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Background: U.S. school closures due to the coronavirus disease 2019 (COVID-19)

pandemic led to extended periods of remote learning and social and economic impact

on families. Uncertainty about virus dynamics made it di�cult for school districts to

develop mitigation plans that all stakeholders consider to be safe.

Methods: We developed an agent-basedmodel of infection dynamics and preventive

mitigation designed as a conceptual tool to give school districts basic insights into

their options, and to provide optimal flexibility and computational ease as COVID-19

science rapidly evolved early in the pandemic. Elements included distancing, health

behaviors, surveillance and symptomatic testing, daily symptom and exposure

screening, quarantine policies, and vaccination. Model elements were designed to

be updated as the pandemic and scientific knowledge evolve. An online interface

enables school districts and their implementation partners to explore the e�ects

of interventions on outcomes of interest to states and localities, under a variety of

plausible epidemiological and policy assumptions.

Results: The model shows infection dynamics that school districts should consider.

For example, under default assumptions, secondary infection rates and school

attendance are substantially a�ected by surveillance testing protocols, vaccination

rates, class sizes, and e�ectiveness of safety education.

Conclusions: Our model helps policymakers consider how mitigation options and

the dynamics of school infection risks a�ect outcomes of interest. The model was

designed in a period of considerable uncertainty and rapidly evolving science. It had

practical use early in the pandemic to surface dynamics for school districts and to

enable manipulation of parameters as well as rapid update in response to changes in

epidemiological conditions and scientific information about COVID-19 transmission

dynamics, testing and vaccination resources, and reliability of mitigation strategies.
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1. Background

School closures due to the coronavirus disease 2019 (COVID-19) pandemic led to extended

periods of remote learning, with potential harm for children’s educational progress, psychosocial

development, and mental and physical health (1–4). School closures also affect families,

workplaces, and workforce participation (5). Since COVID-19 burden is often greater in
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socioeconomically disadvantaged communities, in-person

instruction early in the pandemic was unavailable or inconsistent

for the students who may need it the most, thereby increasing

educational disparities for children in lower income families,

communities of color, and households that include essential workers,

contain multiple generations, experience crowded housing, and with

members who have chronic conditions that put them at risk for

severe COVID-19 (6, 7). Therefore, school districts need to find ways

to bring all students back safely.

Recent studies suggest that secondary infection risk in schools

is low when basic precautions are followed (8–10). Yet uncertainty

surrounding the infectiousness of evolving viral variants and the

management of pre- and asymptomatic populations slowed and

disrupted school re-openings in the U.S. and has affected school

attendance once re-opened. Maintaining in-person instruction, and

consistent school attendance, during the pandemic means reducing

infection hazard for susceptible children and adults who congregate

daily for extended periods of time.

School districts sought to work with their public health

authorities to understand and act upon risk in a dynamic

environment, using the policy levers available to them. There is a

need for practical models that inform planning for safer in-person

instruction in K-6 settings. A practical model surfaces possible

infection dynamics and is flexible in parameters and their values and

is designed computationally to provide rapid results. Transparent

flexible models could facilitate deeper understanding about levers

of influence among local authorities tasked with responding to the

pandemic on a day-to-day basis (11).

We designed a stochastic, agent-based model of resumed in-

person instruction that includes representations of a variety of

intervention levers, including screening for symptoms and exposures,

biological testing, education to reduce transmission risks from

socializing without distancing or masking, and vaccination. We

developed this model while collaborating as a university science

partner with a large urban school district to consider what would

be necessary for safer resumption of this much needed face-to-

face learning. Because the science of COVID-19 was evolving

rapidly, we sought to create a model with parameters that end

users could easily adjust as more information emerged regarding

transmission dynamics and the impact of mitigation strategies. The

model was flexible to accommodate different school structures and

local environments.

This model was designed for adaptation; we implemented

the model in the R statistical computing environment (v4.1.0)

(12) and provide the source code at https://github.com/UCLA-

PHP/school.epi.abm. We used the model to assess key outcomes

of interest to school district stakeholders, and we provided an

online user interface to the model as a practical tool to empower

school districts and their implementation partners to explore

how various combinations and variations of strategy components

affect health and learning outcomes within different underlying

epidemiological conditions that could arise in the real world.

