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1 Introduction

Healthy lifestyles, such as those that include regular physical activity and a balanced
diet, are a powerful means to prevent chronic disease and age-related functional decline.
A common denominator of health improvements resulting from good exercise and
diet habits is the optimization of metabolic processes. These processes include energy
metabolism and, thus, the activity of mitochondria. Mitochondria represent hubs not only
of cellular metabolism but also of the regulation of redox states, inflammatory response,
and immunity, as well as many other cellular features (1). Mitochondria have emerged
as highly flexible organelles that, quickly—and sometimes persistently—adapt to changing
conditions in response to systemic or cellular challenges. Next to exercise and diets that
promote mitochondrial health, transient exposures to environmental stressors, such as to
altitude/hypoxia or extreme temperatures, also induce mitochondrial adaptations.

In this paper, we discuss how different systemic and cellular challenges trigger
specific and overlapping mitochondrial responses that—under the right conditions—
may translate into protective mitochondrial adaptations (2). We specifically focus on
adaptations in skeletal muscle and sarcopenia, the age-related loss of skeletal muscle mass,
strength, and function (3). Such responses rely on mechanisms such as mitochondrial
stress responses and quality control; therefore, these mechanisms are believed to be
required to maintain mitochondrial health (4). The resulting adaptations increase the
capacity of mitochondria to respond to future stressors (e.g., altered oxygen or substrate
availability), which otherwise might trigger pathological processes. Considering potential
synergistic/anti-synergistic and complementary/competitive effects among lifestyle factors
and environmental challenges on mitochondria, we argue that recommendations can be
developed to increase performance, prevent sarcopenia, and improve healthy aging.

2 Mitochondrial medicine for muscle health in aging

2.1 Exercise interventions

Exercise represents a potent measure to foster healthy aging and to prevent and/or treat
a large number of chronic diseases, including cardiovascular, pulmonary, neurological,
metabolic, musculoskeletal diseases, and cancer (5). Those benefits, and in particular
those promoted by endurance type training, are closely related to improved mitochondrial
quality control (MQC, includingmitophagy, the clearance of dysfunctional mitochondria),
mitochondrial content, respiration, and dynamics in striated muscles (i.e., skeletal and
heart muscle) (6–8). Regular exercise is thought to benefit mitochondria depending on
the exercise type and intensity, although the specific determinants for mitochondrial
improvements are still under debate, also due to the high diversity of exercise interventions
and study populations (8, 9).
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A recent systematic review reinforced the favorable effects
of exercise training in older adults on mitochondrial quality,
density, dynamics, oxidative, and antioxidant capacity, which
varied according to the exercise type (9): While improvements
of the mitochondrial antioxidant capacity appear to be important
consequences of endurance exercise, resistance training seems to
be particularly beneficial for mitochondrial density and dynamics.

Life-long high-volume exercise training specifically improved
mitochondrial volume and network connectivity in skeletal muscle
and associated oxidative capacity in older adults (10). Moreover,
it preserved mitochondrial morphology, Ca2+ handling, and ATP
production, contributing to the maintenance of skeletal muscle
function in older individuals (11).

In subjects suffering from sarcopenia, more intense aerobic
exercise protocols may more efficiently improve mitochondrial
biogenesis (12); for example, exercise increased the mRNA
levels of the mitochondrial biogenesis-related transcription factor
peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-
1α) 10.2-fold at 80% of VO2max (maximum rate of oxygen
consumption), but only 3.8-fold at 40% of VO2max (13).
Low-volume high-intensity interval training (HIIT) represents
a time-efficient alternative to improving skeletal muscle mass
and cardiorespiratory fitness (CRF) in individuals, and even
in octogenarians with co-morbidities, probably by increasing
the mitochondrial oxidative phosphorylation capacity in skeletal
muscle (14). Comparisons between HIIT, resistance training (RT),
and the combination ofHIIT and RT revealed that 12 weeks of HIIT
enhanced mitochondrial content and resulted in protein changes in
skeletal muscle indicative of increased mitochondrial fusion, while
smaller effects were seen after combined training and (surprisingly)
no effects after RT (15). These changes were associated with
improved mitochondrial respiration, CRF, and insulin sensitivity
in populations of untrained but lean young (18–30 years) and
older (65–80 years) adults (15). Conversely, long-term RT (over 6
months) was found to considerably increase mitochondrial volume
density in older individuals (16). In one recent study, 12 weeks
of HIIT combined with L-citrulline supplementation increased
markers of mitochondrial biogenesis, mitochondrial fusion and
mitophagy in obese older adults and acted synergistically for
improving muscle strength and muscle quality when compared
with HIIT alone (17).

