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Objective: This study aimed to study the molecular epidemiology and 
clinical characteristics of respiratory syncytial virus (RSV) infection from 
hospitalized children with ARTI in Bengbu.

Methods: One hundred twenty-four nasopharyngeal swab specimens 
and clinical data from children with ARTI cases were collected in Bengbu, 
China, during winter 2021–2022. The samples were detected by qPCR of 13 
respiratory viruses. Phylogenetic analysis was constructed using MEGA 7.0. 
All analyses were performed using SAS software, version 9.4.

Results: In winter 2021–2022, URTI, NSCAP, SCAP, and bronchiolitis 
accounted for 41.03%, 27.35%, 17.09%, and 14.53% of hospitalized children 
in Bengbu, China. The detection rates of the top three were RSV (41.94%), 
ADV (5.65%), and FluB (5.65%) in hospitalized children through 13 virus 
detection. RSV is the main pathogen of hospitalized children under 2  years 
old. Forty-eight sequences of G protein of RSV were obtained through PCR 
amplification, including RSV-A 37 strains and RSV-B 11 strains. Phylogenetic 
analysis showed that all RSV-A and RSV-B were ON1 and BA9 genotypes, 
respectively. ON1 genotypes were further divided into two clades. The 
majority of ON1 strains formed a unique genetic clade with T113I, V131D, 
N178 G, and H258Q mutations. Furthermore, RSV infection was an 
independent risk factor for ventilator use (OR  =  9.55, 95% CI 1.87–48.64).

Conclusion: There was a high incidence of RSV among hospitalized 
children during winter 2021–2022 in Bengbu with ON1 and BA9 being the 
dominant strains. This study demonstrated the molecular epidemiological 
characteristics of RSV in children with respiratory infections in Bengbu, 
China.
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1 Introduction

Respiratory syncytial virus (RSV) is an extremely common, 
airborne RNA virus, mainly affecting infants and the older adult. 
RSV is the leading pathogen causing acute lower respiratory tract 
infection (ALRTI) such as bronchiolitis and pneumonia in infants 
under 6 months old and young children and lower respiratory 
tract diseases that may endanger lives in children under 5 years 
old, the infirm, and the older adult (1, 2). Most children are 
infected with RSV under the age of 2 years (3), with up to 90% of 
children experiencing RSV-related bronchiolitis during their first 
few years of life (4). According to the data from the World Health 
Organization (WHO), approximately 34 million children are 
infected with RSV each year, of which approximately 66,000 to 
199,000 fatalities from RSV infection, which is an important 
factor leading to child mortality (5). Globally, RSV causes over 
336,000 older adult hospitalizations and 14,000 deaths annually 
(6). It is estimated that up to 2,500 children are hospitalized every 
day due to RSV infection in China, which is one of the countries 
with the largest number of children with LRTI caused by RSV in 
the world (7).

RSV is a negative-sense, single-stranded RNA virus that belongs 
to the family Pneumoviridae and the genus Orthopneumovirus (8). The 
RSV genome contains 10 genes and encodes 11 proteins, including 
NS1, NS2, N, P, M, SH, G, F, M2-1, M2-2, and L (9). The attachment 
glycoprotein (G) and fusion glycoprotein (F) are the main target 
antigens for neutralizing antibodies and vaccine development. RSV is 
divided into two subtypes, A and B, based on the G protein antigen 
(10). Based on the variations of the second hypervariable region 
(HVR2) of G protein, RSV-A is categorized into 22 genotypes and 
RSV-B is subdivided into 36 genotypes (11, 12). At present, the ON1 
and BA9 are the dominant genotypes prevalent globally, including 
China (13–16).

From RSV surveillance data of 14 countries based on the 
Global Influenza Surveillance and Response System (GISRS) (17), 
RSV showed a retaliatory rebound after the COVID-19 epidemic 
in the autumn and winter of 2022 in Canada and the United States 
(18). According to reports, the positive detection rate of RSV in 
Canada was significantly higher in the autumn and winter of 2022 
than in previous years (19), and the positive detection rate of RSV 
in the United States increased significantly in the autumn of 2022, 
and the epidemic peak is earlier than in previous years (20). 
During the epidemic season before 2021, the RSV detection rate 
remained at an extremely low level in Hubei, China, while a 
moderate epidemic (approximately 10%) occurred in the same 
period in 2021 (21).

