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Were metabolic and other
chronic diseases the driven onset
epidemic forces of COVID-19 in
Mexico?

Gerardo Acevedo-Sánchez1†, Gustavo Mora-Aguilera1*†,
Juan J. Coria-Contreras1 and Ikuri Álvarez-Maya2

1Laboratory of Epidemiological Risk Analysis (LANREF), Postgraduate College, Montecillo Campus,
Texcoco, State of Mexico, Mexico, 2Center for Research and Applied Technology in Jalisco (CIATEJ),
Guadalajara, Jalisco, Mexico

The underline hypothesis of this study was that SARS-CoV-2 can infect individuals
regardless of health condition, sex, and age in opposition to the classical
epidemiological assumption of an identifiable susceptible subpopulation for
epidemic development. To address this issue, a population cohort with 24.4
million metadata associated with 226,089 o�cial RT-qPCR positive and 283,450
negative cases, including 27,769 deceased, linked putatively to B.1. and B.1.1.

SARS-CoV-2 lineages were analyzed. The analysis baseline was to determine the
infection and mortality structure of the diseased cohort at the onset-exponential
phase of the first epidemic wave in Mexico under the assumption of limited herd
immunity. Individuals with nonchronic diseases (NOCDs) were compared with
those exhibiting at least one of 10 chronic diseases (CDs) adjusted by age and
sex. Risk factors for infection and mortality were estimated with classification
and regression tree (CART) and cluster analysis based on Spearman’s matrix of

rho-values in RStudio
®
, complemented with two proposed mortality indices.

SARS-CoV-2 infection was independent of health condition (52.8% NOCD vs.

47.2% CDs; p = 0.001–0.009) but influenced by age >46 in one risk analysis
scenario (p < 0.001). Sex contributed 9.7% to the overall risk. The independent
e�ect was supported by the health structure of negative cases with a similar
tendency but a higher proportion of NOCDs (61.4%, p = 0.007). The infection
probability in individuals with one CDwas determined by the disease type and age,
which was higher in those older individuals (≥56 years) exhibiting diabetes (12.3%,
cp = 0.0006), hypertension (10.1%, cp < 0.0001), and obesity (7.8%, cp = 0.001).
In contrast, the mortality risk was heavily influenced by CD conditioned by sex
and age, accounting for 72.3% of total deaths (p = 0.001–0.008). Significant
mortality risk (48%) was comprised of women andmen (w, m) aged≥56 years with
diabetes (19% w and 27.9% m, cp < 0.0004), hypertension (11.5% w, cp = 0.0001),
and CKD (3.5% w and 5.3% m, cp = 0.0009). Older people with diabetes and
hypertension comorbidity increased the risk to 60.5% (p = 0.001). Based on a
mortality-weighted index, women were more vulnerable to preexisting metabolic
or cardiovascular diseases. These findings support our hypothesis and justify the
need for surveillance systems at a communitarian level. This is the first study
addressing this fundamental epidemiological question.
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Introduction

SARS-CoV-2, the most successful zoonotic coronavirus in
human history, has caused over 668 million infection cases and
more than 6.8 million deaths worldwide through several epidemic
waves (1, 2). Since the Wuhan outbreak in China (3), at least 19
variants of the epidemic have emerged and spread rapidly before
an effective natural immunological response (4). In infectious
epidemic diseases, the classical paradigm behind the susceptible,
infected, and recovered (SIR) individuals and any descriptive
or predictive epidemiological model imply the preexistence of a
susceptible subpopulation due to genetic, epigenetic, clinical, and
environmental determinants as the driving forces for contagion
(5–10). With COVID-19 epidemics, early findings supported that
chronic diseases (CDs), age, and, to a less extent, sex were
associated with the success and clinical outcomes of SARS-CoV-
2 infection. However, most results were derived at the hospital
level, from a small diagnostic dataset, or framed for descriptive
epidemiological studies (3, 11, 12). More vital efforts should be
addressed from the perspective of mechanistic epidemiology to
enhance comprehensive prevention health systems to cope with
the increasing risk of emerging and reemerging new human
diseases. This study hypothesized that SARS-CoV-2 can infect
individuals regardless of their health condition in opposition
to the classical epidemiological assumption of an identifiable
susceptible subpopulation for epidemic development. It was
assumed that fast spreading, limited and unsteady immunological
response toward a newly encountered pathogen, constrained
clinical knowledge for treatment, and unprepared public health
systems were fully expressed during the first wave of the COVID-
19 outbreak, thus allowing unrestricted infection scenarios. The
first epidemic wave also involved a higher global fatality rate
reaching 15.2% (13). The Mexican population, with a high SARS-
CoV-2 infection risk due to populated territorial clusters and
high incidence of metabolic and cardiovascular chronic diseases
in the world, was suitable to address this research (14–16).
Previous efforts in Mexico mainly focused on demonstrating the
CDs association with COVID-19 clinic course and mortality,
thereby lacking a mechanistic epidemiological framework (17–
20). This comprehensive study contributes to understanding the
epidemiological behavior of new diseases in human populations
and provides insights for surveillance and prevention of potential
zoonotic outbreaks (21). Moreover, this study was based on big data
associated with 509,539 official RT-qPCR test results, comprising
24.4 million metadata (22), which were putatively related to
B.1. and B.1.1. SARS-CoV-2 lineages (23, 24), representing the
onset-exponential phase of the first epidemic wave in Mexico
(28 February to 30 June 2020). Our approach was to determine
the subpopulation structure of infection in ambulatory and
hospitalized cases, associated with 10 CDs and nonchronic diseases
(NOCDs), considering age and sex as demographic factors in
a cohort of 226,089 accumulated positive and 283,450 negative
individuals, including 27,769 deaths. Therefore, the objective of
this study was to establish the subpopulation attributes toward
SARS-CoV-2 infection and the contribution of CDs and baseline
demographic factors in shaping population vulnerability under the
assumption of unrestricted immunological responses, treatments

availability, and preventive constraints for contagion during the
onset of the first epidemic wave.

