(Top-6-FRFE), II(Top-10-FRFE), III (Top-7-FReli), and IV(Top-10-FReli).

recognition experiments based on CMFJO model will be tested

and analyzed.

4.4. SMFO model-based camouflaged target
recognition under di�erent single-scene
environment

In general, the main process of training a model for target

recognition from a single scene data consists of two main steps.

First, multi-domain features are obtained for the background

feature components and the simulated casualty target in the

spectral image of the scene. Then, based on the feature selection

method, the superior feature vectors for this scene are selected

to build a recognition model based on the superior feature

vectors to perform target recognition. The detailed process has

already been explained in “Section 3.2” and will not be repeated

here. Here we would like to explore and discuss the recognition

effectiveness of the single-scene recognition model through multi-

domain features optimization.

4.4.1. Individual scene target recognition based on
SMFO model

In order to investigate the recognition effect of a single scene

recognition model in the case of feature selection, the multi-domain

feature data set of multispectral remote sensing images based on any

scene is divided into a training set and a test set. The SVM-RFE and

Relief algorithms are then used to rank the features of the training

set and reasonably select the superior feature vector to form the

recognition model for target recognition in this scene.

4.4.1.1. Desert scene experiment

Based on the desert scene dataset, five-fold cross-validation was

performed after setting the SVM model parameters using the grid-

seeking method. Then the average Acc and AUC results for each

iteration were calculated separately as shown in Figure 6.
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TABLE 2 Desert camouflage recognition results of 4 SVMmodels based on 4 superior feature vector in desert scene.

Superior feature
vectors

Accuracy Sensitivity Specificity Precision F1 score Kappa

Top-6-FRFE 0.9635 0.9623 0.9648 0.9663 0.9643 0.9270

Top-10-FRFE 0.9566 0.9527 0.9606 0.9621 0.9574 0.9131

Top-7-FReli 0.9304 0.9060 0.9560 0.9557 0.9302 0.8609

Top-10-FReli 0.9229 0.8979 0.9491 0.9487 0.9226 0.8459

Considering the classification accuracy, the Top-10 features

through RFE sorting (namely Top-10-FRFE) achieved a local

optimum of 99.70%, while the top-10 features through Relief sorting

(namely R_ Top-10-FReli) also achieved a local optimum of 99.65%.

Meanwhile, from the AUC results, the Top-6-FRFE and Top-7-FReli
achieved optimal classification performance of 0.999 and 0.997

respectively. Therefore, these four feature vectors were initially

selected for the SVM recognition model training, thus forming four

SVMmodels, whose recognition performance would be validated via

test data set.

During the desert scene test, as shown in Figure 7A, three desert

camouflage suits were randomly laid on the ground to simulate

battlefield casualties. Visually, the desert camouflage suits were so

well camouflaged in the desert scenario that it was difficult to find

the casualty target quickly through machine vision. However, just

as shown in Figure 7B, the four recognition models recognized the

three desert camouflage suits successfully based on the above 4

feature combinations screened out in the previous step. To further

quantitatively evaluate the recognition results, a key parameter table

was adopted for evaluation and the results are shown in Table 2. The

results show that the Top-6-FRFE-based SVM model exhibits the best

performance, thus it is chosen as the single-scene optimal feature

vector for desert camouflage casualties searching in desert scenes,

noted as F∗D.

4.4.1.2. Woodland scenario experiment

The feature vector selection process for woodland scenes is

similar to that for desert scenes. Based on the woodland scene

dataset, two superior feature vectors Top-10-FRFEand Top-10-

FReliwere initially screened for validation. The woodland scenario test

environment shown in Figure 8A, is mainly grass and a total of 10

jungle camouflage uniforms are laid to simulate battlefield casualty

targets. From Figure 8B, the jungle camouflages could be recognized

based on the 2 recognition models based on the Top-10-FRFEand

Top-10-FRelifeatures vectors, respectively.

Just as classification results demonstrated by the key parameter

table in Table 3, the Top-10-FRFE-based recognition model achieved

better performance, thus it is chosen as the single-scene optimal

feature vector for jungle camouflage casualties searching in woodland

scene, noted as F∗W .

4.4.1.3. Urban scenario experiment

Based on the urban scenes dataset, four feature vectors, including

Top-7-FRFE (with max Acc of 99.68%), Top-10-FReli (with max Acc

of 99.74%), Top-3-FRFE and Top-7-FReli (both with max AUC of

1), were initially selected as feature vectors to construct superior

recognition model.

