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Background: The resources available to fight an epidemic are typically limited, and

the time and e�ort required to control it grow as the start date of the containment

e�ort are delayed. When the population is a	icted in various regions, scheduling

a fair and acceptable distribution of limited available resources stored in multiple

emergency resource centers to each epidemic area has become a serious problem

that requires immediate resolution.

Methods: This study presents an emergency medical logistics model for rapid

response to public health emergencies. The proposed methodology consists of

two recursive mechanisms: (1) time-varying forecasting of medical resources

and (2) emergency medical resource allocation. Considering the epidemic’s

features and the heterogeneity of existing medical treatment capabilities in

di�erent epidemic areas, we provide the modified susceptible-exposed-infected-

recovered (SEIR) model to predict the early stage emergency medical resource

demand for epidemics. Then we define emergency indicators for each epidemic

area based on this. By maximizing the weighted demand satisfaction rate and

minimizing the total vehicle travel distance, we develop a bi-objective optimization

model to determine the optimal medical resource allocation plan.

Results: Decision-makers should assign appropriate values to parameters at

various stages of the emergency process based on the actual situation, to ensure

that the results obtained are feasible and e�ective. It is necessary to set up

an appropriate number of supply points in the epidemic emergency medical

logistics supply to e�ectively reduce rescue costs and improve the level of

emergency services.

Conclusions: Overall, this work provides managerial insights to improve decisions

made on medical distribution as per demand forecasting for quick response to

public health emergencies.

KEYWORDS
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1. Introduction

Since the turn of the twenty-first century, there have been

numerous outbreaks of large-scale infectious diseases throughout

the world. An epidemic occurs when an infectious disease spreads

quickly and affects a significant number of individuals. Epidemic

infections can spread widely in a short period, usually within 2

weeks or less (1). The most dangerous epidemics include SARS

(2003), H1N1 influenza (2009), Middle East Respiratory Syndrome

(2012), Ebola virus in West Africa (2014), Zika virus in Brazil

(2015), and the continuing COVID-19, which broke out in late

2019 and rapidly became a pandemic, affecting the lives of millions

at a global scale. With the emergence of the Novel Coronavirus

variant, the number of new coronavirus cases in the world remains

high every day. According to the latest real-time statistics from

the WHO, as of 17:34 am Central European Time on December

1 (0:34 am Beijing time on December 2), the cumulative number of

confirmed COVID-19 cases in the world has reached 63,957,2,819,

with 6,615,258 cumulative deaths. These outbreaks pose a major

threat to human physical and mental health, as well as to world

economic progress.

Emergency medical logistics in response to public health

emergencies is very important, but the research in this area is still

inadequate (2). This work reviews the related literature by first

focusing on prediction of the number of infected person infectious

diseases and then discussing the approaches to logistics distribution

for an emergency.

The use of the mathematical model to analyze the kinetic

behavior of diseases dates back to Daniel Bernoulli’s (3) 1760

research on the inoculation of smallpox infectious disease, which

is known as the Bernoulli equation. Enko et al. (4) developed

the discrete infectious disease model based on the binomial

distribution for the first time by collecting the data on scarlet

fever and measles and published the chain binomial model of

scarlet fever and measles in 1889. The twentieth century saw

the emergence of deterministic research on infectious illness

models. Hamer (5) developed the dynamic measles model of

herd immunity, which is a discrete state model with a bilinear

infection rate. For the first time, a mass effect was proposed in

the model, and it was assumed that the effective infection rate

of individuals was proportional to the number of susceptible

individuals. Ross (6) developed a differential equation model for

the first time through the study of malaria transmission rules,

demonstrating that malaria transmission could be controlled when

the number of mosquitoes was reduced to a certain threshold

and defined the standard infection rate and basic regeneration

number. Kermack et al. (7) established a susceptible -infected-

recovered (SIR) model after jointly studying the transmission

trend of the Black Death in London, England, in 1665 and the

plague in Mumbai, India, in 1906. Subsequently, the susceptible-

infected-susceptible model was established in 1932 (8). Samsuzzoha

et al. (9) established a susceptible-vaccinated-exposed-infected-

recovered (SVEIRS) model, a diffuse zonal epidemic model of

vaccination based on the SEIRS model, to investigate the impact

of vaccination and transmission dynamics of influenza epidemics.