Taken together, these study findings indicate that exercise
has the potential to improve or maintain mitochondrial content
and health in skeletal muscle. This has been associated with
healthy aging in older subjects provided that the training
stimulus is appropriate, and higher intensities seeming to be
more effective. Thus, it is crucial to individually tailor exercise
interventions, considering individual conditions like existing
diseases, exercise preferences and tolerability, training targets,
as well as nutritional and supplementation strategies to support
exercise-induced adaptations.

2.2 Dietary and combined interventions

The role of nutritional supplementation on sarcopenia risk
and related outcomes (i.e., muscle strength, muscle mass, and

performance) has been extensively summarized in previous
reviews (18–21) highlighting the anti-aging potential of practicing
a Mediterranean-style diet and demonstrating some evidence
for the benefits of protein supplementation, especially in
sarcopenic/frail older adults, when combined with RT. Frailty is
a multidimensional condition that is closely related to sarcopenia
(22) and mainly characterized by decreased functional reserves
and stress resistance, and increased vulnerability (23). The widely
used Fried frailty phenotype assesses physical frailty through five
criteria: unintentional weight loss; weakness or poor handgrip
strength; self-reported exhaustion; slow walking speed; and low
physical activity (24).

Recently, the ProMuscle in Practice study demonstrated that
increasing the amount of protein ingested per meal (≥25 g)
along with twice-weekly progressive RT over a 12-week intensive
support intervention was effective for counteracting sarcopenia
in community-dwelling older adults who were frail or pre-frail
based on Fried frailty criteria or who experienced strength loss
(25). The recommended daily protein intakes are 1.0–1.2 g/kg body
weight (BW) for healthy older individuals and 1.2–1.5 g/kg/BW
for geriatric patients, containing ∼2.5 g of leucine, to stimulate
muscle protein synthesis (26). In addition, exercise and higher
protein intake are recommended during weight loss, to avoid
muscle wasting (27).

Caloric restriction, a lifestyle strategy to mitigate obesity and
metabolic disease, which typically involves the consumption of 20–
40% lower calories, shows beneficial effects on mitochondrial mass
and function (28). However, this approach could also bring about
unwanted reductions in lean mass, especially when the protein
needs are not achieved, and may contradict dietary practices for
optimizing skeletal muscle health in older persons (29). Thus,
interventions to enhance the loss of fat while preserving muscle
mass during energy restriction are of great importance to prevent
sarcopenia in overweight older adults. Data indicate that, even in
the presence of energy restriction, performance of RT with elevated
daily protein ingestion (1.3 g/kg/BW) increases muscle protein
synthesis and potentially supports muscle mass preservation during
weight loss in obese older adults. In addition, short-term RT (over
2 weeks) stimulated mitochondrial protein synthesis as compared
with energy restriction alone (30).

The few clinical trials of nutritional interventions on
mitochondrial health in older healthy people or those with or at
risk of malnutrition suggest that nutritional supplementation with
branched-chain amino acids (BCAA) alone (31) or combined with
800 IU vitaminD3 per day (32) and omega-3 poly-unsaturated fatty
acids (dosages from 3.3 to 3.9 g/day over a 4–6-month time period)
(33, 34) may be useful in the prevention of sarcopenia. These
strategies boost mitochondrial bioenergetic and redox capacities,
potentially explaining the amelioration of muscular performance
in older adults in the absence of exercise, which reflects the
real-life situation of most community-dwelling older adults
(18). Beta-hydroxy-beta-methylbutyrate (3 g/day), a metabolite
of leucine, has been shown to concomitantly preserve muscle
mass and mitochondrial gene expression in healthy older adults
during 10 days of bed rest (35). Moreover, this supplementation
improved mitochondrial content and dynamics over an 8-
week RT rehabilitation period as compared with the placebo
control (35).

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1330131
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Burtscher et al. 10.3389/fpubh.2023.1330131

Some micronutrients, such as zinc and selenium, may also
contribute to mitochondrial health and reduce oxidative stress in
sarcopenia, but the evidence is still too weak to promote these
nutrients as treatments for sarcopenia (36).

Finally, probiotics may actively modulate the risk and
progression of sarcopenia: Preclinical research findings suggest
that Lactobacillus casei Shirota supplementation for 12 weeks
enhances muscle function potentially through the gut–muscle axis
via mitochondrial signaling (37, 38). Promoting a healthy gut
microbiota also improves the bioavailability of dietary polyphenols.
These compounds have been shown to benefit skeletal muscle
cells and tissues, thus potentially representing effective components
of a treatment strategy for reducing or reversing sarcopenia
(39). Indeed, two studies detected improvements in mitochondrial
density and oxidative phosphorylation capacity, accompanied by
enhanced skeletal muscle morphology and better mobility in aged
persons after 12 weeks of admission of resveratrol (500 mg/day)
combined with exercise training (40, 41).

