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Application progress of ensemble 
forecast technology in influenza 
forecast based on infectious 
disease model
Lianglyu Chen *
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To comprehensively understand the application progress of ensemble forecast 
technology in influenza forecast based on infectious disease model, so as to 
provide scientific references for further research. In this study, two keywords of 
“influenza” and “ensemble forecast” are selected to search and select the relevant 
literatures, which are then outlined and summarized. It is found that: In recent 
years, some studies about ensemble forecast technology for influenza have been 
reported in the literature, and some well-performed influenza ensemble forecast 
systems have already been operationally implemented and provide references for 
scientific prevention and control. In general, ensemble forecast can well represent 
various uncertainties in forecasting influenza cases based on infectious disease 
models, and can achieve more accurate forecasts and more valuable information 
than single deterministic forecast. However, there are still some shortcomings in 
the current studies, it is suggested that scientists engaged in influenza forecast 
based on infectious disease models strengthen cooperation with scholars in the 
field of numerical weather forecast, which is expected to further improve the 
skills and application level of ensemble forecast for influenza.
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1 Introduction

Influenza is a respiratory disease caused by influenza virus infection, it’s highly 
contagious and its outbreaks have the characteristics of seasonal circulation. According to 
statistics, worldwide, influenza epidemics cause about 3–5 million severe cases of lower 
respiratory tract infection and 250,000–690,000 deaths every year (1), which poses a great 
threat to human public health. During the influenza epidemics, a large number of patients 
not only cause a serious burden on the medical resources, but also cause huge social and 
economic burdens.

Accurately forecasting the occurrence and development of influenza has important 
scientific significance for governments to formulate specific vaccination and non-drug 
interventions, prepare adequate medical resources in advance, and evaluate the effect of 
policies. Forecasting influenza cases based on infectious disease model is an important 
method for scientific prevention and control. Taking the widely used susceptible–infectious–
recovered–susceptible (SIRS) model as an example (2), infectious disease model is usually 
composed of ordinary differential equations that characterize the dynamic mechanism of 
infectious disease transmission, and contains some sensitive parameters, such as infection rate 
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(i.e., the probability of a patient to infect others), the probability of 
conversion from a latent period person to an infected person, the 
recovery rate of infected persons, the mortality rate and the 
coefficient of government interventions. After setting the relevant 
sensitivity parameters and the initial values of the differential 
equations (such as the number of cases at present, etc.) in advance, 
the number of influenza cases in the future can be  achieved by 
numerical integration of the differential equations.

After decades of continuous development, the infectious disease 
models have shown good potentials for application. However, the 
initial values in infectious disease models still inevitably have certain 
errors, and the relevant sensitivity parameters in the models are all set 
according to users’ experiences. Due to the high nonlinearity of 
infectious disease models, the error of the initial values and the 
relevant sensitive parameters will be amplified with the extension of 
forecast lead time and eventually lead to large biases of the forecast 
results, which limits the accuracy of the model forecast results to a 
certain extent. Therefore, it is worthy to quantitatively reflect the 
uncertainty of the initial values and sensitive parameters in infectious 
disease models, thus to solve the uncertainty problems in the single 
deterministic forecast result and improve the accuracy and application 
level of the infectious disease model forecasts. In view of this, learning 
from and applying the ensemble forecast technology developed in the 
field of numerical weather forecast is expected to effectively solve the 
above problems.

In recent years, it is noticed that the ensemble forecast technology 
has been applied in forecasting influenza cases based on infectious 
disease models, this paper will review the literature. Two keywords of 
“influenza” and “ensemble forecast” are selected to search and select 
the relevant literatures, which are then outlined and summarized. In 
addition, some suggestions are put forward, according to the author’s 
experiences in research and application of ensemble forecast 
technology for several years.

2 Introduction of ensemble forecast 
technology

Ensemble forecast technology is developed in the field of 
numerical weather forecast. The essence of numerical weather 
forecast is to calculate the forecast value in the future by repeatedly 
integrating the differential equations representing the atmospheric 
motion started from the initial values, which is consistent with the 
essence of forecasting influenza cases based on infectious disease 
models. Due to the chaotic characteristics of the atmosphere, any 
small error in the initial values may quickly diverge the outcomes 
after a period of integration, and sometimes may even result in 
completely opposite results. In order to solve the above problems, 
the concept of ensemble forecast was put forward in the 1970s (3): 
Based on a certain mathematical method, a set of initial values with 
certain probability density function (PDF) distribution 
characteristics are firstly generated (as shown in Figure  1), each 
initial value may represent the real condition of the atmosphere. 
After this, ensemble forecast results can be achieved by numerical 
integration of each initial value (usually combined with different 
physical process parameterization schemes, planetary boundary 
layer conditions or even based on different models), thus to inferring 

the evolution of the PDF of atmospheric states over different forecast 
lead time.