Chinazzi et al. (10) predicted the influence of travel restrictions

on the domestic and international transmission of an epidemic

disease using a global congregational disease transmission model,

and they find the quarantine in Wuhan slowed the overall progress

of the epidemic in mainland China by 3–5 days and had a more

significant impact on the international scale. Jumpen et al. (11–13)

established a susceptible-exposed-infected-quarantined-recovered

(SEIQR) model to simulate the evolution of the epidemic from

the perspective of patient isolation, and used sensitivity analysis to

investigate the impact of parameter uncertainty on the prediction

of disease transmission. Yang et al. (14) updated the SEIR model

to account for population flow and used deep learning methods

to properly forecast the spread of an outbreak in China. Jia et al.

(15) projected the relative frequency and geographical distribution

of new coronavirus type 2 infection in mainland China before

February 19, 2020, using the Wuhan population distribution.

The publication of these scientific study findings established a

highly effective theoretical and practical foundation for the efficient

execution of epidemic prevention and control. Primarily, most

scholars studied the laws of the epidemic disease transmission from

two perspectives: the evolution of the outbreak population and the

effect of related parameters on the development of the outbreak.

They used the related mathematical theory and methods to prove

the stability of the epidemic spread model, basic reproductive

number, and threshold value for the existence of equilibrium of the

model itself. Thesemathematical models can be used to describe the

dynamic changes associated with various diseases and to forecast

outbreak demand. In this paper, the system dynamics model is used

to study the law of epidemic disease transmission.

For the dispatching and distribution of emergency supplies

problem, scholars have established optimization models for

allocating emergency materials in the event of a public health

emergency, such as an outbreak of infectious diseases (16–

26). Some of these scholars overlooked the impact of the

evolution of infectious disease epidemics on supplies (16–21).

Miniguano-Trujillo et al. (27) developed a multi-periodic integer

programming optimization model and heuristic algorithm for

allocating appropriate time to therapists for various patient types. A

mixed-integer linear programming (MILP) model was established

to achieve equity. Numerical results showed that treatment

resources allocation based on population ratio is suboptimal.

Implementing such a resource allocation policy may decrease the

total number of infections and deaths, resulting in high costs

that must be paid for equity. Repoussis et al. (28, 29) developed

the optimal allocation of emergency medical resources in mass

casualty events. Because it is critical to prioritize the allocation of

emergency medical resources, the author turned the triage problem

with limited resources into an ambulance route problem model to

determine patients’ evacuation sequence and destination hospital.

To address the problem and find the optimal solution, an algorithm

based on the column generation method was proposed. Pu (30)

proposed a MILP model to tackle the allocation of patients to

hospitals and treatment sequencing difficulties in mass casualty

incidents, intending to effectively allocate limited resources in the

response phase. Simultaneously, the model was built to minimize

the total response time and flow time needed to treat all patients,

and it was solved using precise andMILP-based heuristics. Ray (31)

developed a model for emergency relief material transportation

under various constraints to optimize transportation expenses. In

general, current research results indicate that, within the context of

public health emergency studies, emergency logistics management
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FIGURE 1

Schematic diagram of state transition.

TABLE 1 Time-varying forecasting of medical resources mathematical

notations.

Notation Definition

S Familiar and vulnerable susceptible people

E Exposed people

I Infectious people

H Hospitalized infected people

R Recovered people

J A set of epidemic areas, j=1,2,3,..n;