Materials and methods

COVID-19 data source

The first step was to collect the official COVID-19 public
databases (MS Excel

R©
, dBase-COVID) of the Mexican Ministry

of Health (25), from the first positive SARS-CoV-2 reported
on 28 February to 30 June 2020, selected for comprising the
onset-exponential phase of the first epidemic wave in Mexico.
The dBase-COVID, updated daily, had 581,580 individual records
(population–N) and 35 variables (20.4 million metadata), including
state and municipal locations, diagnosis results, symptoms
expression date, death date, sex, age, and 10 CDs, among
others (Figure 1 and Supplementary Table 1). All diagnostic
tests were officially regulated and conducted with certified
protocols based on real-time reverse transcription-polymerase
chain reaction (RT-qPCR).

Metadata structure

The second step was to set up the database structure to conform
the research objective. The dBase-COVID data were imported
into RStudio

R©
v1.4.1106 – R Project

R©
v4.1.1 and performed

in a workstation (HP Z1-G6. IntelCore i7 of 10th generation).
Data extraction was performed with readxl, base, rattle, and
dplyr functions of Rstudio

R©
. Sixteen numerical variables were

transformed into categories, e.g., sex 1 = “female”, sex 2 = “male”,
or CD 1 (presence of any chronic disease) = “yes”, CD 2 = “no”.
The geo-location variables were transformed using the official
nomenclature of the National Institute of Statistics and Geography
(26). Additional 13 synthetic variables were created to potentially
enhance the analyses, e.g., days with symptoms at testing or days
from detection to death in the hospital settings. The final structured
and conform database contained a cohort A of 226,089 positive
individuals including 27,769 deaths, linked to 48 variables totaling
10′852272 metadata (Figure 1). A total of 72,041 unconfirmed
RT-qPCR tests were excluded from the analysis (Figure 1). In
this study, the infected cohort A was conform for all positive
cases, symptomatic or asymptomatic at testing, including those
individuals who eventually died. Death cases were considered
subcohort A’ of the infected cases (Figure 1).

To properly assess the age effect on infection, this variable
was grouped into five categories (agec): <29, 30–37, 38–46, 47–
56, and >56 years. Similarly, 10 CDs were independently analyzed,
as well as by categories (CDc) according to clinical typology:
metabolic (diabetes, obesity, immunosuppressants, and chronic
kidney disease); cardiovascular (hypertension and cardiovascular
disease); respiratory (asthma, COPD, and smoking), even though
smoking is not a CD, it was considered due to implications
on pulmonary diseases; “other-CDs” (this general category was
specified as such in original data matrix); and a nonchronic
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FIGURE 1

Data extraction flow (black boxes) from 581,580 o�cial database entries accumulated during the onset-exponential phase of the first COVID-19
epidemic wave in México (population-N), from 28 February to 30 June 2020. The final big data matrix was associated with 509,539 total individuals
analyzed comprising 24.4 million metadata conform in cohort A with 226,089 RT-qPCR-positive cases including subcohort A’ with 27,769 deaths and
cohort B with 283,450 negative cases.

disease (NOCD) category for the absence of any reported CD on
the dataset.

Onset-exponential phase modeling

The third step was to confirm and characterize the onset-
exponential epidemic phase intensity by fitting it to the exponential
model and comparing 10 COVID-19 epidemics selected from

an equal number of countries with the highest reported positive
cases at the first wave onset (1). The significant epidemic rate-re
estimation was fundamental to validate the fastest contagion
assumption required to prove the working hypothesis. The
comparison among epidemics to depict Mexico’s scenario framed
the study assumptions’ validity. The plotting of all curves
characterization was performed with ggplot function of RStudio

R©

using cumulative daily (x) positive cases from onset (yo) to the
inflection curve point. The positive and death data (y) were
independently fitted in SAS

R©
v9.4 using the nonlinear model:
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ŷ = yo
re(x). The re-parameter and yo estimated the exponential

epidemic rate and positive cases of primary infection, respectively.
The goodness-of-fit (R2) and significance level (p < 0.0001) were
obtained for comparison purposes.

