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Background: Numerous studies have demonstrated that fine particulate 
matter (PM2.5) is adversely associated with COVID-19 incidence. However, few 
studies have explored the spatiotemporal heterogeneity in this association, 
which is critical for developing cost-effective pollution-related policies for a 
specific location and epidemic stage, as well as, understanding the temporal 
change of association between PM2.5 and an emerging infectious disease 
like COVID-19.

Methods: The outcome was state-level daily COVID-19 cases in 49 native 
United States between April 1, 2020 and December 31, 2021. The exposure 
variable was the moving average of PM2.5 with a lag range of 0–14  days. 
A latest proposed strategy was used to investigate the spatial distribution 
of PM2.5-COVID-19 association in state level. First, generalized additive 
models were independently constructed for each state to obtain the rough 
association estimations, which then were smoothed using a Leroux-prior-
based conditional autoregression. Finally, a modified time-varying approach 
was used to analyze the temporal change of association and explore the 
potential causes spatiotemporal heterogeneity.

Results: In all states, a positive association between PM2.5 and COVID-19 
incidence was observed. Nearly one-third of these states, mainly located in 
the northeastern and middle-northern United States, exhibited statistically 
significant. On average, a 1  μg/m3 increase in PM2.5 concentration led 
to an increase in COVID-19 incidence by 0.92% (95%CI: 0.63–1.23%). A 
U-shaped temporal change of association was examined, with the strongest 
association occurring in the end of 2021 and the weakest association 
occurring in September 1, 2020 and July 1, 2021. Vaccination rate was 
identified as a significant cause for the association heterogeneity, with a 
stronger association occurring at a higher vaccination rate.
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Conclusion: Short-term exposure to PM2.5 and COVID-19 incidence 
presented positive association in the United  States, which exhibited a 
significant spatiotemporal heterogeneity with strong association in the 
eastern and middle regions and with a U-shaped temporal change.

KEYWORDS

spatiotemporal heterogeneity, PM2.5 exposure, vaccination modification, spatial 
dependence, conditional autoregression

1 Introduction

Fine particulate matter (PM2.5) indicates the particulate matter 
whose diameter is smaller than 2.5 μm. PM2.5 is a common air 
pollutant that has been identified as a significant environmental factor 
affecting the respiratory, immune, and circulatory systems (1). The 
main mechanisms include increasing oxidative stress and 
inflammatory responses and causing injury to lung circulation and 
endothelial dysfunction (2, 3). In viral lung and respiratory infections, 
PM2.5 is believed to play a role in various virus life cycle stages, 
including inhibiting mucociliary clearance, altering viral receptors, 
inhibiting antiviral interferon production, and enhancing epithelial 
permeability (4, 5).

The COVID-19 pandemic is caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and has been prevalent 
worldwide for approximately 3 years (6). It is the largest global public 
health crisis faced by mankind since the Second World War (7). Due 
to its high infectiousness and strong ability to evade the immune 
system, COVID-19 has already and is bringing heavy economic and 
health burdens to humanity (8).

Since the outbreak of this pandemic, the concentration of air 
pollutants has changed significantly from before the outbreak, and the 
impact of pollutant exposure on the COVID-19 epidemic is widely 
concerned (9, 10). Many studies have reported that short-term 
exposure to PM2.5 may increase the risk of COVID-19 (11, 12). 
However, considerable heterogeneity between regions was observed 
in these studies. For instance, a study in London, the United Kingdom, 
revealed that a 1 μg/m3 increase in PM2.5 is associated with a 1.1% 
increase in COVID-19 cases (13); a study in California, the 
United States, revealed that a 1 μg/m3 increase in PM2.5 is associated 
with a 0.2% increase in COVID-19 cases (14). Moreover, another 
study conducted in the northwestern and southern regions of the 
United States revealed a positive association between PM2.5 exposure 
and COVID-19 incidence, however, its subgroup analysis exhibited 
significant differences between the regions (15). Sitian Zang et al. also 
identified a strong heterogeneity in the associations between PM2.5 and 
COVID-19 incidence among 35 observational studies (heterogeneity 
I2 = 94.2%; p < 0.05) (16).

