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Since the start of the twenty-first century, China’s economy has grown at a high

or moderate rate, and air pollution has become increasingly severe. The study

was conducted using data from remote sensing observations between 1998 and

2019, employing the standard deviation ellipse model and spatial autocorrelation

analysis, to explore the spatiotemporal distribution characteristics of PM2.5 in

Henan Province. Additionally, a multiscale geographically weighted regression

model (MGWR) was applied to explore the impact of 12 driving factors (e.g., mean

surface temperature and CO2 emissions) on PM2.5 concentration. The research

revealed that (1) Over a period of 22 years, the yearlymean PM2.5 concentrations in

Henan Province demonstrated a trend resembling the shape of the letter “M”, and

the general trend observed in Henan Province demonstrated that the spatial center

of gravity of PM2.5 concentrations shifted toward the north. (2) Distinct spatial

clustering patterns of PM2.5 were observed in Henan Province, with the northern

region showing a primary concentration of spatial hot spots, while thewestern and

southern areas were predominantly characterized as cold spots. (3) MGWR ismore

e�ective than GWR in unveiling the spatial heterogeneity of influencing factors at

various scales, thereby making it a more appropriate approach for investigating

the drivingmechanisms behind PM2.5 concentration. (4) The results acquired from

the MGWR model indicate that there are varying degrees of spatial heterogeneity

in the e�ects of various factors on PM2.5 concentration. To summarize the above

conclusions, themanagement of the atmospheric environment in Henan Province

still has a long way to go, and the formulation of relevant policies should be

adapted to local conditions, taking into account the spatial scale e�ect of the

impact of di�erent influencing factors on PM2.5.
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1 Introduction

China’s economy has expanded significantly since the reform and opening up, but the

quality of the environment has deteriorated (1), and atmospheric environmental pollution

has become the focus of society and one of the most urgent problems to be solved by

governments at all levels (2). PM2.5 is a major atmospheric pollutant (3) and is also known

as fine particulate matter and fine particles; PM2.5 refers to atmospheric airborne particles

with a diameter of 2.5 microns or smaller. Studies have shown that it seriously harms the

atmospheric environment and human health (4–6).
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Presently, more academics domestically and internationally

have conducted investigations of PM2.5 geographical and temporal

distribution patterns and related factors at various spatial scales,

and a multiscale research system has been formed for national

(7–9), river basin (10–12), city cluster (13–15), provincial (16–

21), and prefecture-level city scales (22–24). Studies based on

the provincial scale have focused mostly on Beijing-Tianjin-Hebei

and the relatively economically developed regions in the south.

However, there are relatively few studies on the spatiotemporal

distribution characteristics and driving mechanisms of PM2.5 in

various provinces in Central China (25–27). On April 15, 2006, the

“Several Opinions of the CPC Central Committee and The State

Council on Promoting the Rise of the Central Region” was officially

promulgated. Central China is an important bearing area for

China’s “Rise of Central China” strategy and an important area for

the implementation of coordinated regional development and new

industrialization strategy. The sustained economic development

of China as a whole is strategically dependent on the region’s

economic success. Central China’s Henan Province is a significant

economic, populated, and recently industrialized region, and the

2019 China Ecological Environment Status Bulletin published

by the Ministry of Ecology and Environment showed that from

January to December 2019, six of the twenty cities with relatively

poor air quality among 168 key cities in China, including Anyang

and Jiaozuo, were located in Henan Province, and the majority

of Henan Province was located in the high-concentration area of

PM2.5 pollution, which is the Yellow Huaihai Plain (28). Studying

the spatiotemporal pattern and driving mechanism of PM2.5 in

Henan Province is of great significance for understanding the

spatiotemporal distribution properties of PM2.5 in Henan Province,

promoting sustainable development, and safeguarding the health of

the population.

The goal of pertinent study should be to investigate the

spatiotemporal distribution properties of PM2.5 and the underlying

causes of its existence, according to present research findings.

From the studies of the spatiotemporal distribution characteristics

of PM2.5, scholars have mainly explored PM2.5 spatiotemporal

variation patterns and spatial aggregation characteristics through

spatial center of gravity shift evaluation, cold and hot spot analysis,

and spatial autocorrelation analysis (29–33). Among them, the

spatial center of gravity shift can be realized by the standard

deviation ellipsoid (SDE) model (34, 35), which can not only

calculate the center of gravity of the PM2.5 concentration spatial

distribution but also effectively reflect the spatial aggregation

trend of PM2.5. Regarding the investigation of PM2.5 driving

mechanisms, the driving mechanism research methods that have

been applied can be divided into traditional research methods such

as Pearson correlation coefficient analysis (36), rank correlation

analysis (37), gray correlation analysis (38), and OLS regression

models, as well as methods that introduce a spatial perspective

such as the geographical detector method (39, 40), spatial lag

model (41), spatial error model (42), spatial Durbin model (43),

and geographically weighted regression model (GWR) (44). It has

been shown that PM2.5 concentration, as a kind of data with

spatial properties, has a certain degree of spatial heterogeneity

for each influencing factor (45). It has been found that the

interaction between indicators with spatial attributes, such as

PM2.5 concentration, and their associated influencing factors tends

to have multiscale effects (46, 47). To a certain degree, GWR,

functioning as a local regression model, is capable of depicting

the spatial heterogeneity of driving factors affecting PM2.5. The

MGWR method proposed by Fotheringham in 2017 provides

a new way (48) to describe the spatial heterogeneity of the

influence of independent variable. In addition, MGWR introduces

the idea of a multiscale perspective, which is a very important

issue in geography (49). Therefore, comparing the GWR with the

MGWR and selecting the better-fittingmodel to analyze the driving

mechanism is amore reliable researchmethod to obtain an accurate

PM2.5 concentration driving model.

In summary, this paper intends to take Henan Province as the

study area, based on the PM2.5 remote sensing data from 1998 to

2019, which have been corrected and fused, as well as high spatial

resolution factor raster data. The study analyzed the spatiotemporal

distribution characteristics of PM2.5 using the standard deviation

ellipse model and explored the spatial aggregation characteristics

of PM2.5 concentration in Henan Province through methods

such as spatial autocorrelation analysis and hot and cold spot

analysis. Furthermore, this paper employs the MGWR model in

combination to disclose how driving factors impact the distribution

pattern and spatial heterogeneity of PM2.5, providing a reference for

analyzing the pollution situation of PM2.5 and creating regulations

for the atmospheric environment’s sustainable development.

2 Data and methods

2.1 Study area overview

Henan Province is located in the central hinterland of China

(Figure 1), with complex terrain and rich resources. Henan

Province is of great importance as a key grain production

region, an energy and raw material base, and a comprehensive

transportation hub in China. With abundant human resources

and scientific and educational resources, the province is an

important agricultural province and a populous province in China.

In addition, with the proposal of the “rise of Central China”

strategy, the industrialization development of Henan Province also

ushered in the spring, and it has now become a large emerging

industrial province, making progress in economic development.

Henan Province also has serious air quality problems, according

to the “Annual Work Program for Air Pollution Prevention and

Control in Henan Province (2019-2020)” released in 2019; it

was stated that the yearly mean PM2.5 concentration in Henan

Province was 53 µg/m3, up 3.9% year-on-year, the ratio of good

days was 55.8%, down 2.5% year-on-year, and the management of

atmospheric environment needs to be improved.

2.2 Study data

2.2.1 PM2.5 data
The PM2.5 remote sensing data utilized in this study were

derived from the Atmospheric Composition Analysis Group at

Washington University (St. Louis) (https://sites.wustl.edu/acag/

datasets/surface-pm2-5). The data span from 1998 to 2019 with

a spatial resolution of ∼1 × 1 km, and the product number for

the Chinese region is V4.CH.03. With its great spatial resolution,

the data product can depict the spatial distribution pattern of

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1295468
https://sites.wustl.edu/acag/datasets/surface-pm2-5
https://sites.wustl.edu/acag/datasets/surface-pm2-5
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2023.1295468

FIGURE 1

The geographical position and administrative divisions of Henan Province.

PM2.5; additionally, the product has been widely used in global and

regional PM2.5-related studies (50–52).

2.2.2 Other data
To unpack the driving mechanism of PM2.5 spatial

concentration, this study introduced two types of influence

factor data: natural type data and socioeconomic type data. The

natural-type data included surface temperature, relative humidity,

wind speed, precipitation, vegetation index, and elevation.

The socioeconomic data included GDP, nighttime lights, CO2

emissions, electricity consumption, population density, and arable

land area share. Electricity consumption data were obtained from

Chen et al. (53) and published in Scientific Data. Yang et al. (54)

supplied a land cover dataset covering the period from 1990

to 2019 in China, with a spatial resolution of 30m. Using this

dataset, the data concerning the proportion of arable land area

was computed. The specific data description and data sources are

shown in Table 1.