As shown in Figure 9A, the urban scenario experimental

environment contains a school basketball court and surrounding

FIGURE 8

(A) Woodland test scene, (B) Recognition results of two recognition

models based on two superior feature vector, I (Top-10-FRFE) and II

(Top-10-FReli).

buildings, and 12 urban camouflages were laid centrally to simulate

battlefield casualties. Then, these four superior models mentioned

above were applied to recognize these urban camouflages under the

urban environment. According to the classification results shown

in Figure 9B and its quantitative key parameters in Table 4, the

Top-10-FRelief -based recognition model achieved the optimum for

all parameters, and thus was selected as the single-scene optimum

feature vector for the camouflage casualties identifying in an urban

environment, noted as F∗U .

4.4.2. Cross-scene target recognition based on
SMFO model

The aforementioned experiments revealed that each superior

recognition model constructed from corresponding single-scene

superior feature vector always exhibits an excellent recognition

performance under its own scene. However, there is a fact that

the searching ground environment is diverse and keeps switching

dynamically and randomly. Therefore, it’s necessary to investigate

the recognition performance of a fixed-scene recognition model

for other different types of scenes, like desert-scene model for

woodland-scene recognition, or urban-scene model for woodland-

scene recognition, etc.

For this purpose, taking the SVM as the classifier, corresponding

recognition models could be obtained based on the training data of

different scenes, namely F∗D -based Model, F∗W -based Model and F∗U
-based Model. Then, each SMFO model was adopted to classify the
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TABLE 3 Jungle camouflage recognition results of 2 SVMmodels based on 2 superior feature vector in woodland scene.

Superior feature
vectors

Accuracy Sensitivity Specificity Precision F1 score Kappa

Top-10-FRFE 0.9981 0.9982 0.9980 0.9982 0.9982 0.9962

Top-10-FReli 0.9962 0.9995 0.9925 0.9934 0.9964 0.9924

FIGURE 9

(A) Urban test scene with 12 camouflages, (B) Recognition results of di�erent recognition models based on four superior feature vector, I (Top-3-FRFE),

II(Top-7-FRFE), III (Top-7-FReli), and IV(Top-10-FReli).

TABLE 4 Camouflage recognition results of 4 SVMmodels based on 4 superior feature vector in urban scene.

Superior feature
vectors

Accuracy Sensitivity Specificity Precision F1 score Kappa

Top-3-FRFE 0.8398 0.9069 0.7634 0.8135 0.8576 0.6756

Top-7-FRFE 0.9585 0.9906 0.9219 0.9352 0.9621 0.9163

Top-7-FReli 0.9640 0.9642 0.9638 0.9680 0.9661 0.9277

Top-10-FReli 0.9739 0.9821 0.9647 0.9694 0.9757 0.9476

multispectral data of both its own scene and the other two scenes

in turn and the results of scene cross-classification are shown in

Figure 10. It can be intuitively seen that the recognitionmodel of each

typical scene has a good classification effect for unknown target data

in the same type of scene. However, its recognition performance in

other different scenes is unsatisfactory, indicating that the fixed scene

recognition model has a large limitation and weak robustness.

4.5. CMFJO model-based camouflaged
target recognition under cross-scene
environment

To address the problem that the recognition performance of

SMFO model deteriorates severely under cross-scene applications,

the CMFJO model-based camouflaged target recognition method

is proposed. It mixes all the feature training sets of three typical

scenes together to form a comprehensive training set, and then a

global optimal feature vector F∗
global

was filtered out to construct

the CMFJO model, which could be well suited to cross-scene

environment recognition in practical application. Meanwhile, as a

reference method, we superimpose the superior feature subsets of

those three typical scenes in Part 4.2 directly and combine them to

form a multi-scene combined feature vector F+
glo
, which is trained

to construct a cross-scene recognition model based on the combined

features of scenes.

4.5.1. Reference recognition model
The superior feature subsets F∗D, F

∗
W, and F∗U for the mentioned

three typical scenes respectively have been selected. Then, they are

directly superimposed to form the multi-scene combined feature

vector F+
glo
, which are total of 18 features shown in Table 5 and were

trained to construct a cross-scene recognition model.

4.5.2. CMFJO recognition model
Firstly, Based on the comprehensive training set consisting of

all features of those three typical scenes, the SVM-RFE and Relief

algorithms are exploited for feature ranking via five-fold cross-

validation, and the results are shown in Figure 11. According to
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FIGURE 10

Cross-scene target recognition results based on SMFO model.

TABLE 5 The overlay multi-scene combined feature vector F+

glo
from 3

typical scenarios.