Ensemble forecast is no longer single deterministic forecast, but a 
group of forecasts, each of which can be called an ensemble member, 
and the divergence degree of ensemble members’ forecasts (i.e., the 
ensemble spread) can be used as a quantitative representation of the 
forecast uncertainty (i.e., the forecast error). Appropriate post 
processes for ensemble members’ forecasts can achieve corresponding 
post-processed deterministic forecast products, and the forecast 
performance of these products are usually significantly better than 
that of the original single deterministic forecast. In addition, modern 
ensemble forecasts are expressed probabilistically other than 
deterministically, more decision mistakes could be  avoided if the 
decisions are made based on whether the probabilities exceed some 
prior determined threshold for action, which is an important aspect 
for the application of ensemble forecast technology.

Ensemble forecast has become a relatively mature technology in 
the field of numerical weather forecast, and has been widely used in 
the operational forecasting practice (4). Meanwhile, as a scientific way 
to solve the uncertainty problems existing in single deterministic 
forecast, it has also been widely used in the fields of aviation (5), 
biology (6), hydrology (7), electricity (8), economy (9) and infectious 
disease prevention and control in recent years, providing great 
enlightening significance for solving the prediction problems in 
related fields.

3 Application progress of influenza 
ensemble forecast

3.1 Application progress of influenza 
ensemble forecast in the United States

The United States is one of the country’s most seriously affected 
by seasonal influenza, and the Department of Environmental Health 

FIGURE 1

The schematic diagram of ensemble forecast (Black line: 
deterministic forecast; Blue line: ensemble members’ forecasts; Red 
dotted line: observation).
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Sciences of Columbia University has carried out several studies on 
influenza ensemble forecast for some megacities in the past decade.

Shaman and Karspeck (2) established an influenza ensemble 
forecast system based on the SIRS model and ensemble adjusted 
Kalman filter (EAKF) assimilation technology developed in the field 
of numerical weather forecast. This system uses EAKF assimilation 
method to assimilate the data of current influenza cases updated on 
relevant websites in real time, thus to generate 250 sets of initial values, 
the SIRS model is then used to integrate the initial values to achieve 
250 sets of forecast values. On this basis, the ensemble forecast system 
was tested and evaluated for forecasting influenza cases in New York 
City from 2003 to 2008, In general, the influenza ensemble forecast 
system can accurately forecast the peak timing about 7 weeks in 
advance of the actual peak, and the spread of the ensemble members’ 
forecasts can be used to enhance the confidence in the accuracy of 
forecast results.

In the influenza epidemic seasons of 2012 and 2013, the above-
mentioned influenza ensemble forecast system (2) was operationally 
implemented in real time and provided forecast results of influenza 
cases in 108 cities of the United  States (10), which was the first 
operational ensemble forecast system for influenza. According to the 
related evaluation results: The influenza ensemble forecast system 
could accurately forecast the peak timing about 9 weeks in advance of 
the actual peak. In general, the forecast accuracy gradually increased 
with the season progressed. By the 52th week, prior to peak for the 
majority of cities, 63% of all ensemble forecasts were accurate.

The nonlinear growth of errors is the main source of forecast 
errors in infectious disease models. In order to further optimize the 
influenza ensemble forecast system, on the basis of the previous works, 
Pei and Shaman (11) quantitatively estimated the nonlinear error 
results of the above-mentioned influenza ensemble forecast system 
through the error breeding analysis method and then accordingly 
corrected the forecast errors. After this, the ensemble forecast 
experiments for influenza cases in 95 cities of the United States from 
2003 to 2008 were conducted, evaluation results indicate that: In 
general, through the nonlinear error correction process, the forecast 
accuracy of the peak time and peak intensity of influenza outbreak are 
both improved.

On the basis of the previous works, Pei et al. (12) found that the 
initial value error and random error in the infectious disease model 
have similar growth characteristics in the process of model integration 
through several diagnostic analysis processes, which further 
confirmed that the nonlinear dynamic error growth is the main source 
of the forecast error of infectious disease models. On this basis, the 
direction of the fastest growth of initial value error was found by 
singular vector analysis method and then accordingly used to optimize 
the initial value perturbation scheme. After this, the ensemble spread 
increases significantly so that the forecast uncertainty could be better 
represented, and the ensemble forecast accuracy is also 
further improved.