The heterogeneity may have been caused by different analysis 
methods (17); however, it is more likely to result from different effect-
modifying factors, including political and social factors, 
meteorological conditions, and population density (18). These factors 
are significantly different between regions and study periods. Owing 
to the existence of substantial heterogeneity, evaluating the overall 
association in a large-scale area would ignore local variations, 

potentially leading to inaccurate association and even inappropriate 
public health decision making in some local regions (19).

The United States is one of the countries suffering most from 
COVID-19 pandemic. As of December 2021 end, a total of more than 
52 million COVID-19 cases had been recorded in the United States, 
of which 824 thousand have died. Because of the environmental and 
political differences, the effect-modifying factors and the epidemic 
prevention and control polices for COVID-19 considerably vary 
across different epidemic periods and states (20). These factors may 
have resulted in a substantial spatiotemporal heterogeneity in the 
association between COVID-19 incidence and PM2.5. Therefore, from 
a public health point, it is greatly important to investigate this 
heterogeneity in the United States. Owing to the abundant medical 
and health resources as well as the accurate case information 
registration and management system, high-quality and easily available 
monitoring COVID-19 data make it available to explore the 
spatiotemporal heterogeneity of PM2.5-COVID-19 association in the 
United States.

The classic method for investigating the heterogeneity of 
associations were the meta-analysis-based two-stage strategy by 
Gasparini et  al.’s work (21–23). In the first stage, time-series 
generalized additive models (GAMs), which share a model structure, 
were independently constructed to estimate a preliminary 
association for each region; then, meta-analysis was used to pool the 
associations by borrowing information and explore the potential 
effect modifiers by including region-level factors. However, this 
strategy does not consider the commonly existed spatial 
autocorrelation, thus obtaining inaccurate spatial distributions of 
association and substantially inflating the false positive error in 
identifying the effect modifiers (24–26). To address this limitation, 
the Leroux conditional autoregressive (LCAR)-based strategy was 
proposed in the recent (27), which cannot only sufficiently utilize the 
spatial autocorrelation to improve the result, but also can explore the 
spatiotemporal heterogeneity of association by combing with the 
time-varying GAM.

In this work, based on the daily numbers of recorded COVID-19 
cases and the daily concentration of PM2.5, we used the advanced 
LCAR-based analytical strategy to elucidate the spatiotemporal 
heterogeneity in the short-term association between PM2.5 exposure 
and COVID-19 incidence, explore its temporal change, and identify 
the potential causes for this heterogeneity. Our research may assist the 
decision-makers to establish cost-effective pollution-related policies 
for a specific location and epidemic stage, as well as, help to understand 
the temporal change in the association between air pollutants like 
PM2.5 and a sudden and severe infectious disease like COVID-19.
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2 Data

The study region includes 49 states in the continental 
United States, where the special district (Columbia) was also deemed 
as a state for writing convenience. All the state names were 
abbreviated as two capital letters from the full names for clarity. 
Supplementary Table S1 and Supplementary Figure S1 gives a detailed 
introduction about the abbreviation and full names and the 
geographic locations of states.

2.1 Data collection and processing

Between April 1, 2020 and December 31, 2021, the daily 
numbers of COVID-19 cases and the vaccination data at the state 
level were gathered from the Centers for Disease Control and 
Prevention (CDC) of United  States (28). The vaccination data 
included two kinds of rates. One is the population percentages of 
receiving at least one dose (PP1V), the other is the percentages of 
population with full vaccination (PPFV). The daily PM2.5 
concentrations with a 0.75° × 0.75° resolution were obtained from 
the fourth-generation global reanalysis of ECMWF regarding 
atmospheric composition (29). Temperature, air pressure, wind 
speed, and other meteorological variables were gathered from 64,346 
environmental monitoring stations using (30).1 The 24th 
United States census, which was conducted in 2021, provided the 
county-level population statistics.2 The Bureau of Labor Statistics3 
provided the economic data.

We applied a kriging interpolation method, incorporating with 
population weighting, to acquire a more accurate daily exposure to 
PM2.5 by considering the population’s uneven spatial distribution. 
First, PM2.5 concentrations and high-resolution meteorological data 
were obtained using the ordinary kriging approach with a 1 km × 1 km 
grid resolution (31). Then, the county-level concentration of PM2.5 was 
obtained by average all the grid value for a specific county. Likewise, 
the daily values of meteorological factors were also computed for each 
state, including wind speed, air pressure, and temperature.