Probabilistic risk categorization for
infection and mortality

The fourth step was to conduct an independent risk
categorization analysis for the infection cohort A and mortality
subcohort A’ by using two approaches: the classification and
regression tree (CART) and Spearman’s rho correlation linked to a
clustering analysis. CART allows for identifying and weighting tree-
decision rules to generate splitting stratified groups of similar risk
toward SARS-CoV-2. These rules were fitted using rpart, rpart.plot,
and prp functions and the analysis of variance (ANOVA) among
groups in RStudio

R©
. The rpart and rpart.plot best-fitting function

for major splitting generated an overall complexity parameter (cp)
value, cp = 0.000003 (p = 0.001) and cp = 0.000024 (p = 0.001),
for infection and mortality CART, respectively. The splitting
stratification process runs n-iterations for each encountered group
until a homogeneity value lower than the complexity parameter (cp)
is reached, thus providing the optimal solution. This parameter
estimated and compared the variance homogeneity within groups
for the final decision. Each CART was fitted as multiple regression
model: yi = x1 + x2 + x3... xn, where yi was the infected or death
cases as dependent variables, and x1... xn were 10 CDs, NOCD, age,
and sex as variable predictors. Finally, with prp, a risk tree was built
via cross-validation, thus creating stratified groups at the lowest
error (27). Only nodes with statistically significant p-values (p ≤

0.05) were plotted. Nodes per quartile of cases number were colored
using a bar-scale. The CART procedure was selected because (1)
it establishes rules based on multivariate criteria to explain overall
variance (28); (2) it does not make any statistical distribution
assumptions associated with dependent or independent variables
(29, 30); and (3) it stratifies and classifies data based on weighted
variables to create high- or low-risk homologous groups (30).

The second approach used was Spearman’s correlation matrix
based on 10 CDs, NOCD, age, and sex variables for pairings
rho estimations. Furthermore, a hierarchical cluster analysis
was performed using the Euclidian distance of rho-values as
a dissimilarity measure among clusters and Ward’s minimum
variance to minimize the within-cluster variance. Independent
dendrograms for the infection cohort A and mortality subcohort
A’ were plotted with the tanglegram function of RStudio

R©
for

comparison purposes. In addition, per dendrogram, the infection
and mortality relative risk (r) for tree clusters were estimated with
r= [y/

∑
y] 100, where y is the total infected or death cases and

∑
y

is the total infected cohort A or mortality subcohort A’ (Figure 1).
Spearman’s correlation matrix and clustering were selected because
1) it standardize data based on the variables’ association level,
reducing the effect of sample size and 2) it allow estimating a
statistical significance (p ≤ 0.05).

The fifth step was to perform analogous analyses with cohort B
comprising 283,450 negative cases, assuming individual exposure
to the SARS-CoV-2 virus by social contact with positive cases.

The purpose was to analyze the whole population–N’ structure
toward SARS-CoV-2 infection risk. The overall analyses included
509,539 individuals and 24.4 million metadata (population–N’,
Figure 1).

A deterministic risk categorization for
mortality

To further explain the implication of CD categories on
COVID-19 mortality subcohort A’ (Figure 1), two relative
epidemiological indices were developed to estimate the mortality
stratified by agec and sex. A mortality index (MoI) was calculated
with the following equation:

MoI=

∑
n

ij Deathsij
∑

n

j Casesj

where Casesj is the number of positive individuals in j; i

represents the agec category from n =1 to 5; j is the CDc category
from n=1 to 4; and NOCD.

Amortality-weighted index (MWI), weighted by the average (x)
of age in each category, was calculated with the next equation:

MWI=

∑
n

ij Deathsij∗xij
∑

Deaths

where i and j are described as beforehand.

Results

SARS-CoV-2 metadata structure

A total of 226,089 individuals infected with SARS-CoV-2
during the onset-exponential phase of the first COVID-19 epidemic
wave in Mexico were included in the study (cohort A; Figure 1
and Supplementary Table 1). The mean age was 45.7 years (range:
10–98 years), with 54.7% male cases. The overall positivity was
44.4% [(infected individuals/total individuals tested) x 100], with an
official lethality rate of 12.3%. Hospitalized individuals accounted
for 30.8% (62.2% of whom were men), with fatalities reaching
35.5% (65.1% of whom were men). The outpatient mortality was
1.8%. The data represented 32 Mexican states, of which 36% was
associated with the metropolitan area of Mexico City and Mexico
State with a combined 23.1 million habitants and a density of
6,163.3 and 760.2 residents by square kilometer, respectively. The
data comprised a well-conform exponential phase as in selected
comparative epidemics but with a relatively lower epidemic rate
(re = 0.040 units day1), in contrast to Spain, USA, Italy, Russia,
the UK, and Peru, which ranged from 0.15 to 0.17 (Figure 2A). In
all cases, the exponential model fitted with R2 > 0.96 (Figure 2B).
The lethality rate of Mexico was among the highest, in conjunction
with Italy, Spain, UK, and Peru.

The infected cohort A, i.e., the total number of positive
individuals regardless of the COVID-19 outcome, included 52.8%
with NOCDs (53.9% of whom were men). The remaining 47.2%
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FIGURE 2

Confirmatory modeling of the first COVID-19 exponential epidemic phase in Mexico and selected countries. (A) First COVID-19 epidemic wave in
México from 27 February to 30 June 2020. Absolute (bars) and cumulative (lines) daily cases of RT-qPCR-positive individuals representing the
infected cohort A and the mortality subcohort A’. (B) Estimated epidemic rate (re) fitted (R2 and p-value) with the exponential model from the onset
(yo) to the curve inflection point (•) of the first COVID-19 wave in Mexico compared with that of ten countries with the highest infection accumulated
positive cases. Lethality rate and epidemic rate variability (re = 0.04–0.17), with high fitting model precision (R2 > 0.96) indicate fast but di�erential
SARS-CoV-2 spreading on populations. Source: Original data matrix of selected countries downloaded from Johns Hopkins University. All analyses
were performed by authors.

exhibited at least one CD (55.5% of whom were men), representing
27.1, 13.1, and 7% of single CD, comorbidity, and multimorbidity,
respectively. The most reported chronic diseases were obesity
(20,539 cases, 52.3% men) and hypertension (14,048 cases, 54.1%
men). Grouped into categories, metabolic diseases (i.e., diabetes,
obesity, immunosuppressants, and CKD) represented 39.7% of
CD cases (Table 1). Diabetes–hypertension (4.5%) and diabetes–
hypertension–obesity (2%) were the most prevalent comorbidity
and multimorbidity, respectively. The control dataset (cohort B),
with 283,450 RT-qPCR negative cases (Figure 1), had similar age,
gender, and CD structure to cohort A.