To sum up, the United States is the country with the most research 
on influenza ensemble forecast technology. In recent years, an 
influenza ensemble forecast system was built, and some ensemble 
forecast researches such as forecast results evaluation, error evolution 
characteristic diagnosis and analysis, ensemble forecasting initial 
value perturbation scheme optimization have been done. The newly-
developed influenza ensemble forecast system has been operationally 

implemented and provided reference for scientific prevention 
and control.

3.2 Application progress of influenza 
ensemble forecast in subtropical regions

Influenza outbreaks in temperate regions usually present the 
characteristics of seasonal circulation, while that in tropical and 
subtropical regions presents irregular non-seasonal distribution 
characteristics and can breakout throughout the year. Therefore, the 
forecast of influenza cases in tropical and subtropical regions is 
more difficult.

Yang et al. (13) established an influenza ensemble forecast system 
with ensemble size of 500 for the Hong Kong city in subtropical region 
based on the SIRS model and the EAKF assimilation technology, 
which is similar to the ensemble forecast system constructed by 
Shaman and Karspeck (2). Based on this, the ensemble forecast system 
was tested and evaluated for influenza cases in Hong Kong from 1998 
to 2013. Overall, the influenza ensemble forecast system was able to 
predict the peak timing and peak intensity of 44 influenza pandemics 
caused by single influenza strain or multiple influenza strains in the 
past 16 years. The overall forecast accuracy of 1–3 weeks in advance 
was 37%, and the forecast accuracy increased with the ensemble 
spread. The maximum accuracy of the peak time (intensity) of the 
pandemic caused by different strains is 43–93% (45–89%). In general, 
for non-seasonal influenza pandemics in subtropical regions, which 
are difficult to predict, the influenza ensemble forecast system can 
forecast accurately at least three weeks in advance.

The influenza ensemble forecast system for Hong Kong is 
generally similar to that established by the Department of 
Environmental Health Sciences of Columbia University, but its overall 
forecast accuracy is obviously worse, which may be mainly due to the 
lower predictability of influenza outbreaks in subtropical regions 
compared to temperate regions.

3.3 Application progress of super ensemble 
forecast technology for influenza

In addition to establishing ensemble forecast system based on a 
single model, the forecast results based on different models can 
be  directly combined to form ensemble forecasts, which is called 
multi-model super ensemble forecast in the field of numerical weather 
forecast. Generally speaking, each model has its certain advantages 
and disadvantages. Thus, the super ensemble forecast may absorb 
(avoid) the advantages (disadvantages) of each single model, so as to 
achieve more accurate forecast results. In recent years, several studies 
have been fulfilled on the multi-model super ensemble forecast 
for influenza.

To incorporate all available data and methods to achieve a more 
accurate forecast of influenza cases, the Centers for Disease Control 
and Prevention of the United States has organized seasonal influenza 
forecasting challenges since the 2013 season. In the 2017 and 2018 
influenza seasons, the 22 teams participating in the challenge 
combined the forecast results of their respective model through the 
machine learning method (14), and the specific weights for each 
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model were determined by its forecast accuracy in previous seasons. 
It is found that the forecast results after weighted integration are 
obviously better than that of the 22 teams, which shows good 
potentials to be operationally implemented.

Yamana et al. (15) also completed a similar study on the seasonal 
influenza, but during the weighted integration process based on the 
multi-model super ensemble forecast results, the same weight was 
applied to each model. The results showed that the forecast results of 
the multi-model ensemble forecasts outperform those of each single 
model, and very poor forecast results were less likely to occur.

Different from the above schemes for determining weight of each 
single model, McAndrew and Reich (16) generated the weights of each 
model by its forecast accuracy updated weekly in real time and found 
that the forecast accuracy based on this weighting scheme are better 
than that of the above-mentioned two schemes (14, 15).

To sum up, scheme for determining weight should be selected 
according to specific needs or situations when carrying out weighted 
integration processes for multi-model super ensemble forecast results, 
since each scheme has its own advantages and disadvantages. In 
general, the development of super ensemble forecast and proper 
weighted integration process could achieve more accurate 
forecast results.

4 Discussion

In recent years, several influenza ensemble forecast systems were 
established and some related researches were conducted such as 
forecast results evaluation, error evolution characteristic diagnosis and 
analysis, ensemble forecasting initial value perturbation scheme 
optimization, super ensemble forecast and so on. Some well-
performed influenza ensemble forecast systems have been 
operationally implemented and provided references for scientific 
prevention and control. In general, ensemble forecast can represent 
various uncertainties in forecasting influenza cases based on infectious 
disease model and achieve more accurate forecasts and more valuable 
information than the single deterministic forecast, showing a good 
prospect for application. In addition, the development of super 
ensemble forecast and proper weighted integration process could 
achieve more accurate forecast results.