Sj(t) Numbers of common and vulnerable susceptible people in

area j at the moment t

Ej(t) Numbers of common and vulnerable exposed people in area

j at the moment t

Ij(t) Numbers of common and vulnerable infectious people in

area j at the moment t

Hj(t) Numbers of common and vulnerable hospitalized infected

people in area j at the moment t

Rj(t) Numbers of common and vulnerable recovered people in

area j at the moment t

β1
j Exposure rate of susceptible people S in contact with

infectious people I in area j

β2
j Exposure rate of susceptible people S in contact with

exposed people E in area j

β3
j Exposure rate of susceptible people S in contact with

asymptomatic infected people E in area j

σ−1
j Mean duration of latency (days)in area j

δj The local medical treatment capacity mainly determines the

rate at which infected people in areas j change to hospitalized

patients

γj Common and vulnerable recovery rate in area j

is a significant research topic, and its study has profound

theoretical and practical implications, demonstrating the necessity

and importance of emergency logistics management. Additionally,

it contributes significantly to the reduction of fatalities and property

damage caused by emergencies. However, most studies (32, 33)

focus on the one-time distribution of supplies and dispatch of

emergency supplies, and rarely consider the emergency in epidemic

areas, dynamic distribution of supplies, or actual situations in

which different local medical treatment capabilities exist against

the background of an epidemic and resulting in varying influences

on the epidemic transmission evolution trend. After the outbreak

of infectious diseases, the epidemic degree varies by epidemic

location, and the demand for supplies in the epidemic area is

determined by the number of confirmed infections.

TABLE 2 Emergency medical resource distribution decision mathematical

notations.

I A set of supply points, i=1,2,3,..m;

T A set of time, one rescue cycle per day

Xt
j The demand satisfaction rate of emergency medical

resources in epidemic area j at the moment t

rij Vehicle travel distance from supply point i to epidemic area j

at the moment t

Ptj The stock of emergency medical resources that epidemic

area j before moment t begins

Xt
j,min The lower threshold of requirement satisfaction rate of

emergency medical resources in epidemic area j at moment

t,0< Xt
j,min <1

Qt
i The stock of emergency medical resources at the supply

point before moment t begins

ωt
j The degree of urgency in the demand for emergency medical

resources in epidemic areas

K The upper limit of the number of supply points for

transporting medical resources to epidemic areas

The primary objective of this study is to quantify the actual

situation in the epidemic area to distribute supplies, and help

decision-maker to make best choices on the allocation of limited

emergency medical resources to the appropriate places and

quantities to halt the outbreak and mitigate its effects.

To be specific, this paper is based on human data collected

in each of the affected areas. A particular point in time in the

historical data is selected as the basis point. The personnel situation

in each epidemic area at the decision time is forecasted based on

the information at the basis point using the modified infectious

disease model. The number of infected and hospitalized groups is

simulated in each area to forecast patients’ demand for emergency

medical resources. Under the assumption that the demand for

emergency medical resources for patients with infectious diseases

and inpatients is known, we define emergency indicators for each

epidemic area and develop a bi-objective optimization model

to determine the optimal medical service allocation plan by

maximizing the weighted demand satisfaction rate and minimizing

the total vehicle travel distance.

In summary, this paper takes sudden infectious public events

as the background, emphasizes emergency logistics schedule

optimization, and presents an emergency rescue logistics model

based on infectious diseases transmission mechanism. First, based

on the transmission rules of infectious diseases combined with

the local medical treatment capability, the modified susceptible-

exposed-infected-recovered (SEIR) model are proposed to predict

the material demand of each epidemic area during the entire

emergency rescue stage. Second, a mixed-integer programming

model for multi-stage and multi-cycle emergency rescue logistics

scheduling in multi-epidemic areas is built with fairness (34)

and timeliness in mind, and the route selection of rescue

vehicles and allocation of medical resources are optimized. Finally,

using the linear weighting and ε-constraint method, the MILP

model of multi-objective emergency rescue logistics scheduling is

transformed into a single-objective model, and LINGO software
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TABLE 3 Coordinates and number of residents at resident demand node I.