Therefore, to understand the epidemiological features of RSV 
during the COVID-19 disease epidemic during winter 2021–
2022 in Bengbu, Anhui, China, the genetic diversity and molecular 
evolution of RSV were analyzed in this study. We also analyzed 

RSV’s impact on respiratory diseases in children, especially 
pneumonia in children.

2 Methods

2.1 Study population and specimen 
collection

One hundred twenty-four nasopharyngeal swab specimens were 
collected from the enrolled cases with acute respiratory tract infections 
(ARTI) from the First Affiliated Hospital of Bengbu Medical College 
in hospitalized children in Bengbu from October 2021 to January 
2022. These cases contained upper respiratory tract infection (URTI) 
and community-acquired pneumonia (CAP). A URTI was defined as 
fever (body temperature ≥ 38°C) accompanied by respiratory signs or 
symptoms (i.e., cough, sore throat, and rhinorrhea). CAP was defined 
in accordance with the guidelines for the management of community-
acquired pneumonia in children in China (the revised edition of 
20,130) (22). All cases were investigated by clinicians using a uniform 
questionnaire that included demographic data, epidemiological data, 
and clinical manifestations.

2.2 Identification of respiratory viruses by 
qPCR

Total viral nucleic acids (RNA and DNA) were extracted from the 
viral transportation medium using the Fujian Baineng Medical 
Technology Co., Ltd. Thirteen respiratory viruses were simultaneously 
detected with real-time PCR, including RSV, influenza virus A (FluA), 
influenza B (FluB), human coronavirus (NL63, OC43, 229E, and 
HKU1), parainfluenza virus 1 to 3 (PIV), human metapneumovirus 
(HMPV), adenovirus (ADV), and human bocavirus (HBoV). The 
nucleic acids were stored at −80°C until further use.

2.3 PCR amplification and G gene 
sequencing

RSV cDNA was obtained from the extract using MultiScribe reverse 
transcriptase and random hexamers. Total cDNA was used in a PCR 
(Century 2 × Es Taq MasterMix (Dye), CWBIO). The amplification 
follows conditions: 94°C for 2 min, followed by 40 cycles of 94°C for 30s, 
56°C for 45 s, 72°C for 30s, and a final extension at 72°C for 5 min. The 
PCR products were sequenced using an ABI Prism 3730XL DNA 
Analyzer at Tsingke Co., Ltd. (Beijing, China). The sequences were 
edited using Sequencher software version 5.0 (Gene Codes, Ann Arbor, 
MI, United States). These sequences were deposited in GenBank with 
accession numbers from QQ933800 to QQ933847.
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2.4 Analysis of phylogenetic and amino 
acid replacement

SeqMan program (DNASTAR 7.0, Inc., Madison, WI) was used 
for contigs assembling and obtaining the full length of the G gene. The 
sequences obtained in this study were aligned with representative 
sequences retrieved from GenBank using Clustal W. The phylogenetic 
tree was constructed using the maximum likelihood with HKY+ G 
and TN93+ G models for RSV-A and RSV-B. The reliability of the tree 
topology was evaluated by bootstrapping with 1,000 replications in 
Mega 7.0 software. Deduced amino acid sequences were translated 
with the standard genetic code using MEGA software version 7.0. The 
sequences of the RSV-A strains and RSV-B strains were aligned with 
the prototype strain ON67-1210A and BA4128/99B, respectively. 
RSV-A and RSV-B sequences were downloaded from the GenBank 
database, respectively.

2.5 Analysis of the N-glycosylation site

Putative N-glycosylation sites were predicted using NetNGlyc 1.0 
webserver1 to identify the sequence motifs N-X-S/T (sequon), where 
X can be any amino acid except proline. Only the sites with scores 
higher than 0.5 were accepted as glycosylated.

2.6 Statistical analysis

The clinical data were entered using Epidata 3.0 and organized 
using Excel 2019. SAS 9.4 was used for the statistical analysis, and 
continuous variables were presented as median (interquartile range, 
IQR) and compared with the Kruskal–Wallis test and t-test between 
different groups; categorical variables were presented as number (%) 
and compared by chi-square test or Fisher’s exact test between 
different groups. A p-value of <0.05 was considered statistically 
significant. A flow chart about the methodology of sampling and 
analyses is given in Supplementary Figure S1.