After random sampling and eliminating invalid sampling

data in Henan Province, 2,956 sample units of natural and

socioeconomic data were obtained. Considering the possibility of

multicollinearity in the variables selected in this study, the variance

inflation factor (VIF) was used to test all the abovementioned

explanatory variables to avoid bias in the estimation results caused

by the interaction between indicators. It is generally assumed

that if the VIF is >10, the variable is highly collinear. The

inverse of the VIF is the tolerance, and the closer it is to 0, the

stronger the multicollinearity is. The VIF is computed using the

following formula.

VIF =
1

1− R2i
(1)

The value of Ri represents the complex correlation coefficient

between the ith independent variable (Xi) and the other

independent variables employed in the regression analysis. Table 2

presents the results of the test. The VIF values of each indicator

are <10, declaring that the selected indicators do not have

multicollinearity problems.
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TABLE 1 Factors and descriptions of PM2.5 concentration impact.

Type Factor Explanation

Natural factors X1: surface

temperature

Average annual surface temperature in

Henan Province (◦C) [Resource and

Environmental Science and Data Center,

Chinese Academy of Sciences (https://

www.resdc.cn/DOI/DOI.aspx?DOIID=98)]

X2: relative

humidity

Annual average relative humidity in Henan

Province (kg/kg) [National Earth System

Science Data Center Data Details (http://

www.geodata.cn/data/datadetails.html?

dataguid=126928059243667&docId=

11969)]

X3: wind

speed

Annual average wind speed in Henan

Province (m/s) [National Earth System

Science Data Center Data Details (http://

www.geodata.cn/data/datadetails.html?

dataguid=3796451&docid=5735)]

X4:

precipitation

Annual precipitation in Henan Province

(0.1mm) [National Earth System Science

Data Center Data Details (http://www.

geodata.cn/data/datadetails.html?

dataguid=192891852410344&docid=4)]

X5:

vegetation

index

Normalized vegetation index in Henan

Province (https://modis.gsfc.nasa.gov/data/

dataprod/mod13.php)

X6: elevation Elevation of Henan Province (m) [MODIS

Web (https://modis.gsfc.nasa.gov/)]

Social factors X7: GDP GDP of Henan Province (million

yuan/square kilometer) [Resource and

Environmental Science and Data Center

(https://www.resdc.cn/DOI/DOI.aspx?

DOIID=33)]

X8: nighttime

light

Henan Province night light brightness

(LUX) [National Qinghai-Tibet Plateau

Scientific Data Center (https://data.tpdc.ac.

cn/zh-hans/data/e755f1ba-9cd1-4e43-

98ca-cd081b5a0b3e)]

X9: CO2

emissions

Annual CO2 emissions in Henan Province

(tons/square kilometer) [Center for Global

Environmental Research, National Institute

for Environmental Studies, Japan (https://

cger.nies.go.jp/en/)]

X10:

electricity

consumption

Annual electricity consumption in Henan

Province (kWh) (https://www.nature.com/

articles/s41597-022-01322-5)

X11:

population

density

Population Density in Henan Province

(persons/square kilometer) (ORNL

LandScan Viewer—Oak Ridge National

Laboratory) https://landscan.ornl.gov/

X12: arable

land area

share

Percentage of arable land in Henan

Province by county (%) [ESSD—The 30m

annual land cover dataset and its dynamics

in China from 1990 to 2019 (https://essd.

copernicus.org/articles/13/3907/2021/)]

2.3 Research methodology

2.3.1 Standard deviation ellipse analysis
SDE is an algorithm that visually evaluates the orientation

and distribution characteristics of a series of discrete points. In

this paper, the standard deviation ellipse is used to reflect the

spatiotemporal evolution pattern of PM2.5 in the past 22 years,

mainly using the parameters of center of gravity, area, long and

short axes, and azimuth Angle of the standard deviation ellipse. The

ellipse center
(
X̄w, Ȳw

)
is calculated by the following formulas:

X̄w =

n∑
i=1

wixi

n∑
i=1

wi

(2)

Ȳw =

n∑
i=1

wiyi

n∑
i=1

wi

(3)

where wi is the weight of object i and
(
xi, yi

)
is the spatial

coordinate location of study object i.
The azimuth angle, which is the angle of clockwise rotation

from due north to the long axis direction, reflects the primary
trend direction of the PM2.5 data distribution. The change in
azimuth can be a reflection of the primary trend direction of the
data distribution for PM2.5 concentrations. The azimuth angle is
calculated by the following formulas:

tan θ

=

(
n∑

i=1
w2
i x̃

2
i −

n∑
i=1

w2
i ỹ

2
i

)
+

√√√√
(

n∑
i=1

w2
i x̃

2
i −

n∑
i=1

w2
i ỹ

2
i

)
+ 4

n∑
i=1

w2
i x̃

2
i ỹ

2
i

2
n∑

i=1
w2
i x̃ĩyi

(4)

where
(
x̃i, ỹi

)
represents the deviation of the spatial coordinates

of the PM2.5 concentration in the study area to the center point(
X̄w, Ȳw

)
.

The ellipse’s long half-axis denotes the distribution’s direction,

while its short half-axis denotes its range for PM2.5 data. The

data’s centripetal force is more visible when the short half-axis is

shorter; when it is longer, the PM2.5 data are more distributed. As

the distance between the long and short half-axes increases, the

directionality of the PM2.5 data becomes increasingly obvious.

The formulas for calculating the long and short semiaxes are

as follows:

σx =

√√√√√√√√

n∑
i=1

(wĩxi cos θ − wĩyi sin θ)2

n∑
i=1

w2
i

(5)

σy =

√√√√√√√√

n∑
i=1

(wĩxi sin θ − wĩyi cos θ)
2

n∑
i=1

w2
i

(6)

where the axes’ relative standard deviations along x and y are

represented by σx and σy, respectively.

2.3.2 Spatial autocorrelation analysis
Spatial autocorrelation analysis is a potential interdependence

in geography that can be used to describe the interdependence

between two points that are geographically close to each

other and the interdependence between temporal variables at
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TABLE 2 Multicollinearity inspection of influencing factors.

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

VIF 2.683 3.850 2.742 3.080 2.210 6.136 1.719 3.003 1.017 2.664 1.214 2.667

Tolerance 0.373 0.260 0.365 0.325 0.453 0.163 0.582 0.333 0.983 0.375 0.823 0.374

different locations. Atmospheric activities have a strong spatial

continuity, and thus, the PM2.5 concentration values are closer

when they are spatial close to each other. Statistics for spatial

autocorrelation are frequently used to examine the spatial

clustering and cyclical patterns of geographic elements and

can be used to depict the interdependence between geographic

observation data.

I =

n∑
i=1

n∑
j=1

Wij

(
Xi − X

) (
Xj − X

)

(
1
n

n∑
i=1

Xi − X

)2 n∑
i=1

n∑
j=1

Wij

(7)

where I denotes the global Moran index, n is the number

of observation cells, Xi and Xj are the PM2.5 concentrations of

cells i and j, Wij denotes the spatial weight between points i and

j, a Wij equal to 1 means they are adjacent, a Wij equal to 0

means they are not adjacent, and X̄ is the sample mean. The

Moran index is between [−1, 1], When I > 0, it signifies positive

spatial autocorrelation, which means that the observed attributes

are spatially clustered. On the other hand, when I < 0, it indicates

negative spatial autocorrelation, i.e., the observed attributes are

discrete in space.

2.3.3 Hot spot analysis with rendering (Getis-Ord
G∗

i
)
The globalMoran index reflects only the overall autocorrelation

of PM2.5. In this study, the hot spot analysis method was used to

analyze the local autocorrelation of PM2.5. The hot spot analysis

method identifies spatial clusters of statistically significant low

and high values, i.e., cold and hot spots, by all values in the

local area. The Getis-Ord G∗
i local analysis is calculated by the

following formulas:

G∗
i =

n∑
j=1

WijXj − X
n∑
j=1

Wij

S

√√√√

n

n∑
j=1

W2
ij−

(
n∑
j=1

Wij

)2



n−1

(8)

X =

n∑
j=1

Xj

n
(9)

S =

√√√√√
n∑
j=1

X2
j

n
− X

2
(10)

where n is the number of spatial data cells; Xj is the attribute

value of data cell j; which indicates the spatial adjacency of cell

i and cell j; S is the average standard deviation of PM2.5 for

the whole research region; A high value of G∗
i indicates dense

clustering of hot spots, and vice versa indicates dense clustering of

cold spots.