Probabilistic risk categorization for
SARS-CoV-2 infection and mortality

As the first probabilistic classificatory approach applied to the
infected cohort A (226,089 individuals), tree risk categorization
significantly selected age as the primary factor of infection risk, with
46.9% of the explained variance (cp-value= 0.000003) (Figure 3A).
The age cutoff onto two main probabilistic branches, from which a
significant classificatory risk node was derived, was 46 years, which

represented 123,047 (p = 0.001–0.009) and 103,042 (p = 0.001–
0.002) for younger and older than the significant age cutoff,
respectively. Furthermore, age (29 years) and sex were the second
most significant subordinated factors toward infection (p= 0.001).
Notably, NOCD represented only 6.4% of the explained variance
due to restricted probabilistic combinations only within age and sex
toward infection. This restricted determination resulted in 58,679
and 28,204 infection cases associated with NOCD in the root
branches determined by sex and age (29–46 years), respectively.

A similar low variance contribution was found on infection
associated with CDs. The type of disease determined the probability
of infection in individuals with one CD, conditioned by age, being
higher in those individuals exhibiting diabetes (12.3%, cp= 0.0006),
hypertension (10.1%, cp = 0.0001), and obesity (7.8%, cp = 0.001)
accounting for a total of 30.2%. Sex contributed 9.7% of the overall
infection risk, mainly associated with ages older than 46 years. For
instance, for women younger and older than 46 years threshold,
12,829 and 28,702 had SARS-CoV-2 infection, respectively, and
exhibited at least one chronic disease (Figure 3A). For the same
contrasting risk scenario considering only diabetic women, there
were 2,918 and 13,293 positive cases for younger and older
than the 46-year cutoff, respectively. Notably, this combinatory
effect was even higher in men, with 2,481 and 42,117 cases,
indicating a higher infection probability in diabetic older men
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TABLE 1 Structure of 226,089 SARS-CoV-2 infected cohort A, including the subcohort A’ with 27,769 mortality cases, and MoI and MWI epidemiological

relative indices adjusted by age and sex.

Category Age x age Men Women Total

Death Cases MoIx Death Cases MoI Deaths/cases MoI

Metabolic <29 24.6 124 3,077 0.040 126 3,077 0.041 250/6,154 0.041

(diabetes, obesity, Imm, and CKD) 29–37 33.7 438 5,381 0.081 195 4,746 0.041 633/10,127 0.063

37–46 42.3 1,243 9,001 0.138 601 7,534 0.080 1,844/16,535 0.112

46–56 51.4 2,730 12,267 0.223 1,549 10,589 0.146 4,279/22,856 0.187

> 56 67 7,004 18,038 0.388 5,137 16,089 0.319 12,141/34,127 0.356

Subtotal 11,539 47,764 0.242 7,608 42,035 0.181 19,147/89,799 0.213

MWIY 37.22 48.47 25.36

Cardiovascular <29 23.9 44 689 0.064 46 504 0.091 90/1,193 0.075

(hypertension and CVD) 29–37 33.9 118 1,506 0.078 62 1,004 0.062 180/2,510 0.072

37–46 42.6 504 3,569 0.141 260 2,812 0.092 764/6,381 0.120

46–56 51.6 1,421 6,675 0.213 843 5,760 0.146 2,264/12,435 0.182

>56 70 5,771 15,045 0.384 4,114 12,991 0.317 9,885/28,036 0.353

Subtotal 7,858 27,484 0.286 5,325 23,071 0.231 13,183/50,555 0.261

MWI 27.49 36.39 18.85

Respiratory <29 24.4 44 2,681 0.016 16 1,663 0.010 60/4,344 0.014

(COPD, asthma, and smoking) 29–37 33.5 129 3,102 0.042 35 1,994 0.018 164/5,096 0.032