This user interface can be accessed at https://agent-based-models.

shinyapps.io/RegionalCOVIDSchoolSimulation/. The purpose of

this paper is to showcase the capabilities of this simulation model,

not to make specific predictions for a particular school district or

epidemiological scenario. We hope that this model will be helpful for

policymakers both in future stages of the COVID-19 pandemic and

for future epidemics.

2. Methods

2.1. Model design and scope

Here we describe the model in general terms; a detailed

description of the implemented model is provided as

Supplementary material.

2.1.1. Agents
Themodel contains two types of simulated individuals (“agents”):

students and their associated household adults (two per student). We

chose to include these agent types as they form the largest proportion

of the school community. The model could be extended to include

teachers and other school personnel as additional agents who interact

with students and with one other. Each student is assigned to a

particular school and classroom and has several “close classmates”

within their class; close classmates have higher risks of transmission

than other classmates.

2.1.2. Sources of infection
Infections in the model come from three sources: infectious

classmates at school, infectious family members at home, and

exogenous exposures outside of school and home.

On each day of the simulation, each currently infectious student

who is currently in school has a chance to infect each other student

in their class who is not yet infected. The risk of infection for a

given student is 1 − (1 − pC)
C(1 − pD)

D, where C is the

number of infectious close classmates currently in attendance, pC is

the parameter for the risk of transmission to close classmates per

infectious student (the “effective contact risk” for close classmates),

D is the number of infectious contacts (including both close and

distant classmates) currently in attendance, and pD is the parameter

of risk of transmission to distant classmates per infectious student.

For example: if on a given day, a particular student has 2 infectious

close classmates and 3 infectious distant contacts currently at school

with them, then if pC = 0.01 and pD = 0.005, that student has a

[1 − (1 − 0.01)2(1 − 0.005)2+3] × 100% ≈ 4.4% chance of being

infected in school on that day.

Infectious students have a chance to infect their household adults,

and infectious household adults have a chance to infect their students

and a chance to infect the other household adult (if not already

infected). For easier interfacing with the available literature, the

daily transmission risks are specified indirectly. The user interface

provides parameters for the risk of transmission per infection. The

risk per day is calculated based on this parameter and the duration-

of-infectiousness parameters (“infection time-course”), as:

risk per infectious day = 1− (1− risk per infection)1/# days infectious.

Finally, each student has a daily exogenous risk of infection outside

of school and home, which depends on whether they have received
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COVID-19 safety education (as described in the Interventions section

below). Each household adult also has a risk of exogenous infection.

2.1.3. Infection progression
Agents follow a susceptible-infected-recovered (SIR) framework

in which they are initially either susceptible to infection, infected, or

vaccinated or recovered (i.e. immune) (13). Susceptible individuals

can become infected over the course of the simulation. Infected

individuals then progress through a series of infection states. They

first enter a latent period during which they are not yet infectious

or symptomatic. Next, they become infectious but presymptomatic.

Infectious presymptomatic individuals can become symptomatic or

remain asymptomatic. Eventually, infected individuals recover and

become immune.

2.1.4. Interventions
The model includes representations of several possible program

components for resuming and maintaining in-person instruction.

Not all these components may be implemented in some school

districts, so the model has options for some of these components to

be deactivated. For example, surveillance testing of non-symptomatic

individuals can be eliminated by setting the “testing fraction” for

surveillance testing to 0%. Thus, model users can modify parameters

to exclude or alter some of the mitigation strategies to represent

scenarios relevant to their environment.

One component is a daily symptom/exposure screening system

through which students self-report if they have COVID-19 exposures

or symptoms. This daily health screening may reduce the rates of

infectious individuals coming onto campus; individuals reporting

symptoms or suspected COVID-19 exposures could be diverted into

quarantine protocols or receive other triage and follow-up. Such

screenings have been implemented in workplaces, universities, and

K-12 systems (14).