3 Results

3.1 The epidemiological characteristics of 
RSV

From October 2021 to January 2022, a total of 124 samples with 
ARTI were collected from hospitalized pediatric patients in Bengbu, 
Anhui, China. Of 124 children, 117 cases had complete clinical 
information. In this study, the majority (36.75%, 43 of 117) of the 
patients were younger than 6 months, 30.77% (36 of 117) of cases were 
6 months to 2 years old, 23.93% (28 of 117) of cases were 2 years old to 
5 years old, and 8.55% (10 of 117) of children’s cases were over 5 years 
old (range from 1 month old to 16 years old). The male-to-female ratio 
was 1.74:1. Of these samples, RSV infection was the main infection, 
accounting for 41.94% (52 of 124), followed by ADV 5.65% (7 of 124), 

1 http://www.cbs.dtu.dk/services/NetNGlyc

FluB 5.65% (7 of 124), HBOV 2.42% (3 of 124) and HCoVs 0.81% 
(1 of 124). Therefore, subsequent studies focused on analyzing the 
pathogenic and epidemiological characteristics of RSV.

Of the 52 RSV-positive cases, the proportion of RSV-A and RSV-B 
was 71.15% (37 of 52) and 21.15% (11 of 52), respectively. The other 
7.69% (4 of 52) cases were unclassifiable. The median age of the 
RSV-infected patients was 1 year old (IQR: 0.3–2.5 years old), and RSV 
infection mainly affected children under 2 years old (79.17%, 38 of 48). 
Excluding four cases of missing clinical information, the proportion 
rates of RSV of the four types of cases mainly occurred in SCAP 
(60%), followed by NSCAP (41.8%), bronchiolitis (40.6%), and URTI 
(33.3%) (Figure 1). RSV-A was the dominant strain in this study.

3.2 Phylogenetic analysis of RSV G

In total, 40 full-length G genes (30 RSV-A and 10 RSV-B) and 8 
HVR2 sequences of G gene (7 RSV-A and 1 RSV-B) were obtained by 
PCR amplification for subsequent analysis. Phylogenetic analysis 
showed that all RSV-A strains and RSV-B strains were of the ON1 and 
BA9 genotypes, respectively (Figures  2A,B). Thirty-seven ON1 
genotype was further divided into two branches in this study. Thirty-
three strains were only clustered with reference sequences from China 
in clade 1, and 4 strains were clustered with reference sequences from 
Portugal, China, Italy, Brazil, Kenya, the United States, and 13 other 
countries or regions in clade 2 (Figure 2A). In this study, the BA9 
genotype of clade 1 was mainly clustered with the Chinese BA9 
genotype sequences (Figure 2B). The nucleotide homology of HVR2 
of ON1 and BA9 genotypes was 92.5%–100% and 94.8%–100%, 
respectively. The calculated overall mean distance was 0.031 for 
RSV-A and 0.033 for RSV-B.

3.3 Amino acid substitution of G 
glycoprotein

Subsequently, the diversity of amino acid mutations of ON1 and 
BA9 was analyzed. The most common amino acid substitutions of the 
G glycoprotein gene of RSV stains were identified in mucin-like 
regions 1 and 2 compared to the prototype ON1 (JN257693) strains 
and BA1 strains (AY333364) (Figures  3, 4). The most common 
substitutions of the G protein gene of ON1 strains were T113I, V131D, 
N178G, T245A, H258Q, H266L, and L274P in this study (Figure 3A). 
Additionally, the majority of ON1 strains with T113I, V131D, N178 
G, and H258Q mutations formed a unique genetic cluster. N178 G was 
located near the CX3C motif binding to CX3CR1 to initiate infection. 
H258Q was observed within the 24aa duplication region of G 
glycoprotein. Moreover, eight amino acid substitutions occurred in 
the majority of BA9 strains, including R98M, N121S, T254I, T270I, 
V271A, N296Y, T302I, and N178S. Similarly, N178S substitution was 
also found in the BA9 strain (Figures 3B, 4B).

3.4 N-glycosylation sites of G protein

To predict N-linked glycosylation sites, amino acid sequences of 
G protein were submitted to online bioinformatics tools (NetNGlyc). 
For ON1 genotypes, three major putative N-glycosylation sites, N103, 
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N135, and N237 were identified (Figure  3A, gray shading). 
N-glycosylation site N239 was also identified in the G gene of 23% 
ON1. For BA9 genotype, the N-glycosylation site N310, N318, N86 
(91%), N114 (36%), and N296 (45%) were also predicted in this study 
that were similar with BA prototype strain (Figure 3B, gray shading). 
In addition, one of the BA9 strains carried one N-glycosylation site at 
aa 230 due to the P231S substitution (Figure 3).