Taken together, the current evidence suggests that dietary
interventions can be effective in the prevention and treatment of
sarcopenia by improving various aspects of mitochondrial health.
Adherence to a Mediterranean diet, which favors a high intake of
proteins, fibers, and polyphenols, and nutritional supplementation
with BCAA, omega-3 polyunsaturated fatty acids, and vitamin D
should be considered in older adults to support exercise-induced
adaptations andmuscle health. Overall, it can be concluded that the
combination of diet and exercise interventions due to synergistic
and complementary effects may be is the most effective approach
to protect mitochondria to ameliorate sarcopenia.

2.3 Altitude and hypoxia

Epidemiological studies reveal that living at moderate altitudes
(1,000–2,000m) may increase human life expectancy (42, 43).
Reduced mortality from cardiovascular diseases and certain cancer
types are thought to be main mediators of this effect, and they
thought to be a consequence of the lower oxygen partial pressure,
and thus reduced oxygen availability (hypoxia), at these altitudes
(43). This hypothesis is supported by evidence that exposure
to mild chronic continuous environmental hypoxia extends the
lifespan of various species, including worms (44), fruit flies (45),
and mice (46).

Accumulating evidence suggests that brief and repeated
exposures to mild or moderate hypoxia (hypoxia conditioning,
HC) also induce physiological and cellular adaptations which
protect individuals from subsequent, more severe hypoxic or
ischemic insults and possibly from age-related diseases (47, 48).
In contrast to the potential beneficial impact on healthy aging
and life expectancy conferred by exposure to mild or moderate
hypoxia, exposure to more severe hypoxia may even accelerate
aging, potentially due to the augmentation of oxidative stress,
inflammation, and mitochondrial dysfunction (48). Thus, major
health benefits from hypoxia exposure may not result from hypoxia
per se but rather from adaptations initiated by exposures to hypoxia
at appropriate intensities, durations, and frequencies (49).

Mitochondria are key to adaptations involved in the induction
of cellular stress responses, the upregulation of antioxidant
pathways, and the optimization and reduction of oxidative
metabolism rates (4, 50). Interventional studies have revealed the
preventive and therapeutic effects and promotion of healthy aging
by HC by, for example, improving exercise tolerance and cognitive
performance in healthy older adults or those with pre-existing
cardiovascular, pulmonary (51), or age-related neurological deficits
(52). For example, after 3 weeks of intermittent hypoxia, VO2max
increased by 6.2% in older men with and without coronary artery
disease while no change was observed in the normoxic control (53).

Moreover, exercise training in athletes (twelve high-intensity
treadmill sessions over 6 weeks, in addition to regular trainings)
under normobaric hypoxic conditions (FiO2: 14.5%, 3,000m)
increased the gene expression of the mitochondrial biogenesis
regulators PGC-1α and transcription factor A and elevated
mitochondrial enzyme activity (i.e., of citrate synthase and
cytochrome oxidases 1 and 4) (54). A recent meta-analysis revealed
greater improvements in the body fat and body mass index
of middle-aged and older adults when exercise was performed
under normobaric hypoxic conditions as compared to normoxic
conditions (55). The authors suggest that changes in cellular energy
production and mitochondrial protein synthesis may be potential
mechanisms associated with modifications in body composition
(55). However, whether exercising in hypoxia benefits older people
more than exercising in normoxia remains to be elucidated. A
recent study in sedentary older individuals found no differences in
mitochondrial and functional outcomes between these modalities
after 8 weeks of aerobic exercise (56).

In summary, together with exercise and dietary interventions,
HC represents a promising strategy to counteract skeletal and
cardiac muscle dysfunction and conditions of sarcopenia, and thus
to promote healthy aging. Which HC programs optimally improve
specific mitochondrial functions and muscle health remain to
be identified and will need to consider individual circumstances
(e.g., physical and mental performance capabilities, co-morbidities,
pharmacological therapy, and responsiveness to hypoxia exposure).
A selection of studies linking exercise, dietary, hypoxia and
combined interventions to mitochondrial and muscle or fitness
outcomes are summarized in Table 1.