Another possible component of school-based mitigation

strategies is outreach education of school community members. In

such a program, school representatives might make phone calls to

students’ family members to provide information and guidance about

safe behaviors that reduce their exposure to COVID-19 (e.g., social

distancing, mask usage, and vaccination). In addition to influencing

behavior, such engagement with students and their families may

change the likelihood that individuals accurately report potential

exposures and symptoms on the daily screen. The model includes a

representation of this type of educational outreach.

Testing for COVID-19 infection is another possible component.

Tests can be performed in response to reported COVID-19 symptoms

or known exposure. Periodic surveillance testing can also be

performed universally or in a random sample of non-symptomatic

individuals to identify presymptomatic and asymptomatic cases. For

the 2021–2022 school year, our partner district implemented weekly

surveillance testing of 100% of their students. Both responsive and

surveillance testing are represented in the model. The model can

represent tests with different accuracy characteristics (specificity,

sensitivity as a function of elapsed time since infection). In the

analyses below, we assumed accuracy characteristics similar to PCR

testing, but these parameters and testing frequency could be changed

to represent antigen testing (15).

Other policies that can influence infection risks at school include

defining and maintaining small groups in close proximity (e.g.,

classrooms, lunch groups) as well as using masks, physical space

dividers, and other forms of physical barriers (16).

2.2. Model outcomes

We report the following model outcomes after 2 months of

simulated full-time in-person school:

1. The cumulative percentage of enrolled students infected with

COVID-19 since baseline.

2. The cumulative percentage of enrolled students infected with

COVID-19 while at school.

3. The cumulative number of school days missed per student.

4. The percentage of schools with no in-school transmissions.

5. The percentage of schools with no detected infection clusters.

Other measured outcomes, such as infection rates among

household adults, are not reported here in the interest of brevity but

are provided in the online interface.

For each experimental scenario considered below, we simulated

10,000 schools in a single run of the model using the corresponding

set of input parameter values. We calculated the five outcomes listed

above for each school, and then combined results across the simulated

schools to estimate outcome distribution summary statistics. For the

student-level outcomes (#1-3), we report the means across the 10,000

simulated schools, as well as the 2.5 and 97.5% percentiles of these

outcomes as 95% prediction intervals. For the school-level outcomes

(#4-5) we report the event rates as percentages, as well as 95% exact

binomial confidence intervals (percentiles and prediction intervals

are not applicable for these outcomes).

2.3. Validation

Validation tests confirmed that the agent-initializing function

produced the specified initial rates of current infection, prior

infection, and COVID safety education characteristics among

students at baseline for the default input parameter values. In the

absence of school data when the model was developed, it was not

feasible to calibrate this model. Methodological constraints make

it difficult to compare the model output to actual experience of

school districts; for example, few districts have reliable estimates

of COVID-19 positivity from well-designed surveillance. For this

paper, we assigned default parameter values based on the existing

literature where possible and considered likely values for variables

with considerable uncertainty (details in Supplementary material).

To use the model to inform planning, policymakers should choose

parameter values that reflect current conditions in their schools.

2.4. Example experiments

To demonstrate how the model can be used to explore the effects

of interventions, we tested the effects of changes in four parameters

that could be affected by school policies: class size, frequency of
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surveillance testing, fraction of students tested in each surveillance

sample (“sampling fraction”), and proportion of household adults

vaccinated (Tables 1–4). We started with the default parameter values

and varied these four parameters to determine how the outcomes

changed in response. We also considered a set of four scenarios

examining interactions between surveillance testing and community

education (Table 5).

2.5. Sensitivity analyses

In sensitivity analyses, we tested the effects of additional

parameters: number of non-socially distanced classmates per student,

test sensitivity and specificity, transmission risk from infectious

students to non-socially-distanced classmates, exogenous infection

risk, symptom/exposure reporting sensitivity and specificity prior to

COVID-19 safety education outreach, receptiveness to COVID-19

safety education outreach, and effects of COVID safety education

on accuracy of symptom/exposure reporting, and exogenous risk

(Supplementary material). We created tornado plots as a simple,

interpretable display; these plots assess the relative importance of

these variables with respect to each outcome (17).