2.3.4 Multiscale geographically weighted
regression

MGWR is an extension and improvement of GWR (48).

Before introducing MGWR, the classical OLS and traditional GWR

models were first introduced in the context of PM2.5 research.

The classical OLS model is a global model widely used for

relationship analysis with the following equation:

Yi = β0 +

n∑

j=1

βjXij + εi (11)

where i denotes a cell, Yi denotes the yearly mean PM2.5 mass

concentration of cell i, Xij is the jth explanatory variable of cell

i, β is an unknown parameter to be estimated for the association

between PM2.5 concentration data and covariates, and εi is a

random error component.

The GWR model can resolve the spatial autocorrelation and

spatial non-smoothness problems that cannot be solved by the OLS

model. Its basic formula is as follows:

Yi = β0 (ui, vi) +
n∑

j=1

βj (ui, vi)Xij + εi (12)

where β0 (ui, vi) for the cell i constant term, βj (ui, vi) for

the regression coefficient of the independent variable at the data

sampling point.

Based on the GWR model, MGWR loosens the assumption

of “same spatial scale” and can obtain the optimal bandwidth of

different variables, thus reducing the bias of estimates. The formula

is as follows:

Yi = βbw0 (ui, vi) +
n∑

j=1

βbwj (ui, vi)Xij + εi (13)

Themain difference between Equations (13) and (12) is that bwj

represents the bandwidth used for the regression coefficients of the

jth variable, and βbwj (ui, vi) is the regression coefficient of the jth

variable at cell i. The MGWR model was calibrated by the reverse

fitting algorithm proposed by Fotheringham et al. (48, 55).

The construction of the MGWR model in this paper was based

on the development of MGWR2.2 software by the Spatial Analysis
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Research Center (SPARC) at Arizona State University (https://

sgsup.asu.edu/SPARC).

The spatiotemporal distribution of PM2.5 is influenced by both

natural geographical factors and social and economic constraints.

Therefore, this paper comprehensively considers the scientificity

and accessibility of indicators and selects 12 factors from both social

and natural aspects for analysis.

3 Results and analysis

3.1 Temporal variation pattern of PM2.5

concentration

Based on the remote sensing retrieval data of PM2.5, the average

annual PM2.5 concentration at provincial and municipal levels

during 1998–2019 was calculated., and according to the line graph

drawn (Figure 2), it was observed that from 1998 to 2019, the yearly

mean PM2.5 concentrations in Henan Province and municipalities

in the province showed an “M”-shaped trend, with peaks in 2007

and 2013 at 73.35 and 73.85 µg/m3, respectively, which were

both higher than the Ambient Air Quality Standard (GB3095-

2012) of the corresponding secondary standard limit value of 35

µg/m3. From 1998 to 2007, the PM2.5 concentrations showed an

overall upward trend. After a brief downturn in the early 1990s,

the industry in Henan Province experienced a phase of rapid

growth from 1998 onwards, which induced a yearly increase in

PM2.5 concentrations. After a brief decline between 2007 and

2013, the PM2.5 quality concentrations were brought under control

in approximately 2008, mainly as a result of strict emission

reduction measures for the Beijing Olympics. The overall decrease

in PM2.5 concentration from 2013 to 2019 reflects the successful

implementation of The State Council’s 2013 Action Plan for the

Prevention and Control of Air Pollution. It is worth stating that

the overall annual average PM2.5 concentration in Henan Province

has been decreasing each year since 2015, which shows that the

“Notice on Strengthening Straw Burning Ban and Comprehensive

Utilization” promulgated by the General Office of Henan Provincial

People’s Government in 2015 has achieved certain results in straw

burning ban and comprehensive utilization.

At the city scale, Jiaozuo city and Xinxiang city had the

highest annual average PM2.5 concentration among the 18 cities,

Which was connected to the energy and industrial structures

in the area. Heavy industry and the energy sector, which have

a bigger environmental impact, dominate the local industrial

structure. Additionally, there are a lot of coal deposits in the

area. The electricity demand mainly relies on thermal power

generation, which also aggravates the level of PM2.5 pollution.

The low yearly mean PM2.5 concentrations in Luoyang and

Jiyuan are because Luoyang is situated in Henan Province’s

western region and has a relatively dry and cold climate,

which does not encourage the buildup of PM2.5 contaminants.

This result also shows that the “Regulations on the Ban of

Fireworks in Luoyang City” promulgated by the Ecological

Environment Bureau of Luoyang City in 2005 has had some

beneficial environmental effects. The industrial structure of Jiyuan

city is dominated by light industry, which has only a minor

environmental impact.

In order to gain insights into the temporal variation of PM2.5

concentration, using the yearly mean limits of PM2.5 concentration

as outlined in the Ambient Air Quality Standard (GB3095-2012)

by the Ministry of Environmental Protection of China in 2012,

the study divides the yearly mean PM2.5 concentration into four

intervals. Subsequently, the distribution of districts and counties

within each interval is carefully analyzed during the study period,

with a visual representation provided in Figure 3. The results show

that: (1) There were few counties and districts in Henan Province

with yearly average PM2.5 concentration levels below 35 g/m3.

This indicates that there is no large-scale occurrence of PM2.5

low-value areas in Henan Province, and the overall air quality is

worse. (2) From 1998 to 2019, the number of districts and counties

with an yearly mean PM2.5 concentration values >75 µg/m3 first

gradually increased with the development of industrialization in

Henan Province, and then decreased to 0 with the government’s

gradual attention to PM2.5 pollution, which showed that PM2.5

pollution management in Henan Province had also achieved some

results in recent years. (3) There were more districts and counties

with yearly mean PM2.5 concentrations between 50 and 75 µg/m3,

indicating that more districts and counties than necessary exceeded

the national secondary standard and that there was still much work

to be done in Henan Province to manage PM2.5 pollution.

3.2 Spatial variation trend analysis of PM2.5

concentration

In order to deeply explore the spatiotemporal pattern of PM2.5

concentration, this paper used the standard deviation ellipse to

quantitatively explain the spatiotemporal evolution characteristics

of the average annual PM2.5 concentration distribution in Henan

Province from a global perspective, such as the shift of the center

of gravity, the contraction trend, and the direction of distribution.

Only the results for 1998, 2004, 2009, 2014, and 2019 are shown

here, and the details are shown in Table 3 and Figure 4.

In terms of azimuthal variation, the PM2.5 concentration in

Henan Province shows a spatial distribution pattern of “northeast-

southwest”, which is roughly related to the geographical landscape

and population distribution in Henan Province. The azimuth

angle fluctuated from 35.84◦ in 1998 to 19.01◦ in 2019, indicating

that there was a weak trend of the PM2.5 spatial distribution

pattern shifting to the “north-south” direction, which means that

Jiaozuo city, Xinxiang city, and their surrounding areas, which

are roughly located in the northern Henan Province, have a

slightly stronger air pollution level than the northeastern part.

This result is consistent with the industrial and energy structure

of northern Henan Province. The standard deviation ellipse’s long

and short axes’ differences revealed a general tendency of gradually

increasing, which further demonstrated the directionality of the

spatial distribution of PM2.5 concentrations. From the direction

of the long axis, the standard deviation of the long axis increased

from 210.814 km in 1998 to 224.853 km in 2004, which means

that the PM2.5 expanded in the direction of “northeast-southwest”,

i.e., the high pollution area was concentrated. From 2004 to 2009,

the standard deviation of the long axis decreased from 224.853 to

218.370 km, indicating that the air pollution in this period showed
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FIGURE 2

The trend of yearly mean concentration change of PM2.5.

FIGURE 3

Trends of PM2.5 concentration changes by range in Henan provincein 1998–2019.

a shrinking trend in the main direction. This outcome is in line

with the 22-year trend of Henan Province’s yearly mean PM2.5

concentration. Indicating that the spatial centripetal force of the

PM2.5 concentration initially increased and then dispersed, the

standard deviation of the short axis showed a tendency of first

reducing and then increasing. Overall, the geographical spillover
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effect has been highlighted as the PM2.5 concentration in Henan

Province tends to expand and scatter in geographic areas.