NumberJ 1 2 3 4 5 6 7 8

S0 8million 5million 3million 4million 2million 3.5million 2.5million 5.5million

E0 5,000 4,000 2,000 3,000 1,000 3,000 2,000 5,000

I0 600 500 300 400 200 400 300 600

H0 180 125 120 100 20 60 60 125

R0 156 95 126 75 22 23 36 110

β1
j 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

β2
j 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

β3
j 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

σj 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

δj 0.1 0.05 0.2 0.05 0.1 0.05 0.04 0.1

γj 0.2 0.15 0.3 0.15 0.1 0.1 0.1 0.15

αj 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

P2j 193 105 89 108 92 85 57 172

TABLE 4 Vehicle travel distance from the supply point to the epidemic

area.

rij 1 2 3 4 5 6 7 8

A 390 370 880 750 145 200 235 515

B 620 635 1,100 1,050 355 240 205 540

C 550 440 500 305 625 700 800 340

D 450 400 780 725 240 175 325 220

and YALMIP toolbox MATLAB program are used to validate the

numerical examples.

2. Methods

2.1. Model assumptions

(1) The local population is relatively steady, regardless of

migration, natural birth rate, or death rate.

(2) The infected individual requires pharmacological therapy

following hospitalization.

(3) Individuals who have recovered get permanent immunity.

(4) It is assumed that the functional relationship between the

demand for emergency medical resources and the number

of infected individuals in the epidemic area is known.

(5) It is assumed that the demand for supplies in the epidemic

area and reserves of relief centers can be forecasted, as well

as the number of and geographic location of epidemic areas.

(6) This paper does not consider the number of vehicles,

transportation mode, transportation capacity limits, or

other related factors while implementing quarantine policies

during an epidemic.

2.2. The time-varying demand forecasting
model

According to the unique characteristics of the spread of

infectious diseases, the precise allocation of emergency supplies

during an epidemic can be summarized as follows: (1) During

the early stages of an epidemic, it is necessary to quantify the

extent of the emergency in epidemic areas. The epidemic locations

are diverse, and each area has a unique crisis circumstance. (2)

Because supplies demand are highly correlated with the number

of confirmed infections, it is vital to forecast the demand in the

epidemic area based on the number of infected people.

Based on the characteristics of the initial spread of infectious

disease, hence the SEIHR warehouse models are created. We

categorize the affected area’s population into six subgroups:

susceptible (S), exposed (E), infective (I) who have developed

symptoms following the incubation period but have not been

hospitalized or isolated, hospitalized infected (H), and recovered

(R). N= S+ E+ I+H+ R is used to calculate the total population

in each epidemic area. Figure 1 shows the transfer of this model

between these epidemic classes. Table 1 shows the definitions of the

time-varying forecasting of the medical resources model.

The susceptible population (S) reduce as a result of exposure

to exposed, infected, and asymptomatic infected people, and they

will enter the incubation period of exposure (moving to class E).As

shown in formula 1.

The exposed population (E) become infected (moving to class

I) with evident symptoms.As shown in formula 2.

The infected population (I) enter the inpatient stage (moving

to class H) according to the local medical treatment capability. As

shown in formula 3.

After treatment, the hospitalized population (H) reduces and

enter the recovery population (moving to class R). As shown in

formula 4.

The recovery population is immune to this disease.
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2.3. SEIHR model

dSj

dt
= −β1

j Sj(t)Ij(t)− β2
j Sj(t)Ej(t) (1)

dEj

dt
= β1

j Sj(t)Ij(t)+ β2
j Sj(t)Ej(t) − σjEj(t) (2)

dIj

dt
= σjEj(t)− δjIj(t) (3)

dHj

dt
= δjIj(t)− γjHj(t) (4)

dRj

dt
= γjHj(t) (5)

2.4. Emergency medical resource
distribution decision model

Mixed-integer linear programming (MILP) is used to develop

a deterministic resource allocation model. Table 2 shows the

definitions of the Emergency medical resource distribution

decision model.

2.4.1. Notation

ωt
j =

Ij(t)+Hj(t)
∑

j∈J
(Ij(t)+Hj(t))

(6)

2.4.2. Decision variables
Based on the descriptions and assumptions of the

abovementioned models, the following multi-objective emergency

relief supply distribution decision model can be established for

each time cycle, to maximize the weighted sum of the demand

satisfaction rates and minimize travel distance:

Xt
ij: The quantity of emergency medical resources allocated

from supply point i to epidemic area j at the moment t

ytij: 0–1 variable: if emergency medical resources are delivered

from supply point i to epidemic area j at the moment t, it is 1;

otherwise, it is 0.