No. Parameter Feature type

4 Band 4 (710 nm) Reflectivity

7 NDVI Spectral index

8 NDGI Spectral index

9 NGBDI Spectral index

12 mNDVI Spectral index

13 MSR Spectral index

14 EVI Spectral index

15 Mean of PCA1 Texture

17 Homogeneity of PCA1 Texture

20 Information entropy of PCA1 Texture

21 Second order matrix of PCA1 Texture

24 Variance of PCA2 PCA Texture

27 Dissimilarity of PCA2 Texture

28 information entropy of PCA2 Texture

36 information entropy of PCA3 Texture

40 Low Pass Filter in Band 2 (555nm) Spatial frequency

41 Low-pass filter in band 3 (360nm) Spatial frequency

42 Low-pass filter in band 4 (710nm) Spatial frequency

the results of Acc and AUC, the Top-11-FRFE (local optimum Acc

of 98.98%), Top-17-FReli(with local optimum ACC of 98.67%), Top-

7-FRFE(with local optimum AUC of 99.55%) and Top-17-FReli(with

local optimum AUC of 99.07%) were initially filtered out. Then,

these three superior feature vectors and the multi-scene combined

feature vector F+
glo
, were selected to conduct the target recognition

experiments under multiple transformed scenes.

In order to test the recognition performance of the above

four superior feature vectors under dynamic switching scenarios,

namely cross-scene, a complex scene containing multiple scenes was

deliberately set up as a test. As shown in Figure 12A, this scene

contains most of characteristic components of three typical scenes,

and meanwhile, each set of 4 camouflage uniforms (desert, woodland

or urban) were used to simulate injured casualty targets lying flat

position with casualty locations laid out randomly. The observational

recognition results are shown in Figure 12 and its key parameter

evaluation results are shown in Table 6. Further, the ROC curves of

the four superior feature sets were analyzed and the results are shown

in Figure 13.

In summary, according to all the analysis above, it is clear that

Top-7-FRFEholds the best recognition performance and can be taken

as the cross-scene multi-domain optimal feature vector F∗Cro, whose

specific features are shown in Table 7.

4.5.3. Multiple-scene recognition experiments
Based on the aforementioned 5 feature vectors, including the

single-scene optimal F∗D, F
∗
W, and F∗U , multi-scene combined feature

vector F+
glo

and the cross-scene optimal feature vector F∗Cro, five

corresponding recognition models were generated through training,

respectively. Then, the testing datasets of desert scene, woodland

scene, urban scene and composite scene were exploited to test

the classification performance of each recognition model. As the

classification results shown in Figure 14, it can be found that F∗Cro-

based model always maintains a high classification level of over

85% and always outperforms both the single-scene model and the

combined-feature model. It strongly demonstrates that the selected

optimal F∗Cro have a better characterization ability for different scenes,

leading to its recognition model’s environmental adaptation ability

being significantly better than every SMFOmodel. Although the F∗Cro-

based model’s performance in a few scenes is slightly worse than

the signal-scene feature vector model F∗D-based model for desert-

scence recognition, F∗U -based model for urban-scence recognition,

it’s normal and is possibly related to the small volume of data.

The experimental results above clearly show that the SMFO

models have serious limitations, and their classification performance

is unsatisfactory in cross-scene conditions. On the contrary, the

F∗
global

-based CMFJO model acquired a classification accuracy

of 92.55% in complex cross-scene conditions (desert, woodland,

urban scene and composite scene), implying that it can improve

the robustness and practical usability of the classification method

for cross-scene situation while guaranteeing better performance.

Therefore, the classification method proposed in this paper exhibit

a promising recognition performance of outdoor camouflaged

human targets using UAV multispectral system under low

contrast environment.

5. Discussion

In view of the fact that the current ground human target

recognition model is only oriented to a fixed single scene and cannot

meet the cross-scene conditions in actual application, a CMFJO-

based recognition method using UAV-mounted multispectral system

is proposed. We can clearly see that the model trained under a

single scene can effectively recognize targets in the same type of

scene (desert scene with 96.35%, woodland scene with 99.81%, urban

scene with 97.39%), but its recognition performance is severely

degraded in other types of scenes. In fact, this is because the
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FIGURE 11

Classification results based on the Top-n features via two ranking methods of SVM-RFE and Relief under cross-cene situation, (A) ACC values of Top-n

features from ensemble feature set, (B) AUC values of Top-n features from ensemble feature set.

FIGURE 12

(A) Complex test scene, (B) Recognition results of di�erent recognition models based on four feature vectors, I (Top-7-FRFE), II(Top-11-FRFE), III

(Top-17-FReli), and IV(F+glo).