However, there are still some weakness in the above-mentioned 
works: Firstly, some of the above-mentioned influenza ensemble 
forecast systems use the EAKF assimilation method to generate initial 
values. In fact, there are many other initial value perturbation 
technologies (17) in the field of numerical weather forecast that can 
be applied to establish influenza ensemble forecast system, which are 
expected to reflect the forecast uncertainty of infectious disease model 
more reasonably and improve the corresponding ensemble forecast 
skills; Secondly, at present, the post process technologies for influenza 
ensemble forecast products are mostly simple ensemble average or 
weighted average based on super ensemble forecast. It is expected to 
further improve the accuracy and application level of influenza 
ensemble forecast products by learning to and applying other mature 
post-process technologies (18) in the field of numerical weather 
forecast, such as the probability-matching ensemble mean, merged 
optimal ensemble quantile and Bayesian average; Thirdly, modern 
ensemble forecasts are expressed probabilistically other than 

deterministically, more decision mistakes could be  avoided if the 
decisions are made based on whether the probabilities exceed some 
prior determined threshold for action, which is an important aspect 
for the application of ensemble forecast technology (19). However, at 
present, probability forecast is rarely used in the influenza ensemble 
forecast system, strengthening the application of ensemble probability 
forecast is expected to further improve the application level of 
influenza ensemble forecast and reduce decision-making errors.

To further improve the skills and application level of ensemble 
forecast for influenza, I strongly suggest that scientists engaged in 
influenza forecast based on infectious disease models should 
strengthen cooperation with scientists in the field of numerical 
weather forecast, which is expected to produce innovative academic 
ideas and achieve new breakthroughs through interdisciplinary  
cooperation.

Due to the limitation of words, this study only reviews the 
application progress of ensemble forecast technology in influenza 
forecast based on infectious disease model. In fact, there are many 
other similar studies involving other infectious diseases such as 
dengue (20) and COVID-19 (21), which may be  reviewed in 
the future.

Author contributions

LC: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This research 
was supported by the Joint Research Project for Meteorological 
Capacity Improvement of China Meteorological Administration 
(22NLTSY003).

Acknowledgments

The papers outlined in this study are available at the Havard 
dataverse (https://doi.org/10.7910/DVN/0GBSQA).

Conflict of interest

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

https://doi.org/10.3389/fpubh.2023.1335499
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.7910/DVN/0GBSQA


Chen 10.3389/fpubh.2023.1335499

Frontiers in Public Health 05 frontiersin.org

References
 1. Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, et al. 

Estimates of global seasonal influenza-associated respiratory mortality: a modelling 
study. Lancet. (2018) 391:1285–00. doi: 10.1016/S0140-6736(17)33293-2

 2. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proc Natl Acad 
Sci USA. (2012) 109:20425–30. doi: 10.1073/pnas.1208772109

 3. Leith CE. Theoretical skill of Monte Carlo forecasts. Mon Wea Rev. (1974) 
102:409–18. doi: 10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2

 4. Lewis JM. Roots of ensemble forecasting. Mon. Wea. Rev. (2005) 133:1865–85. doi: 
10.1175/MWR2949.1

 5. Storer LN, Gill PG, Williams PD. Multi-model ensemble predictions of aviation 
turbulence. Meteorol Appl. (2018) 26:416–28. doi: 10.1002/met.1772

 6. Shawn MC, Solomon ZD, Alison RM. Evaluating ensemble forecasts of plant 
species distributions under climate change. Ecol Model. (2013) 266:126–30. doi: 
10.1016/j.ecolmodel.2013.07.006

 7. Li WT, Duan QY, Miao CY, Ye A, Gong W, di Z. A review on statistical 
postprocessing methods for hydrometeorological ensemble forecasting. Wires Water. 
(2017) 4:e1246. doi: 10.1002/wat2.1246

 8. Thorey J, Chaussin C, Mallet V. Ensemble forecast of photovoltaic power with 
online CRPS learning. Int J Forecast. (2018) 34:762–73. doi: 10.1016/j.
ijforecast.2018.05.007

 9. João AB. Ensemble predictions of recovery rates. J Financ Serv Re. (2014) 
46:177–93. doi: 10.1007/s10693-013-0165-3

 10. Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time influenza 
forecasts during the 2012–2013 season. Nat Commun. (2013) 4:2837. doi: 10.1038/
ncomms3837