37–46 41.6 312 3,292 0.095 95 2,204 0.043 407/5,496 0.074

46–56 51 569 3,194 0.178 223 2,071 0.108 792/5,265 0.150

>56 68 2,224 5,705 0.390 976 3,117 0.313 3,200/8,822 0.363

Subtotal 3,278 17,974 0.182 1,345 11,049 0.122 4,623/29,023 0.159

MWI 10.88 8.80 6.28

Other CDs <29 20.7 16 207 0.077 10 260 0.038 26/467 0.056

29–37 33.7 7 176 0.040 2 308 0.006 9/484 0.019

37–46 42 19 224 0.085 19 328 0.058 38/552 0.069

46–56 51.1 36 189 0.190 23 276 0.083 59/465 0.127

>56 68 128 276 0.464 60 220 0.273 188/496 0.379

Subtotal 206 1,072 0.192 114 1,392 0.082 320/2,464 0.130

MWI 0.65 0.67 0.41

Nonchronic disease <29 22.9 117 13,554 0.009 58 14,070 0.004 175/27,624 0.006

29–37 33.5 275 13,678 0.020 96 12,917 0.007 371/26,595 0.014

37–46 41.9 721 14,262 0.051 231 12,136 0.019 952/26,398 0.036

46–56 51.1 1,468 11,960 0.123 426 9,262 0.046 1,894/21,222 0.089

>56 66 3,058 10,948 0.279 1,242 6,649 0.187 4,300/17,597 0.244

Subtotal 5,639 64,402 0.088 2,053 55,034 0.037 7,692/119,436 0.064

MWI 17.50 12.50 9.75

Total 18,289 123,616 9,480 102,473 27,769/226,089

COVID-19 data of the first onset-exponential epidemic phase in Mexico.
XRelative mortality index (MoI) associated to CDc and agec . YRelative mortality-weighted index associated to CDc (MWI).

than in diabetic women. In individuals younger than 29 years,
the infection risk associated with those exhibiting at least one
CD was 25.6%. The remaining CDs cases, independent of sex,
were associated with obesity (4,393 cases), smoking (596 cases),

and immunosuppressants (314 cases) with a risk of 14.5%. Other
CDs, such as kidney (CKD), cardiovascular (CVD), smoking, and
immunosuppressants, accounted for 6.9% of the infection risk
variance. Lower risk of infection, but significant (p = 0.009),
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probably due to underrepresentation in cohort A, was found to
be associated with individuals with comorbidities, i.e., more than
one CD, such as obesity and smoking (1,556 men); diabetes–
obesity–smoking (1,009 men); diabetes–CVD (953 women); and
obesity–immunosuppressant (60 women) (Figure 3A).

In the restricted analyses of the mortality subcohort A’
(27,769 cases), age was again the primary significant risk factor
with 72.3% of the explained variance conditioned by the type
of CD (cp-value < 0.000024), from which a significant tree
classification risk was derived upon a 56-year cutoff (p = 0.001–
0.008) (Figure 3B). NOCD accounted only for 3.7% of the variance,
representing 26.9% of all death cases (cp = 0.0006, p = 0.001).
A robust significant risk, representing 48% of the cases, was
composed of women and men (w, m) older than the 56-
year cutoff who mainly exhibited diabetes (19% women, 27.9%
men; cp = 0.0004), hypertension (11.5% women, nonsignificant
in men, cp = 0.0001), and CKD (3.5% women, 5.3% men;
cp = 0.0009). Deaths with comorbidity combinations involving
diabetes were significantly associated with CKD among patients
aged 56 years, regardless of sex (401 cases). Conversely, in those
individuals older than 56 years, diabetes was significantly combined
with hypertension (1,748 women and 2,261 men) (Figure 3B).
Multimorbidity disease significant combinations, regardless of the
age category, included diabetes–CKD–CVD (10 cases), diabetes–
hypertension–immunosuppressants (14 women), and diabetes–
hypertension–CVD (8 men) (Figure 3B). For individuals younger
than 29 years, mortality was independent of sex and mainly
associated with obesity and hypertension (60 and 32 deaths,
respectively). However, this node was not significant.

The second probabilistic associative approach applied to the
infected cohort A and subcohort A’, based on the matrix of the
Spearman’s rho-values (Figures 4A1, B1), confirmed that CD, age,
and sex did not fully explain infection risk toward SARS-CoV-2.
NOCD, with 52.8% of infection probability and conform for
119,436 positive cases, represented a well-separated independent
cluster (p = 0.05) at a Euclidean distance of 1.4 cutoff. The CDs
and demographic factors formed four risk clusters with 47.2%
infection probability (Figure 4A2) (p = 0.04–0.06). Age and sex
conform a cluster with diabetes and hypertension, and obesity and
smoking, respectively (p = 0.05). The infection risk increased to
25.4% and 15.3%, respectively, for individuals who presented the
two diseases (i.e., comorbidity). Age influenced the vulnerability of
older people with diabetes or hypertension to developing SARS-
CoV-2 infection (p < 0.00001). Age-related associations with
diabetes and hypertension had the highest positive rho-values of
0.39 and 0.33, respectively (Figure 4A1).

Contrary to the infection scenario and targeting only the
subcohort, the higher probability for mortality was associated
with CDs and age totaling 72.2% (Figure 4B2) (p = 0.05; rho
= −0.51–0.31). NOCD and sex defined a well-distant risk
cluster of 27.8% (p = 0.05). Older people with comorbidity of
diabetes–hypertension (p = 0.04) had an increased risk of death
at 60.5%, whereas those with a single CD accounted for only
18.8%. These conditions were more determinant over the threshold
of 56 years (Figure 4B2). The comparison between infection and
mortality dendrograms showed a slight displacement of risk-
cluster location with an estimated 66% similarity, thus indicating

differences in influencing health factors toward SARS-CoV-2
outcome (Figures 4A2, B2).