In terms of the spatial center of gravity, the center of gravity

of the spatial distribution of the yearly mean PM2.5 concentration

gradually shifted from the southern zone of Jianan District in

Xuchang city to the northeast in 1998. However, by 2004, the center

of gravity remained in the Jian’an District and then shifted to the

northwest. The center of gravity was located at the junction of

Yuzhou and Jian’an Districts in 2004 and has shown a trend of

shifting to the northeast since then, it is correlated with the spatial

distribution pattern showing a “northeast-southwest” movement

in the PM2.5 concentration in Henan Province. The final yearly

mean PM2.5 concentration centers of gravity in 2014 and 2019

were within Xinzheng, Zhengzhou city. Overall, the spatial center

of gravity of the PM2.5 concentration in Henan Province showed

a trend of drifting from due south to due north. This change can

be attributed to the ongoing industrial development in Zhengzhou

and the large base and fast growth rate of motor vehicle ownership,

the increased pollution emissions from motor vehicles, and the

industrial and energy structures in northern Henan. From the

perspective of ellipse coverage, the area of the standard deviation

ellipse first decreased year by year from 139,540,000 km² in 1998 to

124,510,000 km² in 2014, and then it increased to 125,380,000 km²

in 2019. This result indicates that its distribution range showed a

“contraction-expansion” trend, which means that the main range

of PM2.5 pollution expanded from 2014 to 2019. In addition, the

standard deviation ellipse of 5 years covered the north, middle, and

east of Henan Province, representing the vital area of air pollution

reduction in Henan Province.

Overall, the PM2.5 pollution distribution in Henan Province

has been expanding recently, a spatial spillover effect has emerged,

and air pollution is developing toward regional pollution. These

patterns aremainly related to the long-term economic development

in some areas and the unreasonable industrial structure, followed

by the Effects of terrain and meteorological environment. The wide

range of airflow causes the local air quality to be affected by both

local pollutant emissions and pollution sources from other areas.

3.3 Spatial aggregation analysis of PM2.5

concentration

3.3.1 Global spatial autocorrelation analysis
To analyze the spatial distribution characteristics of the

PM2.5 concentrations in Henan Province, PM2.5 remote sensing

inversion data at the county level of administrative units were used

for zonal statistics, and the yearly mean PM2.5 data for 5 years,

1998, 2004, 2009, 2014 and 2019, were selected for the global spatial

autocorrelation analysis of PM2.5 data in Henan Province. The

Moran’s I index was analyzed (Figure 5): In the selected 5 years,

Moran’s I index has been >0, showing that the spatial distribution

of PM2.5 in Henan Province has a significant positive spatial

correlation, i.e., a significant spatial aggregation characteristic. This

finding also suggests that, while building the driving model, the

spatial heterogeneity of the effects of numerous variables on PM2.5

should be taken into consideration.

TABLE 3 Standard deviation ellipse parameters.

Year 1998 2004 2009 2014 2019

Azimuth/◦ 35.84 2.76 21.05 19.12 19.01

Location of the

center of gravity

Jianan Jianan Yuzhou Xinzheng Xinzheng

Ellipse area/km² 139,536 136,265 129,926 124,517 125,375

Long axis

standard

deviation/km

210.814 224.853 218.370 222.544 217.933

Short-axis

standard

deviation/km

205.261 192.911 189.397 178.108 183.130

3.3.2 Local spatial autocorrelation analysis
In order to gain deeper insights into the spatial clustering

attributes of PM2.5 in Henan Province, the hot spot analysis was

performed using PM2.5 satellite inversion data, building upon the

outcomes of global spatial autocorrelation analysis to investigate

the local distribution pattern of PM2.5 concentrations. The results

of the analysis (Figure 6) showed that the study area as a whole

showed strong aggregation from 1998 to 2019, with local areas

showing 99% confidence in the aggregation area in 1998, 2004,

2009, 2014, and 2019. From the perspective of spatial distribution,

the hot spots are mainly dense in northern and central Henan,

and the spatial correlation is high, and cold spots are dense

in western and southern Henan, and the spatial correlation is

low. The distribution of PM2.5 concentration cold and hot spots

in Henan Province remained approximately the same, but the

area and number of cold and hot spot areas of different levels

changed to some extent. Temporally, the spatial autocorrelation

of PM2.5 concentration in Henan Province indicated an overall

strengthening trend, and the local autocorrelation in 2019 was

significantly strengthened compared with that in 1998. Spatially,

the hot spot areas showed a northward trend, gradually shifting

from places such as Xuchang and Shangqiu to areas such as Anyang,

Hebi, and Xinxiang in northern Henan.

3.4 Analysis of the driving mechanism

3.4.1 Comparison of the GWR model and MGWR
model

This study used 2019 PM2.5 concentration and driver data

to construct the PM2.5 driver mechanism. In the results of the

regression analysis, higher values of goodness-of-fit R² and smaller

values of AICc and RSS indicate a better and more accurate fit of

the model. From the data in Table 4, it can be deduced that: the

R² in the MGWR is greater than that in the GWR model by 0.107;

the AICc value for the MGWR is considerably smaller than that of

the GWR model; in addition, the RSS of MGWR is smaller, which

indicates that its predicted values are closer to the truth. As a result,

this study’s data analysis shows that the MGWR is more accurate

than the classical GWRmodel andmay be utilized tomore precisely

analyze the driving mechanisms of PM2.5 concentration.

The R² values in Figure 7 indicate the actual strength of

the selected natural and socioeconomic indicators to explain the
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FIGURE 4

Spatial variation in the PM2.5 concentration center of gravity and standard deviation ellipse.

FIGURE 5

Moran’s I index of PM2.5 for 1998, 2004, 2009, 2014, and 2019.
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FIGURE 6

Spatial distribution of cold and hot spots.

PM2.5 concentration levels. The local R² of all samples ranged

from 0.069 to 0.988. Among them, 77.80% of the sample points

had an R² of over 0.80, and 51.86% had an R² of over 0.90.

This indicates that the 12 selected influencing factors in this

study demonstrate significant and comprehensive explanatory

capability for the spatial distribution of PM2.5 concentration in

Henan Province. The lower R² values in some areas of Zhoukou,

Xinxiang, and Zhumadian indicate the existence of possiblemissing

factors and the possible influence of cross-border transports of air

pollutants from neighboring provinces, resulting in a lower model

fit in this area.

Based on the comparison of the bandwidth between the GWR

model and the MGWR model (Table 5), it is evident that the

MGWR model can explicitly represent the varying effect scales of

different variable quantities, whereas the GWR can only represent

the average effect scales of each variable. The bandwidth of the

variablesmeasures the spatial scales of action of each process, which

can reflect the differences in the scales of action of different natural

and socioeconomic influences on PM2.5 concentrations. The larger

the action scale is, the smaller the spatial heterogeneity of the

effect of the driving factor, while the opposite spatial heterogeneity

is larger.

Table 5 shows that the MGWR provides a more detailed

perspective by directly reflecting the differential effect scales of

various variables, while the GWR only considers the average effect

scale. In addition, the bandwidth of variables is used to measure the

spatial scale of their effects, revealing the differences in the scale of

natural and socio-economic impacts on PM2.5 concentration. The

larger the scale of action, the smaller the spatial heterogeneity of

influencing factor effects. The smaller the scale of action, the greater

the spatial heterogeneity.

Among the natural factors, the precipitation, elevation, mean

surface temperature, and mean wind speed were 43, 43, 182,

and 225, respectively, which were small (<300), and their effects

on PM2.5 concentration were more spatially heterogeneous. The

effect scales of GDP, the proportion of cultivated land, and CO2

emissions in the socioeconomic factors were 46, 44, and 56,

respectively, all of which were relatively small (<100). Their effects

on PM2.5 concentrations showed significant spatial heterogeneity.

The effect scale of nighttime lights was 686, and its influence

on PM2.5 concentration exhibited certain spatial heterogeneity.

The effect scale of electricity consumption was 1,843, the spatial

heterogeneity was relatively small. The effect scale of population

density was 2,955, which was equal to the total sample size and was

a global variable. There was almost no spatial heterogeneity, and

the impression on PM2.5 concentration was consistent throughout

Henan Province.

3.4.2 Spatial pattern of regression coe�cient
coe�cients of drivers

Table 6 shows the statistical results of the regression coefficients

of the MGWR model, and the results show the estimated

coefficients of the MGWR using standardized data and the
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proportion of each influence factor coefficient for the different

directions of PM2.5 action. The regression coefficients of the

influencing factors derived from the MGWR model indicate that

there is spatial heterogeneity in the effects of each indicator on

regional PM2.5 concentrations. where surface temperature and

humidity have positive effects; additionally, GDP, night lighting,

and CO2 emissions mainly have positive effects, accounting for

93.70, 81.24, and 98.40% of the total sample, respectively. There

is both a positive and a negative effect on the proportion of

cultivated land area, with spatial polarization, in which the positive

effect accounts for 57.37% of the total sample and the negative

effect accounts for 47.64% of the total sample. Wind speed

and NDVI were negative, and precipitation and elevation were

mainly negative, accounting for 90.60 and 98.54% of the total

samples, respectively. The intensity of the above drivers on PM2.5

concentrations, in order from highest to lowest, as seen through

the absolute values of the coefficient means, are as follows: CO2

emissions (3.452), elevation (0.353), GDP (0.285), precipitation

(0.271), intercept (0.231), surface temperature (0.054), wind speed

(0.022), arable land area share (0.009), relative humidity (0.006),

nighttime light (0.006), electricity consumption (0.002), vegetation

index (0.001), and population density (0.001).