3.5 Clinical characteristics of children 
infected with RSV

To understand the clinical symptoms of children infected with 
RSV, the differences in clinical symptoms, laboratory, radiographic 
findings, treatments, and outcomes were analyzed between 
RSV-infected and non-infected children. The results showed that the 
most common clinical manifestations in RSV-infected cases were 
cough (83.33%), pulmonary rales (81.25%), sputum (70.83%), fever 
(62.5%), and wheezing (60.42%) (Table  1). The median age of 
RSV-infected children was lower than that of RSV-uninfected 
children (0.45 years old vs. 1.2 years old p < 0.01) (Table  1). 
Compared to patients without the RSV infection, the RSV-infected 
patients were more likely to produce sputum (70.83%, 34/48, 
p = 0.030), wheezing (60.42%, 29/48, p < 0.01), pulmonary rales 
(81.25%, 39/48, p < 0.01), and chest shadow (26.32%, 10/38, 
p = 0.048) (Tables 1, 2). In addition, patients with RSV infection were 
more likely to require mechanical ventilation (35.42%, 17 of 48, 
p < 0.01) (Table 2), in which children infected with RSV-B need more 
mechanical ventilation than those with RSV-A (63.64% VS 26.47%, 
p = 0.035) (Supplementary Tables S1, S2).

To avoid overfitting in the model, a multiple logistic regression 
analysis was performed to understand the association between using 
a ventilator and RSV infection. Based on the results of univariable 
results, six variables (age groups, gender, RSV infection, coinfections, 
comorbidity, and SCAP) were chosen for multivariable analysis 
(Table  3). RSV infection (OR = 9.55, 95% CI 1.87–48.64) was 

significantly higher in ventilator-used groups compared with 
non-ventilator-used groups in pediatric patients (p = 0·007). This 
indicates RSV infection is an independent risk factor for ventilator 
use. Furthermore, multiple logistic regression analysis showed that 
comorbidity was significantly associated with ventilator use 
(OR = 13.73, 95% CI 4.16–45.35), p < 0.001 (Table 3).

4 Discussion

Because implementation of public health measures to prevent the 
COVID-19 pandemic, the prevalence of various respiratory pathogens 
has been affected since 2020. In this study, RSV-infected cases were 
mainly found in hospitalized children (41.94%) in Bengbu, China, in 
winter 2021–2022. However, this result is different from that of studies 
in Beijing, China, in winter 2020–2021 (23). Our results showed that 
there were higher positive rates than several reports from different 
regions of China, such as Gansu in 2010–2019 (24), Beijing in 2015–
2019 (23), and Suzhou in 2011–2014 (25). In Portugal, RSV positivity 
rates in children were up to approximately 60% between week 30 of 
2021 and week 32 of 2021 and between week 39 and week 41 of 2021 
(26). A study in England showed an unprecedented surge in 
respiratory syncytial virus activity in the summer of 2021, while RSV 
activity was lower than expected in winter 2021–2022 (27). However, 
the seasonal prevalence of RSV infection in this study still follows this 
pattern, where RSV infections primarily occur in the autumn and 
winter seasons, and the epidemic period of RSV infection is from 
November of the first year to February of the following year.

Previous studies show that prematurity and young age are 
independent risk factors for severe RSV infection (28). In this 
study, the majority (36.75%, 43/117) of the patients were younger 
than 6 months old, and the median age of RSV-positive patients 
was 1 year old (IQR: 0.3–2.5 years old), which was younger than 
that of RSV-negative patients (p < 0.01). These results were similar 
to previous reports (3, 29–31). By estimating the hospitalization 
burden of RSV-associated respiratory infections (RSV-RTI) in 

FIGURE 1

Proportion rates of RSV subtypes of different infection types.

https://doi.org/10.3389/fpubh.2023.1310293
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Huang et al. 10.3389/fpubh.2023.1310293

Frontiers in Public Health 05 frontiersin.org

FIGURE 2

Phylogenetic tree in RSV-A (A) and RSV-B (B). The phylogenetic tree of RSV-A and RSV-B G protein genes was constructed by maximum-likelihood 
method. The reference sequence used to build the tree was downloaded from the GenBank database. (A) The phylogenetic tree of RSV-A, with the 
studied strain labeled pink. ON1 genotype divided into two clades, with green indicating clade 1 and yellow indicating clade 2, and the branch nodes 
show bootstrap values with pink dots. (B) The phylogenetic tree of RSV-B, with the studied strain labeled red. BA9 divided into three clades, with green 
indicating clade 1, pink indicating clade 2, blue indicating clade 3, and the branch nodes show bootstrap values with peach dots.
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FIGURE 3