 11. Pei S, Shaman J. Counteracting structural errors in ensemble forecast of influenza 
outbreaks. Nat Commun. (2017) 8:925. doi: 10.1038/s41467-017-01033-1

 12. Pei S, Cane MA, Shaman J. Predictability in process-based ensemble forecast of 
influenza. PLoS Comput Biol. (2019) 15:e1006783. doi: 10.1371/journal.pcbi. 
1006783

 13. Yang W, Cowling BJ, Lau EHY, Shaman J. Forecasting influenza epidemics in Hong 
Kong. PLoS Comput Biol. (2015) 11:e1004383. doi: 10.1371/journal.pcbi.1004383

 14. Reich NG, McGowan CJ, Yamana TK, Tushar A, Ray EL, Osthus D, et al. Accuracy 
of real-time multi-model ensemble forecasts for seasonal influenza in the U.S. PLoS 
Comput Biol. (2019) 15:e1007486. doi: 10.1371/journal.pcbi.1007486

 15. Yamana TK, Kandula S, Shaman J. Individual versus superensemble forecasts of 
seasonal influenza outbreaks in the United States. Public Libr Sci Comp Biol. (2017) 
13:e1005801. doi: 10.1371/journal.pcbi.1005801

 16. McAndrew T, Reich NG. Adaptively stacking ensembles for influenza forecasting. 
Stat Med. (2021) 40:6931–52. doi: 10.1002/sim.9219

 17. Wang X, Bishop C. A comparison of breeding and ensemble transform Kalman 
filter ensemble forecast schemes. J Atmos Sci. (2003) 60:1140–58. doi: 
10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2

 18. Qiao X, Wang S, Schwartz CS, Liu Z, Min J. A method for probability matching 
based on the ensemble maximum for quantitative precipitation forecasts. Mon. Wea. 
Rev. (2020) 148:3379–96. doi: 10.1175/MWR-D-20-0003.1

 19. Joslyn S, Pak K, Jones D, Pyles J, Hunt E. The effect of probabilistic information on 
threshold forecasts. Weather Forecast. (2007) 22:804–12. doi: 10.1175/WAF1020.1

 20. Buczak AL, Baugher B, Moniz LJ, Bagley T, Babin SM, Guven E. Ensemble method 
for dengue prediction. PLoS One. (2018) 13:e0189988. doi: 10.1371/journal.
pone.0189988

 21. Cramer EY, Ray EL, Lopez VK, Bracher J, Brennen A, Castro Rivadeneira AJ, et al. 
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in 
the United  States. Proc Natl Acad Sci USA. (2022) 119:e2113561119. doi: 10.1073/
pnas.2113561119

https://doi.org/10.3389/fpubh.2023.1335499
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1016/S0140-6736(17)33293-2
https://doi.org/10.1073/pnas.1208772109
https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2
https://doi.org/10.1175/MWR2949.1
https://doi.org/10.1002/met.1772
https://doi.org/10.1016/j.ecolmodel.2013.07.006
https://doi.org/10.1002/wat2.1246
https://doi.org/10.1016/j.ijforecast.2018.05.007
https://doi.org/10.1016/j.ijforecast.2018.05.007
https://doi.org/10.1007/s10693-013-0165-3
https://doi.org/10.1038/ncomms3837
https://doi.org/10.1038/ncomms3837
https://doi.org/10.1038/s41467-017-01033-1
https://doi.org/10.1371/journal.pcbi.1006783
https://doi.org/10.1371/journal.pcbi.1006783
https://doi.org/10.1371/journal.pcbi.1004383
https://doi.org/10.1371/journal.pcbi.1007486
https://doi.org/10.1371/journal.pcbi.1005801
https://doi.org/10.1002/sim.9219
https://doi.org/10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2
https://doi.org/10.1175/MWR-D-20-0003.1
https://doi.org/10.1175/WAF1020.1
https://doi.org/10.1371/journal.pone.0189988
https://doi.org/10.1371/journal.pone.0189988
https://doi.org/10.1073/pnas.2113561119
https://doi.org/10.1073/pnas.2113561119

	Application progress of ensemble forecast technology in influenza forecast based on infectious disease model
	1 Introduction
	2 Introduction of ensemble forecast technology
	3 Application progress of influenza ensemble forecast
	3.1 Application progress of influenza ensemble forecast in the United States
	3.2 Application progress of influenza ensemble forecast in subtropical regions
	3.3 Application progress of super ensemble forecast technology for influenza

	4 Discussion
	Author contributions

	References