As seen in Figure 8, In the western part of Henan Province, the

intercept parameter estimates are significantly negative, while in the

rest of the area, the parameter estimates are significantly positive.

This suggests that the existence of covariates has some influence on

the distribution of PM2.5 concentrations in Henan Province. The

TABLE 4 Comparison of GWR and MGWRmodels.

Evaluation index GWR MGWR

R² 0.883 0.990

RSS 343.795 23.664

AICc 2,056.935 −4,667.184

lower PM2.5 concentration in western Henan may be related to the

complex topography and climate, while the spread and dispersion

of PM2.5 in the rest of the plain-dominated areas may be relatively

easy (Figure 8A). The surface temperature has a positive influence

on the PM2.5 concentration within a significant range, and the effect

is strongest in the Henan section of China’s second- and third-level

step junctions. This result is because the fact that the junction of the

second and third-level steps is in a basin surrounded by mountains.

This topographic obstruction plays an important role in aerosol

accumulation to some extent (56) (Figure 8B). The influence of

relative humidity on PM2.5 concentration shows a positive effect,

and the significant area has a circular structure, with the bordering

TABLE 5 Comparison of bandwidth between the GWRmodel and MGWR

model.

Factor Bandwidth
of GWR

Bandwidth
of MGWR

Intercept 86 43

X1: surface temperature 86 182

X2: relative humidity 86 1,194

X3: wind speed 86 225

X4: precipitation 86 43

X5: vegetation index 86 1,101

X6: elevation 86 43

X7: GDP 86 46

X8: nighttime light 86 686

X9: CO2 emissions 86 52

X10: electricity consumption 86 1,843

X11: population density 86 2,955

X12: arable land area share 86 44

FIGURE 7

Comparison of local R2 spatial distribution between GWR and MGWR fitting results.
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TABLE 6 Parameter estimates for the regression of PM2.5 concentrations using MGWR.

Variables MGWR coe�cients Percentage of cities by significance
(95% level) of t test

Mean Min Max P ≤ 0.05 (%0) +(%) –(%)

Intercept 0.231 −1.027 0.990 94.55 73.17 26.83

X1 0.054 −0.026 0.175 60.59 100.00 0.00

X2 0.006 −0.008 0.024 34.17 100.00 0.00

X3 −0.022 −0.114 0.021 29.74 0.00 100.00

X4 −0.271 −1.320 0.372 77.03 9.40 90.60

X5 −0.001 −0.015 0.011 13.94 0.00 100.00

X6 −0.353 −1.173 0.258 92.83 1.46 98.54

X7 0.285 −0.607 1.338 45.70 93.70 6.30

X8 0.006 −0.024 0.033 31.56 81.24 18.76

X9 3.452 −2.400 13.189 57.24 98.40 1.60

X10 −0.002 −0.009 0.002 0.00 0.00 0.00

X11 −0.001 −0.003 0.000 0.00 0.00 0.00

X12 −0.009 −0.442 0.529 57.37 52.36 47.64

areas of Zhengzhou, Luoyang, and Pingdingshan cities at the center;

the center of gravity of influence intensity decreases to the outer

side, which may be caused by the more prominent local altitude.

Foggy weather with high relative humidity will lead to the inverse

temperature phenomenon near the ground, which is not conducive

to the diffusion of particulate matter (57), making the combination

of particulate matter and water mist form PM2.5. However, when

the relative humidity exceeds a certain threshold value, it causes

precipitation, and the precipitation will have a flushing effect on the

air to reduce the PM2.5 concentration. Since the relative humidity in

Henan Province is below the threshold value, its effect on reducing

PM2.5 concentration is positive (Figure 8C). Wind speed negatively

affects the PM2.5 concentration, which indicates that airflow

movement can effectively reduce the local PM2.5 concentration

under windy conditions with good air pollutant dispersion

conditions (Figure 8D). Precipitation mainly has a suppressing

effect on PM2.5, with positive promotion effects found only in the

southern part of Luoyang city and the central part of Nanyang city.

In the rest of Henan Province, precipitation shows a significant

northwest-southeast directional effect. Xinyang city, Zhumadian

city, Pingdingshan city, and Sanmenxia city are high-value areas,

and the influence intensity decreases on both sides (Figure 8E).

The NDVI has an suppressed effect on PM2.5 concentration

in the significant area, and when the NDVI value is high, it

indicates that vegetation has a stronger absorption and deposition

effect on atmospheric particulate matter, thus contributing to the

diminution of PM2.5 concentration (Figure 8F). Elevation has a

significant suppressed influence on the PM2.5 concentration in

most parts of the province and has a certain positive promoting

influence in only a small area south of Xinyang city. The inhibition

effect forms the highest intensity in the northeast-southwest

direction in Henan Province and decreases to the two sides, which

is consistent with the topographic features of Henan Province

(Figure 8G). In the majority of regions within Henan Province,

GDP and PM2.5 concentrations show a positive correlation, which

is due to the increase in emissions from pollution sources brought

about by industrial development closely related to GDP, and only

in some areas of Zhoukou city, Zhengzhou city and Xuchang city,

it inhibits PM2.5, which is explained by the local government’s

increased investment in air control funds (Figure 8H). The negative

effect of nighttime lighting on PM2.5 is mainly concentrated in

Luoyang and Nanyang. Nighttime lighting can, to a certain extent,

reflect the local economic development level (58). The negative

impact of nighttime lighting on PM2.5 in these areas may be due

to the tendency of Luoyang and Nanyang, which have a relatively

developed level of economic development, to implement more

stringent environmental protection measures (Figure 8I). There is

a noticeable correlation between CO2 emissions and PM2.5 levels in

the majority of areas in Henan Province, and the influence of CO2

emissions on PM2.5 increases from the northeast to the southwest.

The explanation for this is that the primary origin of carbon dioxide

emissions lies in the combustion of fossil fuels like coal, oil, and

gas during industrial production (59). Consequently, the gases and

particulate matter discharged due to industrial development play

a crucial role in the rise of PM2.5 concentrations (Figure 8J). The

arable land area share has strong spatial heterogeneity, and there is

a bipolar influence on the PM2.5 concentration, with the capacity

to suppress the PM2.5 in the plain areas of the province due to

the larger and more aggregated area of cultivated land in the plain

areas, and the plants in farmland have an adsorption influence

on PM2.5, this is consistent with Yang et al. (46) findings that

cropland has a negative effect on PM2.5 concentration in most areas

of Zhengzhou City. The positive impact of cropland proportion

on PM2.5 concentrations in mountainous and hilly regions may be

attributed to the fact that an increase in cropland proportion leads

to a decrease in forested land, resulting in an amplified extent of

bare land during winter, thereby augmenting the PM2.5 source (60)

(Figure 8K).
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FIGURE 8

Spatial pattern of MGWR coe�cients. (A) Intercet (bandwith = 43). (B) X1 (bandwith = 182). (C) X2 (bandwith = 1194). (D) X3 (bandwith = 225). (E) X4

(bandwith = 43). (F) X5 (bandwith = 1101). (G) X6 (bandwith = 43). (H) X7 (bandwith = 46). (I) X8 (bandwith = 686). (J) X9 (bandwith = 52). (K) X12

(bandwith = 44).

4 Conclusion and discussion

Lately, there has been considerable focus on the spillover of

PM2.5 on air quality and public health. Taking Henan Province

as the research object, this study used nearly 22 years of

satellite remote sensing data from 1998 to 2019 to study the

spatiotemporal distribution properties of PM2.5 in this region and

deeply understand the influence of various driving factors on PM2.5

concentration and its spatial heterogeneity. The analysis presented

above led this text to the following conclusions:

(1) PM2.5 management in Henan Province has achieved certain

results in recent years, but there are still most districts and

counties where the annual average concentration of PM2.5
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exceeds the national category 2 standard, which indicates that

there is still a long way to go in managing PM2.5 pollution in

Henan Province.

(2) Between 1998 and 2019, the center of gravity of PM2.5

concentration in Henan Province as a whole shifted to the

north, and the northern part of Henan Province is the key area

for air pollution prevention and control.

(3) The PM2.5 concentrations from 1998 to 2019 have obvious

spatial autocorrelation and significant spatial aggregation

characteristics. Constructing the PM2.5 driving mechanism

based on the MGWR model can reveal the effect of

each influencing factor on different spatial scales, and a

more realistic fitting effect can be derived. The comparison

of the two models showed that the MGWR model was

more applicable to the study of the PM2.5 concentration

driving mechanism.