3. Results

In 10,000 schools simulated for 2months of in-person instruction

using the default parameter values except for class size, smaller

class sizes resulted in fewer students infected in-school, more

schools remaining transmission-free, and fewer school days missed

(Table 1). With classes of 30 students each, an average of 4.53%

of students became infected, 0.09% were infected in-school, 1.24

school days were missed per student, and 69.3% of schools

remained transmission-free. With 10 students per class, these

outcomes improved to 4.48% infected overall, 0.04% infected in-

school, 1.21 school days missed per student, and 84.2% of schools

remaining infection-free.

More surveillance testing resulted in lower transmission rates,

but more school days missed (Table 2). With no surveillance testing,

4.49% of students became infected after baseline, 0.06% were infected

at school, 1.18 school days were missed per student, and 79.2% of

schools had no on-campus transmissions.Weekly surveillance testing

with a randomly selected 25% of the student body tested in each week

did not change these outcomes substantially. Daily testing of 25% of

the student body produced small improvements in infection rates:

4.49% of students became infected overall, 0.04% were infected in

school, and 84.2% of schools remained transmission-free; however,

average school days missed increased to 1.30 days per student.

Finally, daily testing of all students produced larger improvements

in secondary infection rates: 4.48% of students were infected overall,

0.03% in school, and 87.3% of schools stayed transmission-free;

however, school days missed rose to 1.59 days per student. The

percentage of schools with no detected clusters had an opposite

trend to the percentage of schools with no actual transmissions: with

more surveillance testing of asymptomatic students, more schools

had clusters detected.

The observed tradeoff between transmission and attendance

occurred because increased testing increased the numbers of true

positive cases, which are correctly isolated, but also the numbers

of false positive cases, which are unnecessarily isolated: with no

testing, students spent an average of 0.06 school days on-campus

and infectious, vs. 0.03 school days with daily 100% testing; however,

with 100% daily testing, students also averaged 1.41 school days

quarantined and uninfectious, vs. 1.02 days with no surveillance

testing (Table 3).

Higher levels of vaccination among household adults resulted

in fewer infections overall and fewer school days missed, but

no improvements in on-campus infections (Table 4). With no

vaccinations, 4.50% of students became infected since baseline, 0.05%

were infected while at school, 1.27% of students were infected by a

household adult, 91.5% of students remained uninfected, 1.21 days

were missed, and 80.2% of schools had no on-campus transmissions.

With 75% of the adults vaccinated, only 3.58% of students became

infected since baseline and 0.79 school days were missed per student;

0.06% of students were infected on campus, 0.34% were infected

by a household adult, 92.4% remained uninfected, and 78.8% of

schools had no on-campus transmissions. The decrease in the

proportion of schools with no on-campus transmissions between the

0 and 75% adult vaccination scenarios was small (1.4 percentage

points) but statistically significant (continuity-corrected chi-square

test p= 0.02); as fewer students were being infected at home (0.34 vs.

1.27%), more remained uninfected and hence vulnerable to infection

at school (92.4 vs. 91.5%).

In the scenarios examining interactions between surveillance

testing and school community education, the “Education only,”

“Testing only,” and “Testing + Education” scenarios all resulted in

lower infection rates than the “No testing or education” scenario

(Table 5). “Testing only” had better in-school infection rates than

“Education only” but worse overall infection rates and average

attendance rates. “Testing + Education” produced better infection

rates than either strategy alone and a better average attendance rate

than “Testing alone.”

3.1. Sensitivity analyses

Detailed sensitivity analysis results are provided in the

Supplementary material. Starting from our default assumptions,

in-school infections were most affected by changes in risk per

infectious classmate, exogenous infection risk, exposure and

symptoms screening sensitivity and specificity, likelihood of

symptoms if infected, class size, number of non-distanced classmates

in school, and biological test specificity, while attendance rates

were most affected by changes in symptoms/exposure screening

specificity, exogenous infection risk, biological test specificity, and

vaccination rate.

4. Discussion

Our model provides results in terms of health as well as

attendance. Key findings are that (1) as expected, smaller class

size resulted in less school transmission as well as fewer missed

school days; (2) frequent testing leads to reduced transmission but

increased school days missed due to positive students as well as

students with false positive tests being in extended home isolation;

and (3) vaccination of household members reduces the number of

school days missed per student and total students becoming infected
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TABLE 1 Mean-average outcomes after 2 months of in-person instruction, by class size.