2.4.3. Objective function
Objective 1: To maximize the weighted sum of demand

satisfaction rates for each period.

maxZ1 =
∑

j∈J

ωt
jX

t
j (7)

Objective 2: To minimize the sum of driving distances

per period.

minZ2 =
∑

i∈I

∑

j∈J

ytijrij (8)

2.4.4. Constraints
Subject to

Xt
j = min











Ptj +
∑

i∈I
Xt
ij

Dt
j

, 1











∀j ∈ J, t ∈ T (9)

Xt
j,min ≤ Xt

j , ∀j ∈ J, t ∈ T (10)
∑

j∈J

Xt
ij ≤ Qt

i , ∀i ∈ I, t ∈ T (11)

Xt
ij(1− ytij) = 0, ∀i ∈ I, j ∈ J, t ∈ T (12)

∑

j∈J

Xt
ij ≤ max

{

Dt
j − Ptj , 0

}

, ∀j ∈ J, t ∈ T (13)

∑

i∈I

ytij ≤ K, ∀i ∈ I, t ∈ T (14)

ytij ∈ {0, 1} , ∀i ∈ I, j ∈ J, t ∈ T (15)

Xt
ij ≥ 0, ∀i ∈ I, j ∈ J, t ∈ T (16)

Constraint (9) is the formula for calculating the demand

satisfaction rate.When the supply exceeds the demand, the demand

satisfaction rate should be equal to one.

Constraint (10) establishes a minimal demand satisfaction rate

for all epidemic areas, which reflects the fairness principle.

According to constraint (11), the quantity of emergency

medical resources delivered from the central distribution center

shall not exceed its stock.

Constraint (12) indicates the relationship between these two

variables, that is, only when the quantity of goods Xt
ij dispatched

from the supply point to the epidemic area is not equal to 0, then

the ytij is equal to 1.

The purpose of constraint (13) is to prevent the supply point

from receiving more materials than required.

Constraint (14) demonstrates that one epidemic area can

only be served by K supply point to prevent wasting of

transport capacity.

Constraints (15) and (16) are constraints on variable values.

2.5. Model solution

The key to solving multi-objective (35–38) problems is

to convert the multi-objective function into a single-objective

programming problem using the weighted method, constraint

method, and mixed-method, which is solved using the traditional

single-objective programming method. The ε-constraint method

is an exact approach that is capable of generating non-extreme

efficient solutions. An ε-constraint method also performs well in

mixed-integer multi-objective problems.

In this paper, the multi-objective problem is standardized using

min-max first, and then the maximization objective function is

converted into the minimization objective.

minZ
′

1 = −Z1 = −
∑

jÎJ

ωt
jX

t
j (17)
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TABLE 5 Current information of the epidemic area.

Epidemic area 1 2 3 4 5 6 7 8

I0 1,307 1,139 497 877 327 877 624 1,307

H0 286 166 192 131 65 108 83 265

ω2
j 0.19307 0.15816 0.08351 0.12217 0.04751 0.11938 0.08569 0.19052

D2
j 1,593 1,305 689 1,008 392 985 707 1,572

2.5.1. ε-Constraint method
An ε-constraint method is a well-known approach used for

solving multi-objective problems. This method is to convert a

multi-objective problem into a single-objective problem, where

only one objective is optimized and the remaining objectives

are treated as constraints. The general form of this algorithm

is defined by Eq. (18), where X denotes the feasible set of the

mathematical model:

min f1x

subject to x ∈ X

f2x ≤ ε2 (18)

.....

fnx ≤ εn

2.5.2. Weighting sum method
Weighted sum method is the most frequently used technique

to evaluate efficient solutions for a deterministic multi-

objective optimization problem. The multi-objective problem

is converted into a single-objective problem using the linear

weighted grouping method, and assigning a weight to each

sub-objective based on its importance. The overall objective

function is:

minZ = λ1









−
∑

j∈J
ωt
jX

t
j − Z

′

1,min

Z
′

1,max − Z
′

1,min









+ λ2









∑

i∈I

∑

j∈J
ytijrij − Z2,min

Z2,max − Z2,min









(19)

According to Formula (16), when the supply of emergency

medical resources is sufficient to fulfill demand, the first

term on the right end has a constant value of 1. In this

case, the model is simplified as the optimization model

to minimize the total driving distance. When the supply

of medical resources for all points does not exceed the

demand, the optimization model is reformulated into a

MILP problem.