Deduced amino acid sequences alignment of the G protein of RSV sequences. (A) Deduced amino acid sequence alignment of the ON1 genotype 
G protein relative to the prototype strain ON67-1210A. The dots indicate aa identical to ON67-1210A; the major mutations of clade 1 are shown in 
cyan, while those of clade 2 are shown in green. The putative N-glycosylation sites are shown in gray shading. (B): The G protein amino acid (aa) 
partial sequences of BA strains were aligned with the prototype BA4218/99B. The dots indicate aa identical to the prototype BA4218/99B, the major 
mutations of amino acid are shown in cyan. The putative N-glycosylation sites are shown in gray shading.
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FIGURE 4

Frequency map of amino acid changes in the extracellular domain of Bengbu RSV G protein of RSV-A (A) and RSV-B (B) (a, aa 68 to 321.b, aa 68 to 
310), (A) RSV-A reference strain is ON67-1210 (JN257693) (blue). (B) RSV-B reference strain is BA4128/99B (AY333364) (red). Compared with the 
original strain, the amino acid substitution with a frequency of >50% (dotted line) was marked.

TABLE 1 Demographic characteristics and clinical characteristics of RSV cases (n  =  48).

Variable RSV negative (n =  69) RSV positive (n =  48) p-value

Demographics and clinical characteristics

  Age group

   ≤6 months 19 (27.54%) 24 (50.00%) 0.068

   6 months–2 years 27 (39.13%) 16 (33.33%)

   2–5 years 16 (23.19%) 5 (10.42%)

   ≥5 years 7 (10.14%) 3 (6.25%)

  Male 41 (59.42%) 33 (68.75%) 0.303

  Duration of hospital stay (days) 8 (6–11) 10 (7–12) 0.256

Symptoms and signs

  Fever (temperature ≥ 37.3°C) 44 (63.77%) 30 (62.50%) 0.889

  Cough 50 (72.46%) 40 (83.33%) 0.170

  Sputum production 35 (50.72%) 34 (70.83) 0.030*

  Wheezing 20 (28.99%) 29 (60.42%) <0.01*

  Nasal congestion 10 (14.49%) 12 (25.00%) 0.153

  Rhinorrhea 11 (15.94%) 13 (27.08%) 0.142

  Throat congestion 32 (46.38%) 24 (50.00%) 0.700

  Convulsive seizures 21 (30.43%) 10 (20.83%) 0.247

  Gastrointestinal symptoms 24 (34.78%) 14 (29.17%) 0.523

  Rales 40 (57.97%) 39 (81.25%) <0.01*

  Respiratory failure 14 (20.29%) 14 (29.17%) 0.268

  Abnormal respiratory rate, beats/min 49 (71.01%) 36 (75.00%) 0.634

Data are median (IQR), mean ± SD, or n (%). As appropriate, p-values were calculated by the t-test, Kruskal–Wallis test, χ2 test, or Fisher’s exact test. “∗” means p < 0.05.
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children under 5 years old in seven European countries, it was 
found that infants born in the first 2 months of the peak month of 
RSV infection had the highest hospitalization rate (32). The risk 
of RSV infection in young children was mainly associated with the 
high surface-area-to-volume ratio of the airway in young 
children’s development (33). This study indicated that RSV 
infection was the main cause of pneumonia, with RSV detected in 
60% of SCAP cases, followed by 41.8% in bronchiolitis and 40.62% 
in NSCAP cases. However, an Italian study of children infected 
with RSV showed that the diagnosis was mainly bronchiolitis (34). 
Our results are also different from previous studies, which suggest 

that male individuals infected with RSV are more likely to develop 
severe illness than female patients (12, 35, 36). Interestingly, 
we found that the patients infected with RSV were more likely to 
experience clinical symptoms such as sputum, wheezing, and 
pulmonary rales, and require mechanical ventilation. Similar to 
our results, a multivariable regression in South Korea showed that 
increased odds of mechanical ventilation were associated with 
RSV infection (37). We  still found that children infected with 
RSV-B required a higher proportion of mechanical ventilation 
compared with RSV-A, which is similar to the results of 
Hornsleth (38).