Number of
students per
class

% of students
infected since

baseline
(cumulative)∗

% of students
infected from

school
(cumulative)∗

# School days
quarantined per

student
(cumulative)∗

% of schools with
no on-campus
transmissions so

far∗∗

% of schools with
no detected

infection clusters
so far∗∗

10 4.48 (2.62, 6.43) 0.04 (0.00, 0.24) 1.21 (0.91, 1.53) 84.2% (83.5, 84.9) 99.3% (99.1, 99.5)

15 (default) 4.50 (2.62, 6.67) 0.05 (0.00, 0.24) 1.21 (0.91, 1.53) 80.2% (79.4, 81.0) 99.0% (98.7, 99.1)

20 4.51 (2.62, 6.67) 0.06 (0.00, 0.48) 1.21 (0.92, 1.56) 76.9% (76.1, 77.7) 98.0% (97.7, 98.3)

30 4.53 (2.62, 6.67) 0.09 (0.00, 0.48) 1.24 (0.92, 1.83) 69.3% (68.4, 70.3) 94.8% (94.3, 95.2)

∗2.5 and 97.5% percentiles (across the 10,000 simulated schools) are provided for student-level outcomes.
∗∗95% exact binomial confidence intervals are provided for school-level outcomes.

TABLE 2 Mean-average outcomes after 2 months of in-person instruction, by surveillance testing frequency and sampling fraction.

Sampling
fraction

Surveillance
testing
schedule

% of students
infected since

baseline
(cumulative)∗

% of students
infected from

school
(cumulative)∗

# School days
quarantined per

student
(cumulative)∗

% of schools
with no

on-campus
transmissions

so far∗∗

% of schools
with no
detected
infection

clusters so far∗∗

0% No surveillance

testing

4.49 (2.62, 6.67) 0.06 (0.00, 0.48) 1.18 (0.89, 1.49) 79.2% (78.4, 80.0) 99.5% (99.4, 99.7)

25% Once a week (M)

(default)

4.50 (2.62, 6.67) 0.05 (0.00, 0.24) 1.21 (0.91, 1.53) 80.2% (79.4, 81.0) 99.0% (98.7, 99.1)

Twice a week

(M/Th)

4.50 (2.62, 6.67) 0.05 (0.00, 0.24) 1.23 (0.94, 1.58) 81.3% (80.6, 82.1) 97.9% (97.6, 98.1)

3x a week (MWF) 4.48 (2.62, 6.67) 0.05 (0.00, 0.24) 1.25 (0.95, 1.61) 83.0% (82.3, 83.8) 96.8% (96.4, 97.1)

Every weekday

(M-F)

4.49 (2.62, 6.67) 0.04 (0.00, 0.24) 1.30 (0.99, 1.68) 84.2% (83.5, 84.9) 94.5% (94.1, 95.0)

100% Once a week (M) 4.49 (2.62, 6.67) 0.04 (0.00, 0.24) 1.28 (0.97, 1.65) 84.7% (84.0, 85.4) 95.7% (95.3, 96.1)

Twice a week

(M/Th)

4.48 (2.62, 6.43) 0.04 (0.00, 0.24) 1.35 (1.02, 1.78) 86.2% (85.5, 86.9) 90.5% (89.9, 91.0)

3x a week (MWF) 4.47 (2.62, 6.43) 0.03 (0.00, 0.24) 1.43 (1.09, 1.90) 87.7% (87.0, 88.3) 83.9% (83.2, 84.6)

Every weekday

(M-F)

4.48 (2.62, 6.67) 0.03 (0.00, 0.24) 1.59 (1.20, 2.14) 87.3% (86.7, 88.0) 70.2% (69.3, 71.1)

∗2.5 and 97.5% percentiles (across the 10,000 simulated schools) are provided for student-level outcomes.
∗∗95% exact binomial confidence intervals are provided for school-level outcomes.

TABLE 3 Additional mean-average outcomes after 2 months of in-person instruction, by surveillance testing frequency and sampling fraction.