3 Discussion

Increasing mitochondrial deficits (58), the associated oxidative
stress (58), and inflammatory processes (59) are central processes
in aging. Accordingly, mitochondrial health and the associated
oxidative capacity also declines with age in skeletal muscle. This
decline is correlated to reduced muscle performance and CRF
(60, 61). It is thus plausible that aging mitochondria are involved
in the development of age-related sarcopenia, although the specific
concerned mitochondrial deficits (e.g., oxidative phosphorylation,
biogenesis, dynamics, quality control) remain to be elucidated
(62). Importantly, direct data on mitochondrial outcomes of
lifestyle-interventions in sarcopenia are scarce and experimental
confirmation on potential preventive and symptomatic benefits are
urgently required.
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TABLE 1 Selected lifestyle interventions targeting mitochondria in muscle aging.

Intervention and population Mitochondrial outcomes Muscle or fitness outcomes References

Exercise interventions

Four-week HIIT,≈15 min/week (100–115%
of maximal workload) in octogenarians (81.2
± 0.6 years) with comorbidities

Improved mitochondrial oxidative
phosphorylation capacity: increased activities
of the mitochondrial enzymes citrate
synthase and complexes II and III of the
respiratory system

Increased muscle protein synthesis,
cardiorespiratory fitness and fat-free mass

(14)

Twelve-week HIIT, resistance, or combined
training in young (18–30 years) and older
(≥65) sedentary adults

Increased mitochondrial volume and
number, higher protein levels of the
mitochondrial fusion factor OPA1 and
improved mitochondrial respiration by HIIT

Improved cardiorespiratory fitness and fat-free
mass in all training groups

(15)

Eight-week resistance, endurance or
combined training in young (18–30 years)
and older (≥65) sedentary adults

Improved mitochondrial respiration in
combined training groups (young and older)

Combined training resulted in the most robust
improvements in muscle strength, quality, and
fitness

(57)

Dietary interventions

BCAA supplementation of older
malnourished patients (>80 years) for 8
weeks

Improved mitochondrial biogenesis and
fusion and lower levels of oxidative stress

Improvements in nutritional status, muscle mass,
strength and performance

(31)

Supplementation of older adults (>65)
with/at risk of undernutrition for 12 weeks:
whey and casein protein, ursolic acid, free
BCAA and vitamin D

Upregulated expression of gene clusters
(microarray) related to oxidative
phosphorylation, mitochondrial functioning,
and mitochondrial biogenesis

Improved walking performance (32)

Omega-3 poly-unsaturated fatty acid
supplementation (1.86 g/day EPA, 1.5 g/day
DHA) for 6 months in older (60–85 years)
adults

Small, upregulated expression of gene
clusters (microarray) related to
mitochondrial functions

Improved muscle mass and function (34)

Combined exercise and dietary interventions

Citrulline supplementation (10 g/day) and
HIIT for 12 weeks in obese older (67.2± 5.0
years) adults vs. placebo (same exercise
program)

Increased mitochondrial biogenesis,
mitochondrial fusion, and mitophagy in both
groups

Improved lean mass, muscle power, and function
in both groups; greater increase in muscle strength
and quality

(17)

Two-week energy restriction (−300 kcal/day,
1.3 g/kg/day protein) vs. energy restriction
plus resistance training in obese older (66± 4
years) men

Increased mitochondrial and myofibrillar
protein synthesis by resistance training

Preserved muscle mass during weight loss by
resistance training

(30)

Beta-hydroxy-beta-methylbutyrate (3 g/day)
supplementation during 8-week resistance
training in 60–76 years old subjects after 10
days bed rest

Increased protein levels of oxidative
phosphorylation components and of
mitochondrial fusion (mitofusin 2) and
fission (DRP1) factors

Preserved muscle mass (35)

Resveratrol (500 mg/day) and combined
resistance/endurance training for 12 weeks in
65–80 years old subjects vs. placebo (same
exercise program)

Increased mitochondrial density, higher
transcription levels of mitochondrial
pro-fusion factors

Increased muscle fatigue resistance, mean fiber
area and muscle torque/power

(40)

Exercise in hypoxia

Sedentary adults (62± 6 years) trained 3×
per week for 8 weeks in normobaric hypoxia
(15%) vs. normoxia on a bicycle ergometer

No differences in markers of mitochondrial
content and oxidative capacity (activities of
citrate synthase and components of the
mitochondrial respiratory system)

Similar improvements in muscle metabolism
(lactate, fat and carbohydrate oxidation) and in
power output after hypoxic and normoxic training

(56)

BCAA, branched-chain amino acids; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; HIIT, high-intensity interval training; OPA1, optic atrophy 1.