TABLE 2 Laboratory, radiographic findings, treatments, and outcomes of 48 patients infected with RSV.

Variable RSV negative (n =  69) RSV positive (n =  48) p-value

Laboratory findings

  Lymphocyte, × 109 per L

   <2 21.00 (30.43%) 12.00 (25.00%) 0.831

   2–7 43.00 (62.32%) 32.00 (66.67%)

   ≥7 5.00 (7.25%) 4.00 (5.80%)

  Neutrophil, ×109 per L 5.43 (2.64–9.38) 3.40 (1.89–7.03) 0.054

  C reactive protein, mg/L (≥8) 30 (43.48%) 20 (41.76%) 0.846

  Acidophil, ×109 per L 0.02 (0.01–0.10) 0.03 (0.01–0.10) 0.931

  Basophile, ×109 per L 0.01 (0.00–0.02) 0.01 (0.01–0.02) 0.875

  Monocyte, ×109 per L 0.76 (0.49–1.19) 0.69 (0.53–0.98) 0.411

  Erythrocyte, ×1012 per L 4.30 (3.73–4.57) 4.00 (3.51–4.38) 0.056

  Hemoglobin 115 (107–126) 111 (104–120) 0.135

  Neutrophils, ×109 per L 303 (249–404) 336 (246–415) 0.372

  Alanine aminotransferase, U/L 30 (19–41) 30 (18–40) 0.999

  Aspartate aminotransferase, U/L 50 (35–65) 52 (43–63) 0.630

  Creatinine, μmol/L 23 (17–29) 21 (17–25) 0.405

  Creatine kinase, U/L 107 (67–179) 90 (68–152) 0.580

  Creatine kinase isoenzyme, U/L 28 (20–38) 33 (25–45) 0.177

Radiographic findings

  Chest effusion 3/54 (5.56%) 2/34 (5.88%) 1.00

  Chest shadow 6/56 (10.71%) 10/38 (26.32%) 0.048*

  Abnormal respiratory sounds 25 (36.23%) 15 (31.25%) 0.576

Treatments

  Mechanical ventilation 9 (13.04%) 17 (35.42%) 0.004*

  Antibiotics 43 (89.58%) 58 (84.06%) 0.392

Disease severity status

  Upper respiratory tract infection(URI) 32 (46.38%) 48 (41.03%) 0.246

  NSCAP 19 (27.54%) 32 (27.35%)

  Bronchiolitis 10 (14.49%) 17 (14.53%)

  SCAP 8 (11.59%) 20 (17.09%)

Clinical outcomes

  Positive 51 (73.91%) 37 (77.08%) 0.558

  Ordinary 13 (18.84%) 11 (22.92%)

  Negative 5 (7.25%) 0 (0%)

Data are median (IQR), mean ± SD, or n (%). As appropriate, p-values were calculated by the t-test, Kruskal–Wallis test, χ2 test, or Fisher’s exact test. “∗” means p < 0.05.
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Similar to previous studies in China, German, Italian, and 
Kenyan (8, 39–43), ON1 and BA9 were the dominant strains in this 
study. The analysis of G gene variability found that the ON1 genotype 
was divided into two clusters (Figure 2A). In this study, all G gene 
sequences of clade 1 had four aa substitutions including T113I, 
V131D, N178G, and H258Q. Interestingly, the remaining 4 strains in 
ON1 formed clade 2, and these strains had common mutations: 
E224A, L247P, T282I, G296S, Y304H, S311P, L314P, and 
T320A. L247P was shown to be associated with immune escape (44). 
In addition, seven high-frequency amino acid replacements occurred 
in BA9. N178S mutation similar to ON1 was found in one BA9 strain, 
and the mutation in the central conserved region may lead to the 
emergence of new prevalent strains in future. Whether these 
mutations have an effect on the generation of new lineages still needs 
to be verified by subsequent surveillance.

The limitations of this study are the impact of the COVID-19 
pandemic, the short surveillance time, and inconvenient follow-up. 
However, we still strictly adhere to the inclusion criteria of ARTI.

5 Conclusion

In summary, RSV was the number one pathogen in winter 2021–
2022 among hospitalized children in Bengbu, China. RSV mainly 
occurs in children under 2 years old. ON1 of RSV-A and BA9 of 
RSV-B were the dominant genotypes in Bengbu in winter 2021–2022. 
These results indicate that long-term, continuous surveillance of RSV 
is necessary.
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