Sampling
fraction

Surveillance
testing schedule

# School days quarantined
and uninfectious per
student (cumulative)∗

# School days quarantined
and infectious per student

(cumulative)∗

# School days
on-campus and

infectious per student
(cumulative)∗

0% No surveillance testing 1.02 (0.78, 1.29) 0.15 (0.07, 0.25) 0.06 (0.01, 0.12)

25% Once a week (M)

(default)

1.05 (0.80, 1.33) 0.16 (0.07, 0.25) 0.05 (0.01, 0.11)

Twice a week (M/Th) 1.07 (0.82, 1.37) 0.16 (0.07, 0.26) 0.05 (0.01, 0.10)

3x a week (MWF) 1.09 (0.84, 1.40) 0.16 (0.07, 0.26) 0.05 (0.01, 0.10)

Every weekday (M-F) 1.13 (0.86, 1.47) 0.16 (0.07, 0.27) 0.04 (0.01, 0.09)

100% Once a week (M) 1.11 (0.85, 1.43) 0.17 (0.08, 0.27) 0.04 (0.01, 0.08)

Twice a week (M/Th) 1.18 (0.89, 1.57) 0.17 (0.08, 0.27) 0.04 (0.01, 0.07)

3x a week (MWF) 1.26 (0.95, 1.69) 0.17 (0.08, 0.28) 0.03 (0.01, 0.06)

Every weekday (M-F) 1.41 (1.06, 1.93) 0.18 (0.09, 0.28) 0.03 (0.01, 0.06)

∗2.5 and 97.5% percentiles (across the 10,000 simulated schools) are provided for these student-level outcomes.
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TABLE 4 Mean-average outcomes after 2 months of in-person instruction, by adult vaccination rate.

Percentage of
household
adults
vaccinated

% of students
infected since

baseline
(cumulative)∗

% of students
infected from

school
(cumulative)∗

% of students
infected by a

household adult
(cumulative)∗

% of students not
yet infected
(cumulative)∗

# School days
quarantined per

student
(cumulative)∗

% of schools with
no on-campus
transmissions so

far∗∗

% of schools with
no detected

infection clusters
so far∗∗

0% (default) 4.50 (2.62, 6.67) 0.05 (0.00, 0.24) 1.27 (0.24, 2.38) 91.5 (94.1, 88.6) 1.21 (0.91, 1.53) 80.2% (79.4, 81.0) 99.0% (98.7, 99.1)

25% 4.15 (2.38, 6.19) 0.06 (0.00, 0.48) 0.92 (0.24, 1.90) 91.9 (94.3, 89.3) 1.06 (0.79, 1.35) 79.5% (78.7, 80.3) 98.9% (98.6, 99.1)

50% 3.86 (2.14, 5.95) 0.05 (0.00, 0.48) 0.62 (0.00, 1.43) 92.1 (94.5, 89.5) 0.92 (0.69, 1.19) 80.0% (79.3, 80.8) 98.7% (98.5, 98.9)

75% 3.58 (1.91, 5.48) 0.06 (0.00, 0.48) 0.34 (0.00, 0.95) 92.4 (95.0, 89.8) 0.79 (0.59, 1.03) 78.8% (78.0, 79.6) 99.0% (98.7, 99.1)

∗2.5 and 97.5% percentiles (across the 10,000 simulated schools) are provided for student-level outcomes.
∗∗95% exact binomial confidence intervals are provided for school-level outcomes.

TABLE 5 Scenarios assessing the e�ects and interactions of surveillance testing and educational outreach to families.