3 Methods

3.1 GAM-LCAR strategy: characterizing the 
spatial distribution In association

In the first stage, as in the classic strategy, for each state, a common 
analytic process was used to obtain a rough estimation for the PM2.5-
COVID-19 association. Specifically, time-series GAMs, which share a 
model structure, were built independently for each state, which can 
be written as:

 
Y Quasi Poisson ut t~ ,- ( )

1 https://doi.org/10.7289/V5D21VHZ

2 https://www.census.gov/

3 https://usafacts.org/topics/economy#what-is-the-current-state-of-the- 

us-economy
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where Quasi-Poisson distribution was used to characterize the 
potential overdispersion. Yt refers to the daily number of COVID-19 
cases at time t for a specific state and E Y ut t( ) º . The term α is the 
intercept and b  measures the intensity of association. Pollutantt refers 
to the exponential moving average (EMA) of PM2.5 where a lag range 
of 0–14 days was selected (32, 33) by minimizing the generalized cross-
validation score (Supplementary Figure S2). Because meteorological 
factors, such as pressure, temperature and wind speed, may confound 
the PM2.5-COVID-19 association (34), in Equation (1) we also adjust 
for such confounding effects by using s Tempt1 ( ), s APt2 ( ) and zWindt.  
Among them, s Tempt1 ( ) and s APt2 ( ) were characterized by natural 
cubic spline functions where the degrees of freedom (df) were set as 
4 and 3, respectively; Windt  is the EMA of wind speed where the lag 
range is set as 0–14 days. The term s Timet3 ( ), a natural cubic spline 
function whose df is 10 per year, was used to characterize the long-
term trend. All the mentioned df values and the employed confounders 
forms were determined by minimizing the Bayesian information 
criterion (BIC). Because COVID-19 presented strong infectivity, 
which may result in a temporal dependence between Yt and Yt-1, 
we used an autoregressive term, Auto termt. , to reclaim the temporal 
independence among errors. In addition, DOWt  and Holidayt  were 
used to adjust for the effects from weekends and holidays, respectively. 
Supplementary Table S2 and Supplementary Figure S3 provided the 
detailed information on parameter selections.

In the second stage, let îb  be the estimated association from the 
first stage in state i, and ˆis  be the corresponding standard error. Then, 
based on îb  and ˆis , we constructed a LCAR model to smoothen the 
parameters for a more accurate spatial distribution of association (35). 
The LCAR model was established as:

 
( )2ˆ ˆ~ , ,i i iNb b s

 b h xi i= + ,

 
x t~ ,MN , W0

1[ ]( )-

 
(2)

 W R I= + -( )r r1 , (3)

where bi  refers to the true association in state i. The term h  reflects 
the average association across the 49 states. xi is the ith element of x  
which reflects the between-state heterogeneity in Equation (2). N(·) is 
the univariate normal distribution and MN(·) is the multivariate 
normal distribution. The intensity of spatial heterogeneity is measured 
by the precision parameter t , a larger value of which indicates a 
smaller heterogeneity. W is the Leroux prior which characterizes the 
spatial dependence (35) whose intensity is measured by r . The 
symmetric matrix R  is constructed according to the spatial adjacent 
relationship among states (35). We used the Integrated Nested Laplace 
Approximations (36, 37) to estimate the parameters. According to the 
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pooled estimation for bi , we obtained the spatial distribution of PM2.5-
COVID-19 association.

3.2 Time-varying GAM-LCAR strategy: 
characterizing the temporal change of 
association and examining the effect 
modifiers

Because various SARS-CoV-2 variants have different infectivity and 
the potential effect-modifying factors, e.g., vaccination rate and 
variations in epidemic prevention policies as well as economic factors, 
vary over time; the associations between PM2.5 exposure and COVID-19 
incidence may exhibit temporal heterogeneity, which has been found in 
the temperature-COVID-19 association (27). Therefore, by combining 
the time-varying GAM with the LCAR model, a modified time-varying 
strategy was further built to explore the temporal change of association 
and identify the potential effect modifiers.