(4) Based on revealing the strength of each influencing factor,

the regression coefficients of the influencing factors derived

from theMGWRmodel in this study indicated that there were

different degrees of spatial heterogeneity in the influence of

each factor on PM2.5 concentrations in Henan Province.

From 1998 to 2019, the PM2.5 levels in Henan Province

exhibited an “M”-shaped trend, with an overall increase in PM2.5

concentration in 2019 compared to 1998. The spatial center of

gravity shift of the PM2.5 concentration in Henan Province from

1998 to 2019 showed an overall northward trend, with an overall

“S” shape. The spatial center of gravity of the PM2.5 concentration

was in within Zhengzhou city in 2019. This result was related to

the continuous development of industry in Zhengzhou city, the

large base and rapid growth rate of motor vehicle ownership, and

the increased pollution emissions from motor vehicles. During the

whole time interval, the overall PM2.5 center of gravity shift in

Henan Province showed a northward trend, which was in line with

the trend of the PM2.5 center of gravity shift in Henan Province by

Ge QX (27). On this basis, we categorized the annual average PM2.5

concentrations in all districts and counties of Henan Province

according to the Ambient Air Quality Standards (GB3095-

2012) and found that overall, in Henan Province, although the

PM2.5 pollution situation has been alleviated, most districts and

counties still do not meet the national Class II standards for

PM2.5 concentrations.

The PM2.5 concentrations from 1998 to 2019 had obvious

spatial autocorrelation and significant spatial aggregation

characteristics. The local spatial correlation analysis showed that

the spatial hot spot areas were mainly dense in northern Henan

Province, containing Anyang city, Hebi city, Xinxiang city, and

Jiaozuo city, which coincided with the industrial structure and

energy structure in northern Henan Province. Therefore, from a

sustainable point of view, industrial upgrading and transformation

should be encouraged or made mandatory, and there should be

a shift from traditional industries that are highly polluting and

emit high levels of pollutants to new industries that are clean,

efficient, and emit low levels of pollutants. The cold spot areas were

mainly dense in the west and south of Henan Province, including

Sanmenxia city, Nanyang city, etc. This result was related to the

topography and landscape, as western and southern Henan have

many mountain ranges, which play the role of isolating PM2.5

transmission, so western and southern Henan have weaker PM2.5

aggregation than other areas in Henan Province.

The results of the MGWR model show that the effects of most

of the influencing factors on PM2.5 concentration are spatially

heterogeneous, which is consistent with the results of the Zang

et al. (26) study based on the GWR model. Different from that, we

reveal the different scales of the role between PM2.5 concentration

and each influencing factor in Henan Province based on the

MGWR model. We found that the bandwidths of precipitation,

elevation, GDP, cropland ratio, and CO2 emission are smaller,

which indicates that their effects on PM2.5 concentration are more

spatially heterogeneous, and the multiscale effects should be taken

into account when PM2.5 management or analysis is carried out

through these factors.

Influencing factors such as CO2 emissions, elevation, GDP,

and precipitation had a strong influence on PM2.5 concentration,

which was consistent with the findings of Zang et al. (26)

and Wu et al. (61). Unlike that, our results point out the

spatial heterogeneity of the effects of most of the influencing

factors on PM2.5 concentrations and reveal the effects of the

influencing factors at the optimal scale. It is noteworthy that

the proportion of arable land presents a differential effect on

PM2.5 concentration in Henan Province, which is in line with the

results of Hong K-r’s study (62). Cultivated land, like common

vegetation, can effectively reduce PM2.5, but the effect of cultivated

land on PM2.5 mainly depends on the intensity of agricultural

activities, so the scientific utilization of cultivated land and the

adjustment of its function have a positive effect on the management

of PM2.5.

The current study mainly focuses on analyzing the multi-scale

effects of the role of PM2.5 influencing factors inHenan Province. In

the next study, we plan to expand the study area to the Yellow River

basin to form regional research results. In addition, considering

that the results of the study show the existence of covariate effects,

we plan to introduce more factors that may have an effect on

the PM2.5 concentration and to study in depth the effects of

the factors on PM2.5 at different scales, so as to provide more

valuable references for the prevention and control of air pollution

in China.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author/s.

Author contributions

HW: Conceptualization, Funding acquisition, Project

administration, Resources, Supervision, Writing – review &

editing. MZ: Formal analysis, Investigation, Methodology,

Visualization, Writing – original draft. JN: Funding acquisition,

Resources, Supervision, Validation, Writing – review & editing.

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1295468
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2023.1295468

XZ: Formal analysis, Funding acquisition, Validation, Writing –

review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. This

research was funded by the Open Fund of Key Laboratory

of Urban Land Resources Monitoring and Simulation, Ministry

of Natural Resources (Grant Number: KF-2022-07-019 to XZ),

the Key Laboratory for Synergistic Prevention of Water and

Soil Environmental Pollution, Xinyang Normal University (Grant

Number: KLSPWSEP-A11 to JN), and the Key Scientific Research

Projects of Colleges in Henan Province (Grant Numbers:

23A520001 and 21A420007 to HW).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Koçak E, Kizilkaya O. Towards sustainable development in china: do political
rights and civil libertiesmatter for environmental quality? Environ Sci Pollut Res. (2020)
27:35488–500. doi: 10.1007/s11356-020-09813-x

2. Yang T, Zhou K, Ding T. Air pollution impacts on public health: evidence
from 110 cities in yangtze river economic belt of China. Sci Total Environ. (2022)
851:158125. doi: 10.1016/j.scitotenv.2022.158125

3. Chen Z, Chen D, Zhao C, Kwan M-p, Cai J, Zhuang Y, et al.
Influence of meteorological conditions on PM2.5 concentrations across
china: a review of methodology and mechanism. Environ Int. (2020)
139:105558. doi: 10.1016/j.envint.2020.105558

4. Dai H, Huang G, Zeng H. Zhou F. PM2.5 volatility prediction
by Xgboost-Mlp based on garch models. J Cleaner Prod. (2022)
356:131898. doi: 10.1016/j.jclepro.2022.131898

5. Pui DYH, Chen S-C, Zuo Z. PM2.5 in China: measurements,
sources, visibility and health effects, and mitigation. Particuology. (2014)
13:1–26. doi: 10.1016/j.partic.2013.11.001

6. Zhang S, Routledge MN. The contribution of PM2.5 to cardiovascular disease in
China. Environ Sci Pollut Res. (2020) 27:37502–13. doi: 10.1007/s11356-020-09996-3

7. Lin G, Fu J, Jiang D, Hu W, Dong D, Huang Y, et al. Spatio-temporal
variation of PM2.5 concentrations and their relationship with geographic and
socioeconomic factors in China. Int J Environ Res Public Health. (2014) 11:173–
86. doi: 10.3390/ijerph110100173

8. Xie Y, Dai H, Dong H, Hanaoka T, Masui T. Economic impacts from PM2.5

pollution-related health effects in China: a provincial-level analysis. Environ Sci
Technol. (2016) 50:4836–43. doi: 10.1021/acs.est.5b05576

9. He C, Hong S, Mu H, Tu P, Yang L, Ke B, et al. Characteristics and
meteorological factors of severe haze pollution in China. Adv Meteorol. (2021)
2021:6680564. doi: 10.1155/2021/6680564

10. He L, Lin A, Chen X, Zhou H, Zhou Z, He P. Assessment of MERRA-
2 surface PM2.5 over the Yangtze River Basin: ground-based verification,
spatiotemporal distribution and meteorological dependence. Remote Sens. (2019)
11:460. doi: 10.3390/rs11040460

11. Jiang W, Gao W, Gao X, Ma M, Zhou M, Du K, et al. Spatio-temporal
heterogeneity of air pollution and its key influencing factors in the yellow
river economic belt of China from 2014 to 2019. J Environ Manage. (2021)
296:113172. doi: 10.1016/j.jenvman.2021.113172

12. Zhao H, Liu Y, Gu T, Zheng H, Wang Z, Yang D. Identifying spatiotemporal
heterogeneity of PM2.5 concentrations and the key influencing factors in
the middle and lower reaches of the yellow river. Remote Sens. (2022)
14:2643. doi: 10.3390/rs14112643

13. Shen Y, Zhang L, Fang X, Ji H, Li X, Zhao Z. Spatiotemporal patterns of recent
PM2.5 concentrations over typical urban agglomerations in China. Sci Total Environ.
(2019) 655:13–26. doi: 10.1016/j.scitotenv.2018.11.105

14. Liu X, Zou B, Feng H, Liu N, Zhang H. Anthropogenic factors
of PM2.5 distributions in China’s major urban agglomerations: a spatial-
temporal analysis. J Clean Prod. (2020) 264:121709. doi: 10.1016/j.jclepro.2020.
121709