Scenario
Description

Surveillance
testing
frequency

Probability of
outreach

receptiveness

Improvements in
attestation

accuracy and
exogenous risk

from COVID safety
education

% of students
infected since

baseline
(cumulative)∗

% of students
infected from

school
(cumulative)∗

# School days
quarantined per

student
(cumulative)∗

% of schools
with no

on-campus
transmissions so

far∗∗

% of schools
with no detected

infection
clusters so far∗∗

Default

parameter values

25% every

Monday

50% 10% 4.50 (2.62, 6.67) 0.05 (0.00, 0.24) 1.21 (0.91, 1.53) 80.2% (79.4, 81.0) 99.0% (98.7, 99.1)

No testing or

education

None 0% 50% 4.33 (2.62, 6.43) 0.05 (0.00, 0.48) 1.14 (0.85, 1.45) 80.4% (79.6, 81.2) 99.5% (99.3, 99.6)

Education only None 100% 50% 4.10 (2.38, 6.19) 0.04 (0.00, 0.24) 1.08 (0.80, 1.38) 83.8% (83.1, 84.5) 99.7% (99.5, 99.8)

Testing only 100% every

Monday

0% 50% 4.33 (2.38, 6.43) 0.04 (0.00, 0.24) 1.24 (0.94, 1.60) 84.9% (84.2, 85.6) 95.7% (95.3, 96.1)

Testing+

education

100% every

Monday

100% 50% 4.07 (2.38, 6.19) 0.03 (0.00, 0.24) 1.17 (0.89, 1.52) 88.3% (87.6, 88.9) 96.4% (96.0, 96.8)

∗2.5 and 97.5% percentiles (across the 10,000 simulated schools) are provided for student-level outcomes.
∗∗95% exact binomial confidence intervals are provided for school-level outcomes.
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but not school transmission. Comparing different combinations of

mitigation strategies, with varying assumptions about the accuracy

of parent-reported symptoms and exposures, produced results in

school infection and attendance that were not additive, and show

stakeholders how implementation integrity in combination with

elected mitigation strategies could affect outcomes of interest.

Using parameters that reflect our best knowledge about

COVID-19, the simulations show that no single program element or

condition ensures safety and that some combinations have trade-offs

between school infection and attendance. Our model reflects recent

evidence that even without COVID-19 testing, on-campus infection

control can reduce on-campus transmission, and high community

prevalence does not necessarily lead to significant secondary infection

if mitigation measures such as masking are implemented effectively

(10), especially if vaccination rates are high.

Notably, the model illustrates the value of school districts

measuring not just adoption of policy but the implementation quality

of their mitigation strategies. For example, given the presymptomatic

and asymptomatic features of COVID-19, particularly in children,

the simulations help stakeholders appreciate the impact of accurate

reporting of symptoms and exposures. School districts can see

the potential impact of accurate parent and student reporting and

therefore the potential need for effective design of the screening

questions as well as ongoing education to improve the accuracy

of reporting.

Public health credibility has been vital in the COVID-19

pandemic, and stakeholders needmodels that reflect the latest science

so that district decisions are trusted. Our model is designed to be

practical, transparent, and adaptable as mechanisms for transmission

and mitigation and their interdependencies become known.

The model’s structure and dynamics are not limited to

COVID-19. With appropriate adjustment of the parameter values

representing transmission risks and infection characteristics, this

model could be used to represent any infectious disease and adapted

for other congregate settings, such as residential facilities.

4.1. Limitations

This model was developed to surface dynamics that give

stakeholders insights about mitigation strategies as the pandemic

evolved. The model is not intended in its current form to make

specific predictions or justify specific actions. Validation of the

model’s parameters and predictions with real data could increase

its utility for accurately predicting policy outcomes. Notably, it is

not possible to fully validate the model; most studies of COVID-19

prevalence and transmission in U.S. schools are limited by lack

of systematic testing, incomplete contact tracing, and details about

mitigation procedures as well as adherence to them and their timing

(10, 18–20). Demonstrating the model in its current state provides a

framework with outcomes that can improve how modelers provide

and interpret results for school district stakeholders and provides a

basis for future extensions.

In the simulation scenarios presented in this paper, we found

that increasing vaccination rates for household adults resulted in

improved student attendance rates (Table 4), but the size of this effect

in practice will depend on the specific epidemiological, demographic,

and policy factors that a particular school is currently experiencing.

This model represents this context with a large number of modifiable

input parameters, but there are inevitably additional dynamics which

are not included in the model.