In the negative cases of cohort B, the variance structure
was similar to cohort A (Supplementary Figures 1A, 2
and Supplementary Table 2). The primary statistically
significant age cutoff was also 46 years (p = 0.001–0.007)
(Supplementary Figure 1A). For those older than 46 years
(51,206), smokers were the first cutoff linked to obesity.
Meanwhile, nonsmokers were associated with diabetes, obesity,
and hypertension. For those under 46 years (58,337), obesity
was the leading cutoff, but linked to diabetes and smokers. In
NOCD-negative individuals (173,907), the population structure
variance was determined only by sex and age as expected
(Supplementary Figure 1 and Supplementary Table 2). The cluster
structure was also similar to positive SARS-CoV-2 in cases of
cohort A. The cross-dendrogram correlation revealed associativity
of r2 = 0.93 among cohorts. Notably, asthma was included in the
sex–obesity–smoking cluster (Supplementary Figure 2).

SARS-CoV-2 relative mortality indices

The relative mortality index (MoI) stratified by age confirmed
the differential effect of CD category (CDc) and NOCD on
mortality (Figure 5A). Cardiovascular and metabolic diseases
represented the higher index with 0.26 and 0.21, respectively,
whereas NOCD was the lowest with 0.06 (Table 1). MoI values
increased by age category (agec) and were higher, but similar, for
patients older than 56 years among CDc (0.35–0.37) compared to
NOCD (0.24), thus indicating a significant conditional age effect on
mortality (Figure 5A). Conversely, for ages less than 56 years, the
MoI did not exhibit clear differences between CDc and NOCD. As
for sex, the MoI was consistently higher among men than women,
independent of age, CDc, or NOCD (Table 1).

The relative mortality-weighted index (MWI) showed that
mortality was also influenced by CDc and sex (Figure 5B).
Again, the individuals with metabolic or cardiovascular diseases
were associated with a higher mortality risk index of 25.4
and 18.9, respectively, compared to NOCD (9.8). However,
contrary to MoI, women were notably the most vulnerable
in metabolic and cardiovascular categories with 48.5 and 37.3,
respectively. Furthermore, men had a higher risk associated with
respiratory diseases and NOCD (Table 1; Figure 5B). These indices
were calculated relative to each CDc to avoid biases due to
sample underrepresentation of specific chronic disease category in
cohort A.

Discussion

Despite massive vaccination and lethality reduction, the recent
COVID-19 pandemic, which was characterized by fast virus
contagion, a dynamic prevalence of variants, and a reduction
of the age threshold for infection, raises questions about our
mechanistic comprehension of SARS-CoV-2 epidemiology
at the communitarian level (6). Most studies continue to
focus on an understanding of the infection clinical outcome,

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2023.995602
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Acevedo-Sánchez et al. 10.3389/fpubh.2023.995602

FIGURE 3

Tree risk categorization of infection and mortality due to SARS-CoV-2 during the onset-exponential phase of the first COVID-19 epidemic wave in
Mexico based on 226,089 positive cases and 10′857,272 metadata records comprising 13 variables including NOCD and CDs. Branch thickness
represents the main root of significant risk. The colored bar scale represents the number range of positive cases applied to nodes. (A) The major virus
infection risk implicated four main branches, highlighted by upper black boxes and vertical dotted lines, determined primarily by age, followed by sex,
with a cp-value ≤ 0.000003 (p < 0.009). The infection risk for individuals with NOCD represented 52.5%. (B) The mortality risk was also influenced by
age (cp-value ≤ 0.000024; p < 0.008) but conditioned by chronic diseases with a higher association in older to 56 years (48%) and splitting the risk by
sex (women = 38.9%; men = 61.1%). NOCD accounted for 26.9% of the mortality risk. Main and secondary tree branches are highlighted in bottom
black boxes and vertical dotted lines, respectively.
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FIGURE 4

Di�erential risk structure toward infection (A1, A2) and mortality (B1, B2) due to SARS-CoV-2 based on Spearman’s rho-values estimated with 13
variables, comprising sex, age, nonchronic (NOCD), and 10 chronic (CDs) non-infectious diseases associated with 226,089 infected individuals during
the onset-exponential phase of the first COVID-19 epidemic wave in Mexico. (A1, B1): correlation matrix for the infected cohort A and mortality
subcohort A’, respectively. The colored bar-scale represents the rho-value. If closer to ± 1 indicates a higher correlation between variables. (A2, B2):
Dendrogram of rho, linked to cluster analyses for the infected cohort A and mortality subcohort A’, shows respectively, a clear independent and
dependent risk e�ect on CD, age, and sex, respectively. The scale at the bottom represents the dissimilarity of Euclidean distance. The dotted line
represents the cuto� for risk-cluster conformation, and the percentage is the estimated risk based on positive cases associated with a specific branch
(p = 0.04–0.06). Lines connecting dendrograms identify the clustering variables. Others. Other CDs.

particularly the post-COVID condition, the development
of cure treatments, and the enhancement of vaccines to
include children (7, 8, 11, 31–33). However, there is still a
strong need for comprehensive studies associated with virus
behavior at the ambulatory population level for surveillance

and prevention purposes (21). Current forecasting relies on
limited clinical and hospital settings data (34–38). Moreover,
current data availability and quality of detection and monitoring
have been strongly compromised based on the worldwide
expectation of immunization coverage to cope with the disease.
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FIGURE 5

Association of SARS-CoV-2 positive individuals exhibiting nonchronic diseases (NOCD) or any CD within five categorized chronic diseases (CDc) with
COVID-19 mortality at the first exponential epidemic phase in Mexico. (A) Di�erential increase of relative mortality index (MoI) values on individuals
with NOCD and CDc upon age category increase (agec). Bars represent the standard deviation. (B) Di�erential e�ect on relative mortality-weighted
index (MWI) values of men versus women on respiratory and NOCD (higher) and on cardiovascular and metabolic category (lower).