TABLE 6 Complex scene classification results of four superior feature vector-based recognition models.

Superior feature
vectors

Accuracy Sensitivity Specificity Precision F1 score Kappa

Top-7-FRFE 0.9255 0.8978 0.9574 0.9574 0.9266 0.8510

Top-11-FRFE 0.8984 0.8485 0.9533 0.9524 0.8974 0.7974

Top-17-FReli 0.8545 0.7746 0.9426 0.9369 0.8480 0.7109

F+glo 0.8807 0.8146 0.9536 0.9508 0.8775 0.7626

spectral, texture and spatial frequency characteristics of various

ground components in a single type of scene have serious scene

limitations and weak universality. Unfortunately, multiple types

of scenes may occur in the practical cross-scenes condition and

will contain various ground components, which means richer and

more complex spatial distribution of these 3-domains multispectral

parameter values. Consequently, the SMFO model will not be able to

keep a good classification performance for such complex cross-scene

multispectral feature data. Therefore, our proposed CMFJO method

is just targeted to solve this problem, which can not only characterize

objects frommultiple aspects but also aims to enhance its cross-scene

environmental applicability and cross-scene robustness.

Although the recognition is satisfactory to some extent for this

challenging identification task, this method also has a few limitations
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FIGURE 13

ROC curves of the four superior feature sets.

TABLE 7 Cross-scene multi-domain superior feature vector F∗

global.

No. Parameter Feature type

42 Low pass filter in band 4 (710nm) Spatial Frequency

40 Low pass filter in band 2 (555nm) Spatial Frequency

4 Band 4 (710 nm) Reflectivity

9 NGBDI Spectral Index

20 information entropy of PCA1 Texture

46 High pass filter in band 2 (555nm) Spatial Frequency

45 High pass filter in band 1 (450nm) Spatial Frequency

FIGURE 14

Classification ability comparison of single-scene merit feature set and

cross-scene multi-domain superior feature vector.

for practical application in the future. Firstly, only three typical scenes

were considered in this study while three are some other complex

scenes in practical applications. Secondly, here we can just detect

and recognize the camouflaged suspected human targets based on

multispectral features. In the practical outdoor injured people search-

and-rescue operation, what we need to do further is trying to realize

the injured human attribution identification with the help of other

additional sensing information, like morphological characteristics of

the human body and even vital signs. Additionally, due to the feature

extraction work in this study was carried out at the pixel level, so

our dataset can meet the basic requirements of dataset size for the

recognition experiments. But up to the image level for deep learning

model-based human targets recognition study, our dataset is far from

enough and more experiments in outdoor scenarios needed to be

conducted to collect enough multispectral data.

6. Conclusions

In response to the challenging task of rapid search of ground

injured human targets in outdoor environments, UVA-based

multispectral detection and recognition technology is an effective but

challenging new method and our previous research has preliminarily

proved its feasibility.

Unfortunately, the human target exhibit low target-background

contrast relative to the surrounding environment, and meanwhile the

ground environment is variable and arbitrarily namely cross-scene

transformed, so it is difficult to achieve stable and highly accurate

target recognition under transformed scenes. Therefore, in this paper,

we propose a CMFJO method for the cross-scene outdoor injured

human target recognition.

In the experiments, we first screen the single-scene superior

feature vector for each scene itself to construct the corresponding

recognition model, namely the SMFO model, and then it was

exploited to recognize targets in different scenes. Experimental results

show that the SMFO model holds good recognition capability for

its own scene (96.35% in desert scenes, 99.81% in woodland scenes,

and 97.39% in urban scenes), but the recognition performance for

other scenes deteriorates sharply (even below 75% overall) when the

scene changes. In contrast, the CMFJO method proposed in this

paper achieved an average classification accuracy of 92.55% in the

cross-scene transformed situation. This result is very meaningful

and important because it first time identifies the optimal multi-

domain feature vectors with stable and efficient target recognition

capability for cross-scene situations, and constructs a cross-scene

superior recognition model. Therefore, it’s promising to further

enhance the accuracy and usability of UVA-based multispectral

detection and recognition technology for outdoor injured human

target searching in practical application conditions, like outdoor

lost traveler search, casualty search in cross-domain combat and

post-disaster casualty search. In the following work, we will try to

exploite deep learning-based cross-scene recognition method into

this research and to establish a large multi-scene outdoor human

targets UAV-multispectral dataset (considering different human

number, background, season, light and some other key factors).
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