Specifically, in the first stage, time-varying GAMs, which share a 
model structure, were independently built by incorporating a 
nonlinear interaction between PM2.5 exposure and time variable into 
Equation (1). For each state, we construct the time-varying GAM 
as follows:

 

ln

.

u s Temp s AP Wind s Time
Auto term DO

t t t t t

t

( ) = + ( ) + ( ) + + ( )
+ +
a z1 2 3

 WW Holiday
s Time Pollu t

t t

t t

+
+ ( ) * 4 tan ,  

(4)

where s Timet4 ( )  indicates the linear PM2.5-COVID-19 
association at time t, i.e., s Timet t4 ( ) = b  in Equation (4). To ensure 
the temporal change of association to be continuous and flexible, 
we used a natural cubic spline function of time to characterize the 
temporal change, i.e., s Timet4 ( )  is set as a natural cubic spline 
function with df of 3. Then, at each time point t , like in Section 3.1, 
a LCAR model was built independently to pool the association 
parameters from time-varying GAMs for obtaining the time-specific 
PM2.5-COVID-19 associations.

To explore whether vaccination, temperature and economic 
factors significantly modifying the PM2.5-COVID-19 association, 
we furtherly constructed a spatiotemporal LCAR model as follow:

 
( )2ˆ ˆ~ , ,it it itNb b s

 b h q x git it i tx= + + + , (5)
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Where îtb  is the estimated parameters in Equation (4) for state i
. Leroux prior was used to characterize the spatial autocorrelation 
between xis as in Equation (3). Random walk prior was selected to 

characterize the temporal autocorrelation between g ts. The term xit  is 
a vaccination, temperature, or economic-related predictor, and q  
measures the linear intensity of the effect modification. To explore the 
nonlinear effect modification, we also used the natural cubic spline 
function with a df of 3 to substitute the term q xit in Equation (5).

4 Results

4.1 Descriptive analysis

During the period spanning from April 1, 2020 to December 31, 
2021, a total of 52,250,191 COVID-19 cases were officially diagnosed 
across 49 states. The regional distribution of the cumulative 
COVID-19 cases is shown in Figure  1A. The highest cumulative 
instances were found in the top three states: Texas, California, and 
Florida. According to Figure 1B, the average COVID-19 incidence 
was about 16.63%. The COVID-19 incidence varied from 8 to 23% 
in spatial comparisons across the United  States. The majority of 
central and eastern states had high incidences, whereas few 
northeastern states, Washington, and Oregon had low incidences. 
The state-specific average concentrations of PM2.5 ranged from 
8.84 μg/m3 to 21.00 μg/m3, seen in Figure 1C which shows the spatial 
distribution of PM2.5 concentrations.

The average coverage rate as of December 31, 2021, was up to 
72.23% for PP1V and up to 61.70% for PPFV. The whole population’s 
growing vaccination coverage rate over time is depicted in Figure 1D, 
and the spatial distributions in PP1V and PPFV at the end of 2021 are 
shown in Figures 1E,F. Given the significant variations in vaccination 
rates among states, exploring the modification role of vaccination on 
the PM2.5-COVID-19 association is valuable.

4.2 Spatially smoothed PM2.5-COVID-19 
association

Figure  2 shows the spatially smoothed association between 
short-term exposure to PM2.5 and COVID-19 incidence. In general, 
the PM2.5-COVID-19 association in all states were positive, with risk 
ratio (RRs) over than 1. The COVID-19 incidence increased by 
0.92% (95%CI: 0.63–1.23%) on average with a 1 μg/m3 rise in PM2.5 
concentration. Moreover, there was significant spatial heterogeneity 
in the association intensity. The increasing percentage of confirmed 
COVID-19 cases across 49 states varied from 0.008 to 1.971% when 
there was a 1 μg/m3 increase in PM2.5 concentration. While all the 
western states showed weak associations and lost statistical 
significance, the majority of middle-northern and northeastern 
states presented significant strong associations. Specifically, mostly 
states with strong associations exhibited a clustering in spatial 
location, i.e., Vermont, Connecticut, Massachusetts, Rhode Island, 
New  York, and New Jersey aggregated in the northeast; and 
Minnesota, Nebraska, Wisconsin, and Iowa aggregated in the 
middle-northern regions.

Additionally, although the PM2.5-COVID-19 associations were 
weak and not statistically significant in all the western states, this 
does not imply the disappearance of this association. The deficiency 
of statistical power in these local states might be  the cause of 
insignificance. Furtherly, we  performed a meta-analysis to 
synthesize the insignificant association in the western states, and 
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discovered that the statistical significance of association remained, 
with the RR value being 1.004 (95%CI: 1.001–1.006, p < 0.001), 
seen in Figure 3. This result implies that the adverse short-term 
impact of PM2.5 on COVID-19 risk cannot be  ignored in the 
western United States.