The recent endemic and seasonal statement may even more
discourage keeping epidemiological studies at the communitarian
level (39).

This study deals with a fundamental epidemiological
assumption of the preexistence of a susceptible population as a
driving force for SARS-CoV-2 epidemics. Our findings challenge
the presence of such a subpopulation. The analyses of 226,089
positive individuals and 10′852272 metadata records representing
the specific onset-exponential first wave in Mexico (Figure 1)
suggest that infection at the communitarian level relies more on
infectious sources in the proximity of individuals independently of
their health conditions, sex, or age as has been commonly implied
(40–42). Rather than ‘choosing’ vulnerable subpopulation(s),
this random infection was supported by the fact that baseline
chronic diseases, extensively associated with COVID-19, did not
condition infection. In one probability scenario, our structural
risk analyses showed that individuals with NOCD have a slightly
higher infection probability (52.8%) than those exhibiting any

CD, including comorbidities, without age and sex influence
(p = 0.05). In a second scenario, a cutoff of 46-year individuals
was conditioned to diverse risk categories of virus infection
(p = 0.001–0.009). However, although age and sex have been
extensively associated with COVID-19 severity and always
associated with CDs under our analytical scenarios, age standalone
was a significant factor in shaping the infection risk structure in the
population but decreased the age threshold with respect to most
reports, wherein older people appear to be more vulnerable. In
such reports, the focus on the clinical evolution of inpatients may
explain this discrepancy (11, 33, 38, 40, 41, 43). The independent
effect of infection regarding CDs toward COVID-19 was
supported by the health structure of negative cases with a similar
tendency but a higher proportion of NOCDs (61.4%, p < 0.007)
(Supplementary Figures 1, 2 and Supplementary Table 2).

After restricting the analysis to the mortality subcohort, the
results are in agreement with extensive studies suggesting that CD,
age, and sex are implicated in COVID-19 severity (33, 40, 41,
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44–47). Nonetheless, severity is the outcome of the pathogenesis
process beyond infection. This subpopulation included 89.5% of
inpatients (age: 24–98 years; men and women 1.9:1). However,
in our findings, CD risk categories were conditioned explicitly
by age, with an age threshold of 56 years (p = 0.001–0.008).
Moreover, an age cutoff at 46 years associated with sex was
determined as a second significant risk level with some chronic
diseases. Similar to other reports, mortality associated with CD
increased with age (40, 44), and individuals with hypertension
and diabetes, adjusted by their implication on comorbidities, had
a differential increase in infection and mortality risk (44, 45, 48,
49). Moreover, sex implication for CD and COVID-19 fatality
outcomes are recognized, but not a clear-cut specific association
(11, 41, 49). In our results, women exhibited a higher vulnerability
to death associated with metabolic diseases (i.e., diabetes, obesity,
immunosuppressant, and CKD). In contrast, men showed a higher
vulnerability to respiratory diseases (i.e., COPD, asthma, and
smoking), even though infection in diabetic individuals was more
than 3-fold concerning women.

The CD factor in our research framework was based on the
suitability of the Mexican population due to the high incidence of
metabolic and cardiovascular chronic diseases (14, 15). However,
the analyzed metadata (N = 581,580) accounted for 16.2, 12.5, and
16.3% of obesity, diabetes, and hypertension, respectively, which is
in contrast with the 40.2, 10.6, and 13.4% of the last official survey
specifically designed to estimate the status of CD (n = 120,843)
(50). When conceding that the slightly lower prevalence of diabetes
and hypertension, and higher prevalence of obesity in the official
data were the proper estimations, such values may not change our
fundamental findings. Specifically, the independent SARS-CoV-2
infection probability and age are significant factors in shaping the
infection risk.

These findings shape the classical paradigm of the preexistence
of a specific susceptible population for the occurrence of epidemics.
This may be true for diseases framed by long host–pathogen
coevolutive processes and endemicity but not for pathogens
encountering a new host. The SARS-CoV-2 strain diversity and
mutational patterns through time and space (51, 52), as well as
the parasitic fitness switch from aggressivity to spreading survival,
appear to be indicators of an early evolutionary process involving a
pathogen obligated to survive on the host (53). In this development,
vaccination as a massive host intervention has played a minor
role in comparison to host genetics and health attributes of the
population itself, as inferred from this study and many clinical
studies (8, 9, 51, 54, 55).

The spread of SARS-CoV-2 and pathogenicity support the
rationality of these findings. The airborne virus spreading, which is
the main contagious mechanism through respiratory droplets and,
to a lesser extent, via aerosols (56, 57), is not host-target specific,
which allows the virus acquisition by any individual upon inoculum
exposure (58). Primary infection requires upper respiratory tissues
for rapid multiplication before host internalization (59–61). This
pathway is mediated through high angiotensin-converting enzyme
2 (ACE2) receptor expression in epithelial cells lining salivary
gland ducts (60, 62), and other respiratory tissues, heart, and
gastrointestinal tracts but with lower expression and infectivity
(8, 55, 63). The coding gene of ACE2 is constitutive to the human

genome with low protein-coding variability and no differential
expression due to sex, age, or population (55, 64, 65).