Constraint (9) is transformed into:

Xt
j =

Ptj +
∑

i∈I
Xt
ij

Dt
j

≤ 1, ∀j ∈ J, t ∈ T (20)

FIGURE 2

Epidemic trend in scenario 1 (Asymptomatic not included) of

epidemic area 1.

FIGURE 3

Epidemic trend in scenario 2 (Asymptomatic included) of epidemic

area 1.

2.6. Numerical experiments

2.6.1. Base case
Suppose that eight epidemic areas (numbered 1, 2, 3, 4, 5, 6,

7, 8) require immediate assistance as a result of the emergence

of the epidemic. Four supply points (numbered A, B, C, and D)

can provide emergency medical resources for the epidemic areas,

with storage of A = 2,400, B = 2,500, C = 1000, and D =

1100, respectively. One supply point can only supply one epidemic

area. Because the propagation of the epidemic differs from other

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2023.992197
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hu et al. 10.3389/fpubh.2023.992197

TABLE 6 Demand satisfaction rate of each epidemic area.

Epidemic
area

1 2 3 4 5 6 7 8

Supply

point

B C B A D D B A

Xt
ij 1,400 1,000 591 900 225 875 509 1450

Xt
j 1 0.847 0.987 1 0.809 0.975 0.801 1

TABLE 7 Demand satisfaction rate of each epidemic area.

Epidemic
area

1 2 3 4 5 6 7 8

Supply

point

A A D C A B B B

Xt
ij 1,085 1,090 600 900 225 714 650 1,136

Xt
j 0.802 0.916 1 1 0.809 0.811 1 0.800

TABLE 8 Impact of di�erent minimum satisfaction rates on emergency

rescue targets.

1 2 3 4 5 6

Xt
j,min 0.7 0.8 0.85 0.88 0.9 0.92

Total

distance

4,045 4,045 4,045 4,815 4,815 3,285

Total

satisfaction

0.94611 0.94611 0.94611 0.94605 0.94005 0.94001

situations and has an infectious time, it is difficult to determine the

exact start date of the crisis. As a result, a date in the past is chosen

as the start time. Different epidemic areas’ start time information

is shown in Table 3. Distances (in units/km) between the eight

epidemic areas and the four supply points are shown in Table 4.

2.6.2. Experiments on the base case
The sensitivity analysis of the calculation results is conducted

below, and the effect of adjusting theminimumdemand satisfaction

rates in themodel is studied.Whenwe change the number of supply

points in an epidemic area, the results are also different.

3. Results

3.1. Base case

As indicated in Table 5, the SEIHR model is used to calculate

the number of infected people, level of emergency, and total

medical demand in each epidemic area after 2 days, Figure 2

show the variation in population numbers over time in epidemic

area 1. Medical and health intervention is manifested by the

level of medical treatment when infectious diseases occur, whether

the medical resources are sufficient and complete, and whether

all the patients can be collected when the number of infected

patients increases rapidly, so that the patients can get timely

and effective treatment. To improve the ability to treat patients

can be regarded as the rate at which infected people in areas

FIGURE 4

Impact of di�erent minimum satisfaction rates on emergency

rescue targets of the ε-constraint method.

TABLE 9 Impact of di�erent minimum satisfaction rates on emergency

rescue targets.

1 2 3 4 5 6

Xt
j,min 0.7 0.8 0.85 0.88 0.9 0.92

Total

distance

2,375 2,975 3,285 3,285 3,285 3,285

Total

satisfaction

0.8370 0.8793 0.9401 0.9400 0.9400 0.9400

j change to hospitalized patients of infectious disease model.