15. Huang C, Liu K, Zhou L. Spatio-temporal trends and influencing factors of PM2.5

concentrations in urban agglomerations in China between 2000 and 2016. Environ Sci
Pollut Res. (2021) 28:10988–1000. doi: 10.1007/s11356-020-11357-z

16. Gu J, Bai Z, Liu A, Wu L, Xie Y, Li W, et al. Characterization of atmospheric
organic carbon and element carbon of PM2.5 and Pm10 at Tianjin, China. Aerosol Air
Qual Res. (2010) 10:167–76. doi: 10.4209/aaqr.2009.12.0080

17. Huang YY, Zhu SJ,Wang SJ. Driving force behind PM2.5 pollution in Guangdong
Province based on the interaction effect of institutional background and socioeconomic
activities. Tropical Geography. (2020) 40:74–87. doi: 10.13284/j.cnki.rddl.003180

18. Zhang T, Liu P, Sun X, Zhang C, Wang M, Xu J, et al. Application of an advanced
spatiotemporal model for PM2.5 prediction in Jiangsu Province, China. Chemosphere.
(2020) 246:125563. doi: 10.1016/j.chemosphere.2019.125563

19. Xu X, Zhang T. Spatial-temporal variability of PM2.5 air quality
in Beijing, China during 2013–2018. J Environ Manage. (2020)
262:110263. doi: 10.1016/j.jenvman.2020.110263

20. Huang Y, Ji Y, Zhu Z, Zhang T, Gong W, Xia X, et al.
Satellite-based spatiotemporal trends of ambient PM2.5 concentrations
and influential factors in Hubei, Central China. Atmos Res. (2020)
241:104929. doi: 10.1016/j.atmosres.2020.104929

21. Chen J, Song X, Zang L, Mao F, Yin J, Zhang Y. Spatio-temporal association
mining of intercity PM2.5 pollution: Hubei province in China as an example. Environ
Sci Pollut Res. (2023) 30:7256–69. doi: 10.1007/s11356-022-22574-z

22. Yang L, Hong S, He C, Huang J, Ye Z, Cai B, et al. Spatio-temporal
heterogeneity of the relationships between PM2.5 and its determinants: a
case study of Chinese cities in winter of 2020. Front Public Health. (2022)
10:810098. doi: 10.3389/fpubh.2022.810098

23. Fang C, Wang Z, Xu G. Spatial-temporal characteristics of PM2.5

in China: a city-level perspective analysis. J Geogr Sci. (2016) 26:1519–
32. doi: 10.1007/s11442-016-1341-9

24. Wang Y, Wang F, Min R, Song G, Song H, Zhai S, et al. Contribution of local
and surrounding anthropogenic emissions to a particulate matter pollution episode in
Zhengzhou, Henan, China. Sci Rep. (2023) 13:8771. doi: 10.1038/s41598-023-35399-8

25. YangH, Song X, ZhangQ. Rs&Gis based Pm emission inventories of dust sources
over a provincial scale: a case study of Henan Province, Central China. Atmos Environ.
(2020) 225:117361. doi: 10.1016/j.atmosenv.2020.117361

26. Zang ZF Li YH, Zhang FY, Xing Y. Spatiotemporal distribution of atmospheric
pollutants and its relationship with vegetation index in themajor grain-producing areas
of China.Water Air Soil Pollut. (2022) 233:92. doi: 10.1007/s11270-022-05563-3

27. Ge QX, Liu Y, Yang H, Guo HL. Analysis on spatial-temporal characteristics
and driving factors of PM2.5 in Henan Province from 2015 to 2019. Environ Sci.
(2022) 43:1697–705. doi: 10.13227/j.hjkx.202108085

28. Zhou L, Zhou CH, Yang F, Wang B, Sun DQ. Spatio-temporal evolution and the
influencing factors of PM2.5 in China between 2000 and 2011. Acta Geographica Sinica.
(2017) 72:2079–92. doi: 10.11821/dlxb201711012

29. Fan P, Xu L, Yue W, Chen J. Accessibility of public urban green space in
an urban periphery: the case of Shanghai. Landsc Urban Plan. (2017) 165:177–
92. doi: 10.1016/j.landurbplan.2016.11.007

Frontiers in PublicHealth 15 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1295468
https://doi.org/10.1007/s11356-020-09813-x
https://doi.org/10.1016/j.scitotenv.2022.158125
https://doi.org/10.1016/j.envint.2020.105558
https://doi.org/10.1016/j.jclepro.2022.131898
https://doi.org/10.1016/j.partic.2013.11.001
https://doi.org/10.1007/s11356-020-09996-3
https://doi.org/10.3390/ijerph110100173
https://doi.org/10.1021/acs.est.5b05576
https://doi.org/10.1155/2021/6680564
https://doi.org/10.3390/rs11040460
https://doi.org/10.1016/j.jenvman.2021.113172
https://doi.org/10.3390/rs14112643
https://doi.org/10.1016/j.scitotenv.2018.11.105
https://doi.org/10.1016/j.jclepro.2020.121709
https://doi.org/10.1007/s11356-020-11357-z
https://doi.org/10.4209/aaqr.2009.12.0080
https://doi.org/10.13284/j.cnki.rddl.003180
https://doi.org/10.1016/j.chemosphere.2019.125563
https://doi.org/10.1016/j.jenvman.2020.110263
https://doi.org/10.1016/j.atmosres.2020.104929
https://doi.org/10.1007/s11356-022-22574-z
https://doi.org/10.3389/fpubh.2022.810098
https://doi.org/10.1007/s11442-016-1341-9
https://doi.org/10.1038/s41598-023-35399-8
https://doi.org/10.1016/j.atmosenv.2020.117361
https://doi.org/10.1007/s11270-022-05563-3
https://doi.org/10.13227/j.hjkx.202108085
https://doi.org/10.11821/dlxb201711012
https://doi.org/10.1016/j.landurbplan.2016.11.007
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2023.1295468

30. Yuan W, Sun H, Chen Y, Xia X. Spatio-Temporal evolution and spatial
heterogeneity of influencing factors of SO2 Emissions in Chinese cities: fresh evidence
from MGWR. Sustainability. (2021) 13:12059. doi: 10.3390/su132112059

31. Wang H, Chen Z, Zhang P. Spatial autocorrelation and temporal
convergence of PM2.5 concentrations in Chinese cities. Int J Public Health. (2022)
19:13942. doi: 10.3390/ijerph192113942

32. Yan D, Zhou M, Diao Y, Yang M. Air pollution in China: spatial patterns
and spatial coupling with population and economy. Front Environ Sci. (2022)
10:1040131. doi: 10.3389/fenvs.2022.1040131

33. Zhu M, Guo J, Zhou Y, Cheng X. Exploring the spatiotemporal evolution
and socioeconomic determinants of PM2.5 distribution and its hierarchical
management policies in 366 Chinese cities. Front Public Health. (2022)
10:843862. doi: 10.3389/fpubh.2022.843862

34. Peng J, Chen S, Lü H, Liu Y, Wu J. Spatiotemporal patterns of remotely
sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens Environ. (2016)
174:109–21. doi: 10.1016/j.rse.2015.12.008

35. Shi Y, Matsunaga T, Yamaguchi Y, Li Z, Gu X, Chen X. Long-term
trends and spatial patterns of satellite-retrieved PM2.5 concentrations in South
and Southeast Asia from 1999 to 2014. Sci Total Environ. (2018) 615:177–
86. doi: 10.1016/j.scitotenv.2017.09.241

36. Mi K, Zhuang R, Zhang Z, Gao J, Pei Q. Spatiotemporal characteristics of
PM2.5 and its associated gas pollutants, a case in China. Sustain Cities Soc. (2019)
45:287–95. doi: 10.1016/j.scs.2018.11.004

37. Chang JH, Tseng CY. Analysis of correlation between secondary PM2.5 and
factory pollution sources by using ann and the correlation coefficient. IEEE Access.
(2017) 5:22812–22. doi: 10.1109/ACCESS.2017.2765337

38. Ouyang W, Gao B, Cheng H, Hao Z, Wu N. Exposure inequality assessment
for PM2.5 and the potential association with environmental health in Beijing. Sci Total
Environ. (2018) 635:769–78. doi: 10.1016/j.scitotenv.2018.04.190

39. Wang JF, Xu CD. Geodetector: principle and prospective. Acta Geogr Sinica.
(2017) 72:116–34. doi: 10.11821/dlxb201701010