To evaluate the rationale of taking spatial dependence into 
account when utilizing the LCAR-based analytical strategy, we used 
the traditional two-stage strategies based on meta-analysis and 
stratified-analysis as reference. The former strategy holds an 
assumption that the associations in all states share a similarity 
regardless of their locations; The latter assumes no between-state 
similarity in the associations. We employed the commonly used model 
selection criteria, such as the deviance information criterion (DIC) 
(38) and logarithmic score (LS) (39) to assess model performance. 
A lower value for each index indicates improved model performance. 
Results showed that the LCAR-based strategy performed the best, 

with DIC values of −290.06, −295.86, and − 258.44, and LS values of 
−142.72, −147.00, −91.02 for meta-analysis, LCAR, and the stratified 
analysis, respectively.

4.3 Time-varying PM2.5-COVID-19 
association and the effect modifier

As illustrated in Figure 4, we obtained the average associations 
across all states at each time point by utilizing the time-varying 
strategy. The association presented a U-shaped temporal change, with 
a reduction during the early pandemic stage of COVID-19 (April 
2020–February 2021) and a progressive increase from February 2021 
to December 2021. The largest values of RR in the early and latter 
epidemic stage were, respectively, up to 1.022 (95%CI: 1.008–1.037) 
and 1.036 (95%CI, 1.026–1.048). The association had a lowest RR in 

FIGURE 1

Descriptive analysis for COVID-19 cases, PM2.5 exposure and vaccination rates. (A,B) Exhibits the spatial distributions of the cumulative COVID-19 cases 
and incidence from April 1, 2020 to December 31, 2021, respectively. (C) Exhibits spatial distribution of average daily PM2.5 concentrations across the 
studied period, where the asterisks mark the three states with the highest concentrations. (D) Exhibits the temporal trends of vaccination rates. (E,F) 
Exhibit the spatial distributions of the cumulative vaccination rates for one or full dose, respectively.
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February 2021 and was not statistically significant between September 
2020 and July 2021.

The modification impact of vaccination and temperature on 
the PM2.5-COVID-19 association was explored by a spatiotemporal 
LCAR model. Both PP1V and PPFV presented significant 
modification effect. As shown in Table 1, the RR values of PM2.5 
short-term exposure increased by 0.18 and 0.22%, respectively, 
with a 1% rise in vaccination rate, however, the temperature had 
no discernible modifying effect on this association. Furthermore, 
the nonlinear modifying effects of vaccinations and temperature 
on this association were also examined. Results showed that PP1V 
and PPFV exhibited a progressive rise within the vaccination rate 
of 0 and 50% in their modification effects on the PM2.5-COVID-19 
association; however, both exhibited a faster increasing speed 
when vaccination rate was above 50%. Temperature did not exhibit 

a significant modification effect on the association, as shown in 
Figures 5A,B.

To explore whether economic factors could significantly modify 
the PM2.5-COVID-19 association, we also further utilized the quarterly 
per capita GDP and monthly unemployment rate to investigate their 
modification effect. The results revealed that per capita GDP did not 
show a significant modification effect, which means that the level of 
per capita GDP will not have a significant effect on the PM2.5-
COVID-19 association (RR = 1.00008, 95%CI: 0.99980–1.00036). On 
the other hand, the unemployment rate had a significant modified 
effect on the association, with a higher unemployment rate 
strengthening the modified effect on the association (RR = 0.99816, 
95%CI: 0.99700–0.99930). Additionally, we also plotted the spatial 
distribution and temporal trends of economic factors, and the results 
are exhibited in Supplementary Figures S4–S9.

FIGURE 2

Spatial distribution of the association between PM2.5 exposure and COVID-19 risk. The asterisk (*) indicates that the relative risk (RR) is statistically 
significant (p  <  0.05).

FIGURE 3

Meta-analyses of the effect of short-term PM2.5 exposure on the risk of COVID-19 incidence in the western states.
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4.4 Sensitivity analysis

To explore whether the nonlinear association between PM2.5 
exposure and COVID-19 incidence is consistent with the performance 
of linear association, the natural cubic spline function with 3 dfs was 
employed to reflect the nonlinear PM2.5-COVID-19 association. The 
sensitivity results, seen in Supplementary Figure S10, showed that 
the curve of association was approximately linear, indicating the 
reasonableness of the linear assumption in the main analysis.