For example, characteristics of households of school community

members that influence their exposure to COVID-19 include

recurrent proximity to other household members (number in the

household, and overcrowding), intermittent proximity to other

individuals who do not live in the household (such as extended

family/friends), density of neighborhood housing density (proxy

for proximity), and ongoing potential workplace exposures such as

essential or industrial workers in the household. Household behaviors

include close physical contact, multiple caregivers of a child, and

uses of facial coverings and other safety practices. Household health

risks such as presence of individuals with chronic conditions, and/or

older age, influences impact of householdmorbidity from any school-

transmitted COVID-19 infection. None of these characteristics are

implemented in the current model, for succinctness and due to

limited resources for further extending the model, but they may play

an important role in local transmission dynamics, particularly since

these risk factors often co-occur with one another.

We also made a simplifying assumption that vaccination and

recovery from infection each independently confer complete, long-

term immunity from future infection. At the time when this model

was being developed (Q4 2020), this assumption was plausible.

Since that time, both scientific knowledge and the COVID-19 virus

itself have evolved substantially, and the immunities conferred by

vaccination or prior exposure are now understood to be incomplete,

diminishing over time, and dependent on the specific type of

vaccine received and on the variants of the COVID-19 virus that an

individual has previously recovered from, compared to the one they

are currently being exposed to. Immunity could be modeled with

more nuance in future extensions of this model, as discussed below.

4.2. Future directions

There are three main avenues for further development of this

work. First, the model could be extended, adding other agents such as

teachers and other school personnel; incorporatingmore complicated

social networks including sibling connections and asymmetric

exposures; other interactions such as shared transportation (school

buses and carpools) and after-school sports; compliance (reliability)

in mitigation such as handwashing andmask-wearing; more nuanced

dynamics for test sensitivity, for example having test sensitivity

depend explicitly on symptomatic status rather than only days since

infection; and imperfect and time-dependent immunity to infection

after vaccination or recovery from prior infection. Second, the

interactions between different input parameters could be explored,

by simultaneously varying multiple parameters instead of only one at

a time as we have primarily done in this paper. This is a more realistic

use of the model and how we envision public health authorities

and school systems making use of it. Readers are encouraged to

access the model via the user interface at https://agent-based-

models.shinyapps.io/RegionalCOVIDSchoolSimulation/ to explore

other combinations of input values. Third, the user interface could

be augmented by adding side-by-side comparisons of the outcomes

for different combinations of input parameter values, narrative
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descriptions of individual runs of the simulation, and additional

outcome time series.

5. Conclusions

Models enable stakeholders and researchers to consider infection

dynamics and potential mitigation strategies in combination. Public

health authorities and school systems can use insights from these

models to establish operational needs for safer in-person instruction,

such as accurate daily health checks and ongoing timely data on the

reliability of mitigation strategies. Models can facilitate an iterative

process by which understanding of the system is further deepened,

which can in turn be used to reassure communities that schools

can deliver in-person instruction without triggering large outbreaks.

With future calibration, the model can ultimately have value for

prediction, especially as the pandemic eventually becomes endemic,

and new transmission and disease control scenarios arise (21, 22).

Given the availability of highly effective vaccines and the amount

of community infection with COVID-19, the predictions of this

model for a school district would be limited. However, the model

continues to be useful in demonstrating key inputs to viral dynamics.

It is also an example of a model that includes key inputs and that

allows real-time change by users of key parameters and assumptions.

We have published the source code for the model on GitHub (https://

github.com/UCLA-PHP/school.epi.abm) so that other researchers

can use and extend the model for districts in any location.

It is important for decision-making models in COVID-19 to

be flexible given the rapid evolution of knowledge about how the

virus operates, the rapid transmission dynamics of a disease that

spreads through a population exponentially, and the rapidly changing

landscape of testing features, costs, and operational burdens as what

is being seen in themost recent wave of the Omicron variant infection

(23, 24).

Public health authorities and school districts can make

more meaningful choices about the welfare of K-6 students,

their teachers, and their families if these decisions about in-

person instruction are based on information from models that

incorporate their local conditions and use the different elements

available to them, especially those that reflect the COVID-19

situation in the real world. This study provides one such model,

recognizing that not all possible elements may be politically or

operationally feasible given the characteristics of a particular

school community.
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