40. Ding Y, Zhang M, Qian X, Li C, Chen S, Wang W. Using the
geographical detector technique to explore the impact of socioeconomic
factors on PM2.5 concentrations in China. J Clean Prod. (2019) 211:1480–
90. doi: 10.1016/j.jclepro.2018.11.159

41. Xie Q, Xu X, Liu X. Is there an Ekc between economic growth and smog pollution
in China? New evidence from semiparametric spatial autoregressive models. J Clean
Prod. (2019) 220:873–83. doi: 10.1016/j.jclepro.2019.02.166

42. Hao Y, Liu Y-M. The influential factors of urban PM2.5 concentrations
in China: a spatial econometric analysis. J Clean Prod. (2016) 112:1443–
53. doi: 10.1016/j.jclepro.2015.05.005

43. Chen L, Zhang X, He F, Yuan R. Regional green development level and its
spatial relationship under the constraints of Haze in China. J Clean Prod. (2019)
210:376–87. doi: 10.1016/j.jclepro.2018.11.037

44. Luo J, Du P, Samat A, Xia J, Che M, Xue Z. Spatiotemporal pattern of
PM2.5 concentrations in Mainland China and analysis of its influencing factors
using geographically weighted regression. Sci Rep. (2017) 7:40607. doi: 10.1038/srep
40607

45. Wang SJ, Gao S, Chen J. Spatial heterogeneity of driving factors of urban haze
pollution in China based on GWRmodel. Geogr Res. (2020) 39:651–68.

46. Yang DY, Meng F, Liu Y, Dong GP, Lu DB. Scale effects and regional disparities
of land use in influencing PM2.5 concentrations: a case study in the Zhengzhou
Metropolitan Area, China. Land. (2022) 11:1538. doi: 10.3390/land11091538

47. Fotheringham AS, Yue H, Li Z. Examining the influences of air quality in
China’s cities using multi-scale geographically weighted regression. Trans GIS. (2019)
23:1444–64. doi: 10.1111/tgis.12580

48. Fotheringham AS, Yang W, Kang W. Multiscale geographically
weighted regression (Mgwr). Ann Am Assoc Geogr. (2017) 107:1247–
65. doi: 10.1080/24694452.2017.1352480

49. Meng B, Wang JF. A review on the methodology of scaling with geo-data. Acta
Geogr Sinica. (2005) 02:277–88. doi: 10.11821/xb200502011

50. van Donkelaar A, Martin RV Li C, Burnett RT. Regional estimates of chemical
composition of fine particulate matter using a combined geoscience-statistical method
with information from satellites, models, and monitors. Environ Sci Technol. (2019)
53:2595–611. doi: 10.1021/acs.est.8b06392

51. Hammer MS, van Donkelaar A, Li C, Lyapustin A, Sayer AM, Hsu NC, et al.
Global estimates and long-term trends of fine particulate matter concentrations (1998–
2018). Environ Sci Technol. (2020) 54:7879–90. doi: 10.1021/acs.est.0c01764

52. Zhao AZ, Xiang KZ, Liu XF, Zhang XR. Spatio-temporal evolution
patterns of PM2.5 and relationship with urban expansion in Beijing-
Tianjin-HebeiUrban agglomeration from 2000 to 2018. Environ Sci. (2022)
05:2274–83. doi: 10.13227/j.hjkx.202109226

53. Chen J, Gao M, Cheng S, Hou W, Song M, Liu X, et al. Global 1 Km
× 1Km gridded revised real gross domestic product and electricity consumption
during 1992–2019 based on calibrated nighttime light data. Sci Data. (2022)
9:202. doi: 10.1038/s41597-022-01322-5

54. Yang J, Huang X. The 30m annual land cover dataset and its
dynamics in China from 1990 to 2019. Earth Syst Sci Data. (2021)
13:3907–25. doi: 10.5194/essd-13-3907-2021

55. Yu H, Fotheringham AS, Li Z, Oshan T, Kang W, Wolf LJ. Inference
in multiscale geographically weighted regression. Geogr Anal. (2020) 52:87–
106. doi: 10.1111/gean.12189

56. Chuang M-T, Chiang P-C, Chan C-C, Wang C-F, Chang EE, Lee C-T.
The Effects of synoptical weather pattern and complex terrain on the formation
of aerosol events in the greater Taipei Area. Sci Total Environ. (2008) 399:128–
46. doi: 10.1016/j.scitotenv.2008.01.051

57. Bai K, Li K, Guo J, Cheng W, Xu X. Do more frequent temperature
inversions aggravate Haze Pollution in China? Geophys Res Lett. (2022)
49:e2021GL096458. doi: 10.1029/2021GL096458

58. Wang W, Samat A, Abuduwaili J, Ge Y. Spatio-temporal variations of satellite-
based PM2.5 concentrations and its determinants in Xinjiang, Northwest of China. Int
J Environ Res Public Health. (2020) 17:2157. doi: 10.3390/ijerph17062157

59. Wang P, Zhou W, Xiong X, Wu S, Niu Z, Yu Y, et al. Source attribution of
atmospheric CO2 Using

14C and 13C as tracers in two chinese megacities during winter.
J Geophys Res Atmos. (2022) 127:e2022JD036504. doi: 10.1029/2022JD036504

60. Li C, Zhang K, Dai Z, Ma Z, Liu X. Investigation of the impact
of land-use distribution on PM2.5 in weifang: seasonal variations. Int
J Environ Res Public Health. (2020) 17:5135. doi: 10.3390/ijerph171
45135

61. Wu XH, Chen Y, Guo J, Wang G, Gong Y. Spatial concentration,
impact factors and prevention-control measures of PM2.5 pollution
in China. Nat Hazards. (2017) 86:393–410. doi: 10.1007/s11069-016-
2697-y

62. Hong K-R, Qiu L-S, Yang D-X, Jiang M. Spatio-temporal evolution
and correlation analysis of urban land use patterns and air quality in pearl
river delta, China. Front Environ Sci. (2021) 9:698383. doi: 10.3389/fenvs.2021.
698383

Frontiers in PublicHealth 16 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1295468
https://doi.org/10.3390/su132112059
https://doi.org/10.3390/ijerph192113942
https://doi.org/10.3389/fenvs.2022.1040131
https://doi.org/10.3389/fpubh.2022.843862
https://doi.org/10.1016/j.rse.2015.12.008
https://doi.org/10.1016/j.scitotenv.2017.09.241
https://doi.org/10.1016/j.scs.2018.11.004
https://doi.org/10.1109/ACCESS.2017.2765337
https://doi.org/10.1016/j.scitotenv.2018.04.190
https://doi.org/10.11821/dlxb201701010
https://doi.org/10.1016/j.jclepro.2018.11.159
https://doi.org/10.1016/j.jclepro.2019.02.166
https://doi.org/10.1016/j.jclepro.2015.05.005
https://doi.org/10.1016/j.jclepro.2018.11.037
https://doi.org/10.1038/srep40607
https://doi.org/10.3390/land11091538
https://doi.org/10.1111/tgis.12580
https://doi.org/10.1080/24694452.2017.1352480
https://doi.org/10.11821/xb200502011
https://doi.org/10.1021/acs.est.8b06392
https://doi.org/10.1021/acs.est.0c01764
https://doi.org/10.13227/j.hjkx.202109226
https://doi.org/10.1038/s41597-022-01322-5
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.1111/gean.12189
https://doi.org/10.1016/j.scitotenv.2008.01.051
https://doi.org/10.1029/2021GL096458
https://doi.org/10.3390/ijerph17062157
https://doi.org/10.1029/2022JD036504
https://doi.org/10.3390/ijerph17145135
https://doi.org/10.1007/s11069-016-2697-y
https://doi.org/10.3389/fenvs.2021.698383
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Spatiotemporal characteristic analysis of PM2.5 in central China and modeling of driving factors based on MGWR: a case study of Henan Province
	1 Introduction
	2 Data and methods
	2.1 Study area overview
	2.2 Study data
	2.2.1 PM2.5 data
	2.2.2 Other data

	2.3 Research methodology
	2.3.1 Standard deviation ellipse analysis
	2.3.2 Spatial autocorrelation analysis
	2.3.3 Hot spot analysis with rendering (Getis-Ord Gi)
	2.3.4 Multiscale geographically weighted regression


	3 Results and analysis
	3.1 Temporal variation pattern of PM2.5 concentration
	3.2 Spatial variation trend analysis of PM2.5 concentration
	3.3 Spatial aggregation analysis of PM2.5 concentration
	3.3.1 Global spatial autocorrelation analysis
	3.3.2 Local spatial autocorrelation analysis

	3.4 Analysis of the driving mechanism
	3.4.1 Comparison of the GWR model and MGWR model
	3.4.2 Spatial pattern of regression coefficient coefficients of drivers


	4 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