5 Discussion

As far as we  are aware, it is the first time to characterize the 
spatiotemporal heterogeneity in the association between short-term 
PM2.5 exposure and COVID-19 incidence. All United States exhibited 
positive associations, but which present substantially spatial 
heterogeneity, with the western regions showing weak associations 
and the middle-northern and northeastern regions showing strong 
associations. Moreover, the association presented a U-shaped change 
in the time dimension. The vaccination and unemployment rates were 
identified as significant effect-modifying factors for the association. 
Our findings play important roles on understanding the temporal 
trend of association between PM2.5 exposure and a sudden and server 
infectious disease like COVID-19, as well as differentiating the high-
vulnerability regions and periods where and when PM2.5 exposure 
exacerbates COVID-19 infection, was made easier by. In addition, the 

advanced strategy also offered a cutting-edge method for exploring 
the spatiotemporal heterogeneity in the association between 
environmental factors and human health (40).

We observed positive PM2.5-COVID-19 associations in all the 
states, with an average RR of 1.009 (95%CI: 1.006–1.0123). The 
strength of association is in line with earlier American research, 
providing further evidence that the public is more susceptible to the 
SARS-CoV-2 infection when exposed to short-term PM2.5 exposure 
(41, 42). Regarding the spatial distribution, a considerable strong 
association was seen in the majority of states located in the middle-
northern and northeastern regions. Such geographical aggregation 
indicates that type-I error from multiple tests and random spatial 
permutations are less likely to be the cause of the strong association. 
In light of this, there might be a particular epidemiological mechanism 
that strengthens the association in New  York, Connecticut, 
Massachusetts, Iowa, and Wisconsin, suggesting that these states 
deserve a greater need for improving air pollution control and 
increasing government awareness of air pollutants.

Another noteworthy finding is the temporal change of association 
during the COVID-19 pandemic, which can be divided into three 
phases: early stage where the intensity of association decreases but is 
still significant, middle stage where the association remains stable but 
lacks significance, and the latter stage where the intensity of association 
increases. The underlying epidemiological cause of the decline and 
insignificant association might be attributed to public panic during 
the early pandemic stage of COVID-19, which considerably limited 
the population crowd and prompted the wearing of masks. Those 

FIGURE 4

Temporal trend in the association between PM2.5 exposure and COVID-19 risk.

TABLE 1 Linear modification effect of vaccination and temperature on the association between PM2.5 exposure and COVID-19 risk.

Variables Relative risk

Mean1 SD Median 95%CI lower 95%CI higher

PP1V 1.0018 1.000097 1.0018 1.0016 1.0020

PPFV 1.0022 1.000098 1.0022 1.0020 1.0024

Temperature 1.0001 1.000068 1.0001 0.9999 1.0002

1This value is 
ˆ

eq  where q̂  is the estimated parameter in model (5).
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behaviors could reducing the likelihood of being exposed to pollutants 
and the risk of contracting a virus (43). The introduction and 
widespread use of vaccinations, however, resulted in a decline in 
public awareness of self-defense and a disregard for social distancing 
and mask protection, which raised the probability of exposure to 
pollutants, thus, intensifying the association. Because of the 
pandemic’s enhanced vulnerability, the intensity of association was 
much higher at the post-pandemic period than pre-epidemic period.

The findings revealed that the uptrend section of association is 
precisely congruent with the introduction of vaccinations, which 
conforms to the result that vaccination rate was identified as a 
significant effect modifier in the spatiotemporal LCAR model. 
Therefore, the findings in our study have significant implications 
for public health, as they show that the degree to which 
contaminants affect COVID-19 is variable and closely associated to 
societal protection awareness and behavioral patterns of the public 
(44). To reduce the impact of environmental pollutants on the 
large-scale emerging infectious diseases such as COVID-19, the 
government should spend more efforts to strengthen public 
awareness of protection and control air pollution in the post-
epidemic stages (45, 46).