δ = (δ, 1.5δ, 2δ, 2.5δ), to analyze the impact on the number of

infected people. Control variable method was adopted, remaining

parameters remained unchanged, and SEIHR model was used to

simulate the development of infected persons in Region 1, as shown

in Figure 3.

The trend of the number of each population in the infectious

disease model over time can be calculated, by using PYTHON

programming to enter the parameters in Table 3 into the

models. As illustrated in Figure 2, the number of infected and

hospitalized patients grows over time and declines following

adequate treatment, while the number of recovered patients

increases throughout the whole stage. This result is consistent with

the transmission mechanism of infectious diseases. From Figure 3,

As medical and health care intervention gradually increases, δ

of the corresponding model increases, the peak time of infection

moved forward and the peak number of infected persons decreases

accordingly. An adequate supply of medical resources is therefore

critical to ending the outbreak quickly. In addition, early action on

non-drug interventions are critical to epidemic control, and the

lessons learned from epidemic control by WHO also show that

early action will make significant progress in slowing and ultimately

stopping outbreaks (39).

The model is programmed and the computation results are

verified using the LINGO software andMATLAB YALMIP toolbox.
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FIGURE 5

Impact of di�erent minimum satisfaction rates on emergency

rescue targets of the Weighting sum method.

TABLE 10 Satisfaction rate of each epidemic area and decision-making

situation when K = 2.

Epidemic
area

1 2 3 4 5 6 7 8

Supply

point

A,B A B D B B,D B C,D

Xt
ij 1,400 1,200 600 900 222 892 650 1,136

Xt
j 1 1 1 1 0.801 0.992 1 0.8

When fairness is the main objective, the results of the ε-constraint

method are shown in in Table 6: Xt
j,min = 0.8.

When the fairness and efficiency weights were 0.5, the results of

the weighting sum method are shown in Table 7: Xt
j,min = 0.8.

Generally speaking, the proposed dispatching and distribution

model can satisfy the demand in each epidemic area to the greatest

extent, meanwhile ensuring a fair allocation of materials among all

the areas. Supplies will be delivered to each area from the nearest

distribution center. Decision-makers can choose either objective

based on their evaluations. The dual objective mixed-integer

programming model, which takes into account both fairness and

efficiency of the allocation of medical resources, also provides

decision-makers flexibility to choose either objective based on their

evaluations. Therefore, this work providesmanagement insights for

improving medical delivery decisions based on demand projections

to rapidly respond to public health emergencies.

3.2. Experiments on the base case

3.2.1. E�ect of the lowest satisfaction rate
This section primarily examines the effect of the difference

in the minimum satisfaction rate of all epidemic areas on

corresponding decisions, and the results of the ε-constraint method

are presented in Table 8 and Figure 4.

The black dots in Figure 4 represent the value of objective

function 1 at various levels of minimum satisfaction.

The results reveal that the value of the first objective function

increases as the minimum satisfaction rate increases. Thus, the

maximization of the weighted sum of the demand satisfaction rates

shows a declining trend. This corresponds to the actual situation.

When the fairness and efficiency weights are 0.5, the results of

the weighting sum method are shown in Table 9 and Figure 5.

The black dots (object 1), blue dots (object 2), and yellow dots

(total object) represent the values of objective 1, the normalized

objective 2, and the weighted value of the total objective at various

minimum satisfaction rates, respectively.

As shown in Figure 5, when the fairness and efficiency weights

are set to 0.5, the total weighted satisfaction rate and vehicle travel

distance in the epidemic area increase with the increment of the

minimum satisfaction rate.

The value of the minimum demand satisfaction rate is

extremely important, and decision-makers should assign

appropriate values to parameters at various stages of the emergency

process based on the actual situation, to ensure that the results

obtained are feasible and effective.