The overlapping but also seemingly differential mitochondrial
benefits of different lifestyle interventions might be harnessed to
design optimized mixed lifestyle interventions that counteract
the development of sarcopenia or alleviate its symptoms.
These interactions among lifestyle factors and their results
on mitochondrial activity, however, are still poorly known
and controversially discussed. Different exercise modalities
and intensities, for example, may differentially improve the
mitochondrial biogenesis (resistance training, moderate endurance

training) and dynamics (resistance training), antioxidant capacity
(moderate endurance training), quality control/mitophagy
(moderate endurance training), or oxidative phosphorylation
capacity (intensive endurance training) (8, 9).

Like exercise, a mild caloric restriction and certain nutrients
may help to preserve specific facets of mitochondrial health and
might be suitable as a counteracting strategy for sarcopenia.
These include the use of beta-hydroxy-beta-methylbutyrate
supplements, which seem to effectively promote mitochondrial
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FIGURE 1

Lifestyle interventions modulating mitochondrial and skeletal muscle health to prevent sarcopenia. Sedentary aging is associated with increasing

mitochondrial deficits and functional decline of skeletal muscle and favors the development of sarcopenia, while the adoption of a healthy lifestyle

provides some protection (A). On the molecular level, this protection is believed to be mediated by improvements in various mitochondrial functions

and related oxygen utilization factors (B). Specific aspects of mitochondria and oxygen utilization discussed in the text are indicated by colored

squares and letters a–e in (B), where the colors/letters correspond to lifestyle/environmental factors shown in (C).

density and dynamics (35). In combination with exercise,
resveratrol also appears to improve mitochondrial density and
oxidative phosphorylation (40, 41).

The controlled variation in hypoxia levels (by climbing to
different altitudes, spending time in hypoxia chambers/tents,
breathing of defined gas mixtures, or performing breathing
exercises) may also modulate specific mitochondrial functions,
depending on the severity, duration, and frequency of the
exposure (50). Cellular adaptations to hypoxia include increased
oxidative phosphorylation efficiency and antioxidative capacities,
but also enhanced cellular oxygen supply due to the improved
oxygen transport in the blood (e.g., as a result of erythropoietin
upregulation) and angiogenesis, as well as glucose transport
and glycolysis upregulation, which reduce the reliance of ATP
production on oxygen levels (50).To take full advantage of the
potentially complementary and synergistic benefits of exercise,

dietary strategies and hypoxia exposure, the distinct effects of these
interventions need to be better understood (Figure 1).

Very few studies report small or no effects of higher
physical activity levels and/or healthy dietary behaviors,
such as Mediterranean diet, on sarcopenia prevalence [e.g.,
(63)], suggesting limitations of the preventive potential of
healthy lifestyles.

Specifically, sarcopenic or malnourished older adults tend to
develop an anabolic resistance to three fundamental anabolic
stimuli [i.e., insulin signaling, BCAA (primarily leucine) blood
concentration, and physical activity]. For these older people
(64), individually optimized dietary protein intake combined
with RT are required to maintain or improve muscular strength
and mitochondrial function with aging. Physical activity, and
predominantly endurance exercise, often potently counteracts
sedentary aging associated with mitochondrial dysfunction, insulin
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resistance and obesity. But combinations with adequate dietary
strategies, RT and hypoxia can further optimize mitochondrial
health andmuscle performance.Well-calibrated RT benefits almost
all older people (65) and reduces the risk of sarcopenia in older
adults adhering to aerobic moderate-to-vigorous physical activity
guidelines even further (66).

Based on the high complexity of outcomes in lifestyle
changes, the investigation of combined approaches (e.g., diet
and exercise interventions) are challenging and individualized
combinations of different training types and dietary regimes
accompanied by monitoring and continuous program adaption
will be important to guarantee success. Person-centered strategies
are especially important for vulnerable populations to ensure
exercise and/or hypoxia benefits and an appropriate nutritional
status, while balancing these factors with associated risks
(injury risk, oxidative stress, immune system consequences,
and inflammation).

Other lifestyle and environmental factors that have not
been considered in this review but may be similarly important
(e.g., sleep or heat/cold acclimatization) also require further
study. The complex physiological consequences of lifestyle and
environmental changes also complicate efforts to compare the
associated mitochondrial effects. The specific strategy outcomes,
meanwhile, are determined by the application modalities (or
supplement type), dose, and individual characteristics of the
recipient (e.g., genetic makeup, fitness and health status).
However, availability of experimental (e.g., OMICS) approaches
together with increasingly powerful analytical/bioinformatic tools
will pave the way for the development of a person-centered
lifestyle medicine that can prevent sarcopenia and other age-
related diseases.
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