Some studies indicate that economic factors also contribute 
significantly to the spread of the COVID-19 virus (47, 48). The 
expansion of economic and commercial trade activities facilitates 
more frequent interaction among individuals, leading to a higher risk 
of COVID-19 transmission (49). Furthermore, unemployment has 
been linked to heightened anxiety and life stress, prompting 
individuals to pursue new jobs prospects or seek social assistance, 
thereby increasing their vulnerability to COVID-19 and the potential 
for severe illness. The results of modified effect for per capita GDP and 
unemployment rate on the association between PM2.5 exposure and 
COVID-19 incidence showed that the level of per capita GDP does not 
significantly affect the strength of the PM2.5-COVID-19 association, 
but the increasing rate of unemployment could strengthening the 
modified effect on the association. However, this lack of significance 
may be attributed to the limited accuracy of our per capita GDP data, 
which is only available at a quarterly level. And significant 
modification effect of unemployment rate suggests that unemployment 
does not inhibit social interactions and reduce exposure to PM2.5. 
Instead, it leads to increased family burden and mental pressure, and 
more non-employment outings amplify the influence of PM2.5 

exposure on COVID-19 infection (50). Through these findings, 
we also provided evidence that economic factors are not negligible 
influencing factors for the occurrence of COVID-19.

In conclusion, the spatiotemporal heterogeneity in the PM2.5-
COVID-19 association offered important implications to the 
government in formulating a cost-effective policy for air pollution and 
infectious diseases control by using a coordinated interstate and 
interperiod manner. For instance, (i) strengthening the infectious 
disease surveillance and meteorological monitoring in high-
vulnerability areas to facilitate the real-time risk assessment and early 
warnings; (ii) giving priority to personal protective equipment and 
medical resources for patients suffering from infectious diseases in 
high-vulnerability areas, such as Massachusetts, Iowa, New York and 
Wisconsin; (iii) increasing public awareness of preventive measures in 
high-vulnerability areas and periods; and (iv) investigating the 
influence of vaccination and population behavioral patterns on the 
risk of COVID-19, and identifying plausible epidemiological reasons 
to reduce the injury and damage that air pollution causes to health.

Certain limitations must be recognized because of shortcomings 
in the ecological design (11, 51). First, there might be measurement 
errors in the PM2.5 exposures because the state-level air pollution 
concentrations may not accurately represent the individual exposures 
that people experience in the actual world. Second, because nucleic 
acid detection was lacking in the early stage of the epidemic, there was 
an incorrect diagnosis of COVID-19 outcome. Third, during the 
COVID-19 pandemic, a series of SARS-CoV-2 variations were 
discovered, and the peak of the epidemic brought by each variant 
varies between different states; therefore, these variants may affect the 
exposure-response association.

Consequently, more validation studies using individual data or 
quasi-experiments, are warranted. Nevertheless, these investigations 
cannot be carried out in a large-scale setting due to their high cost. 
However, our study might offer some guidance on where and how to 
carry out more cost-effective studies. Research carried out in high-
sensitivity areas such as New York, Massachusetts and Connecticut, 
for instance, is helpful to better understand the detrimental effects of 
PM2.5 exposure on the COVID-19 infection. A comparative analysis 
carried out concurrently in high- and low-sensitivity areas, such as 
California and New York, is beneficial in examining the potential 
causes of heterogeneous associations. Furthermore, research carried 
out independently at the early stages of vaccine emergence and later 

FIGURE 5

The nonlinear modification effects of vaccination and temperature on the association between PM2.5 exposure and COVID-19 risk. (A) Exhibits the 
modification effect of vaccination rates and (B) exhibits the modification effect of daily temperature.
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during vaccination can aid in investigating the reasons behind 
temporal heterogeneity.

6 Conclusion

Our study is the first one focusing on the spatiotemporal 
heterogeneity of association between short-term exposure to PM2.5 
and COVID-19 occurrence. All the states in the United  States 
exhibited positive associations. On average, a 1 μg/m3 increase in PM2.5 
concentration led to an increase in COVID-19 incidence by 0.92% 
(95%CI: 0.63–1.23%). In the spatial dimension, a significant spatial 
heterogeneity was found with stronger association in the northeastern 
and middle-northern states and weak association in the western states. 
In the time dimension, a U-shaped temporal change of association 
was examined, with the strongest association occurring in the end of 
2021 and the weakest association occurring between September 1, 
2020 and July 1, 2021. Vaccination rate was identified as a significant 
cause for the association heterogeneity, with a stronger association 
occurring at a higher vaccination rate. Overall, our findings indicate 
that PM2.5 pollutants might deserve greater attention in the eastern 
and middle areas of the United States and in the post-pandemic era.
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