3.2.2. E�ect of multiple supply points in an
infected area

This section focuses on the influence of the different numbers

of supply points on relevant decision-making in all epidemic areas

where Xt
j,min = 0.8. When K (The upper limit of the number of

supply points for transporting medical resources to epidemic areas)

= 2, the satisfaction rate of each epidemic area is shown in Table 10.

When K= 2, the weighted sum of the demand satisfaction rate

is 0.9522, which is greater than when K = 1. When K = 2, the

total travel distance is 4740 km, which is larger than the total travel

distance of 4,045 kmwhenK= 1. This trend is in line with common

sense. Furthermore, when K = 3, the decision result is the same

as when K = 2. Thus, even while the overall weighted satisfaction

of residents in the epidemic area increases when supplies are

delivered from two supply points, it happens that each supply

point may deliver a small number of supplies, resulting in a waste

of transportation resources. Therefore, for decision-makers, it is

necessary to set up an appropriate number of supply points in the

epidemic emergency medical logistics supply to effectively reduce

rescue costs and improve the level of emergency services.

4. Conclusion

In comparison to traditional emergency logistics, emergency

medical logistics (40) has three characteristics that raise the

complexity and difficulty of solving logistical problems. To begin

with, there is a dearth of demand-related information, such

as the severity of the epidemic and the number of infected,

as well as difficulties in marking distribution-related decisions.

The incubation phase, in particular, results in a time delay in

demand (41). Second, the disease can quickly spread from one

location to another, resulting in a large-scale epidemic. Infection,

recovery, and mortality rates typically vary across regions due

to differences in individual physical conditions as well as habits,

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2023.992197
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hu et al. 10.3389/fpubh.2023.992197

customs, and medical services provided by the hospitals in each

region (42, 43). Third, unlike other forms of relief such as food, the

substitutability of medical relief is imperfect. Specific medication

cannot be completely replaced by another (44). This paper discusses

how to allocate emergency supplies under two different infectious

disease propagation scenarios. Specifically, this work contributes

to the decision analysis of emergency medical logistics responses

to public health emergencies in the following ways: First, based

on the transmission rules of infectious diseases and local medical

service capacity, we modify and develop a SEIHR (susceptible-

exposed-infected-hospitalized-removed) model. These two models

aim to forecast the time-varying demand for medical supplies

in each epidemic area during the entire emergency rescue

phase. Second, to find the optimal medical service allocation

plan, we define emergency indicators for each epidemic area

and propose a bi-objective optimization model to maximize

the weighted demand satisfaction rate and minimize the total

vehicle travel distance. Finally, we use linear weighting and the

ε-constraint method to reformulate the bi-objective MILP model

of emergency rescue logistics scheduling to a single-objective one.

We also conduct numerical studies to examine the performance of

the model.

4.1. Implications

Numerical results show that due to the hidden nature

of asymptomatic infection, the number of infected people in

infected areas will increase greatly. Decision-makers should assign

appropriate values to parameters at various stages of the emergency

process based on the actual situation, to ensure that the results

obtained are feasible and effective. It is necessary to set up an

appropriate number of supply points in the epidemic emergency

medical logistics supply to effectively reduce rescue costs and

improve the level of emergency services. Overall, this work

providesmanagerial insights to improve decisionsmade onmedical

distribution as per demand forecasting for quick response to public

health emergencies.

4.2. Limitations

Our study is hypothetical, without actual data. This study only

evaluates how to predict the demand for medical aid resources and

how to allocate resources based on the number of infected and

hospitalized people in the epidemic areas. The supply points have

also been fixed for the time being; however, these supply points

can be adjusted continuously according to the number of supplies,

location advantages, and the number of individuals serving in the

epidemic area. Furthermore, the impact of population mobility and

natural population growth rate on the spread of the epidemic is not

considered in this work. Finally, the paper ignores the impact of

material production capacity on decision-making.

In conclusion, the performance of emergency medical logistics

may be improved significantly. Future research can take the

material production supply chain, dynamic resource allocation

based on locations of supplies, vehicle scheduling, and vehicle

routing optimization problem into consideration. These factors

help to establish a model that is more in line with the reality in

medical resource allocation, thus more scientific and reasonable to

solve practical problems.
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