Therefore, we postulate that infection with SARS-CoV-2
originates from random virus exposures rather than a specific
health condition. Infection is the first stage of pathogenicity
involving virus–host recognition and entry into epithelial cells
to initiate virus multiplication (61). Infection may not lead to
disease, as asymptomatic conditions imply (21). This scenario
departs from the general usage of infection as equivalent to disease
or severity [e.g., (51)]. Once the virus infection is established,
health, genetics, and other determinants may play a role in the
COVID-19 outcome, including asymptomatic and severe courses
with acute respiratory distress syndrome, multiorgan involvement,
and death (9). However, at least at the early virus replication
stage, it follows an evolutionarily conserved path common to
viruses, thus allowing for unrestricted multiplication (61). Current
epigenetic studies have shown that ACE2 hypomethylation in the
nasal epithelium can lead to increased SARS-CoV-2 infectivity and
COVID-19 severity via a greater abundance of ACE2 receptors
(7, 8). A meta-analysis of plasma ACE2 also demonstrated that
elevated ACE2 levels had a causal relationship with COVID-19
infection, severity, and hospitalization and that a solid X-linked
locus associated with ACE2 may explain sex differences in ACE2
expression across various tissues (51).

Although the framework of this extensive study was the high
occurrence of obesity/overweight (33–60%), hypertension (32–
45%), and diabetes (3.1–10.6%) in the Mexican population (14,
15, 50), as well as one of the highest lethality rates (12.3%),
further epidemiological studies may be needed to unveil the driving
question of this research. The inclusion of diverse core populations,
as implied by contrasting fatalities and epidemic rates of selected
countries in this study (Figure 2), may provide advanced insights
when considering ethnicity and geographical disparities, coupled
with significant genomic data and health determinants. However,
these results encourage the imperative need for communitarian
approaches to develop preventive surveillance systems. The
development of algorithms to address ambulatory populations
may improve COVID-19 management and cope with zoonotic
threats, without assuming a specific susceptible subpopulation that
is reached through clinical or hospital settings (21). Our results may
also support the benefit of massive ambulatory SARS-CoV-2 testing
conducted for several countries during the critical contagious
stage (58), rather than using digital risk assessment or directing
tests on individuals upon presumptive COVID-19 symptoms to
assist disease control treatment (66–70). It is well known that
asymptomatic individuals, estimated at 22.1% under lockdown
conditions (58), may exhibit a comparable virus titer to those with
symptoms and thus could play a significant role in transmission
chains (21). A web-app surveillance platform, linked to testing
at clustering labor, social, and household environments, may
overcome the cost-time factors of massive testing and effectively
accomplish the confinement strategy and clinical monitoring at
the community level (21). Although WHO and many countries
have recently declared the end of COVID-19 as public health
emergency (2), the risk of new variants and emerging diseases
should encourage us to continue our comprehension of this
epidemic to enhance local and global preventive health systems.
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Conclusion

Based on 24.4 millionmetadata records associated with 509,539
official RT-qPCR cases accumulated during the onset-exponential
phase of the first epidemic wave in Mexico, we provided robust
epidemiological evidence to support our hypothesis that SARS-
CoV-2, a novel pathogen to the human population, did not
encounter a susceptible subpopulation with a specific set of
health condition for the infection establishment and epidemic
development. However, the clinical evolution of COVID-19,
such as disease severity and mortality, was associated with
vulnerability factors explicitly conditioned by age and sex, as
has been extensively published. The differentiation of infection,
as the process of the successful virus, entering and early
multiplication in the host, independent of the disease outcome,
was fundamental in this research to primarily account for an
ambulatory and hospitalized cohort. The specific selection of
the onset-exponential phase of the first epidemic wave was
also essential to assess the cohort risk structure based on the
assumptions of random population exposure to the virus due
to the fast spreading of the virus (lethality rate = 12.3%, Ro
> 1), limited and unsteady immunological response, pathogen
capabilities to evade or subvert host defense mechanisms,
constrained clinical knowledge for treatment, and unprepared
health systems. These findings encourage the addressing of
communitarian approaches to develop preventive surveillance
systems to target ambulatory populations. Such systems may
complement conventional and specific surveillance platforms, such
as SUIVE (https://sinave.gob.mx/) or SISVER (https://sisver.sinave.
gob.mx/influenza/), respectively, that are currently in operation
in Mexico. This view may effectively intervene in COVID-19,
which remains a global health risk, and potential zoonotic threat
without assuming a specific susceptible subpopulation targeted
by new pathogens with no signals at the human coevolutive
microbiological core. To our knowledge, this is the first work
addressing this fundamental epidemiological question.

Limitations

The limitation of this research was derived from SARS-CoV-2
diagnostic data upon presumptive COVID-19 symptoms or
associations with infected individuals. Therefore, the database does
not represent an entirely random sampling of the ambulatory
population. Despite the high lethality rate observed during the
addressed epidemic phase, the epidemic rate was lower compared
to many countries, thus restricting the sampling size and health
structure of the studied population. Data on social, behavioral,
and environmental determinants and cases with asymptomatic
conditions were unavailable. Although confinement was not
mandatory in Mexico, restricted activities limited the children and
young people’s movements, thus preventing data of these cohorts
despite reports of less susceptibility (58).
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