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Epidemics are dangerous and difficult to prevent and control, especially in urban 
areas. Clarifying the correlation between the COVID-19 Outbreak Frequency 
and the urban spatial environment may help improve cities’ ability to respond 
to such public health emergencies. In this study, we firstly analyzed the spatial 
distribution characteristics of COVID-19 Outbreak Frequency by correlating the 
geographic locations of COVID-19 epidemic-affected neighborhoods in the city 
of Beijing with the time point of onset. Secondly, we created a geographically 
weighted regression model combining the COVID-19 Outbreak Frequency 
with the external spatial environmental elements of the city. Thirdly, different 
grades of epidemic-affected neighborhoods in the study area were classified 
according to the clustering analysis results. Finally, the correlation between the 
COVID-19 Outbreak Frequency and the internal spatial environmental elements 
of different grades of neighborhoods was investigated using a binomial 
logistic regression model. The study yielded the following results. (i) Epidemic 
outbreak frequency was evidently correlated with the urban external spatial 
environment, among building density, volume ratio, density of commercial 
facilities, density of service facilities, and density of transportation facilities were 
positively correlated with COVID-19 Outbreak Frequency, while water and 
greenery coverage was negatively correlated with it. (ii) The correlation between 
COVID-19 Outbreak Frequency and the internal spatial environmental elements 
of neighborhoods of different grades differed. House price and the number of 
households were positively correlated with the COVID-19 Outbreak Frequency 
in low-end neighborhoods, while the number of households was positively 
correlated with the COVID-19 Outbreak Frequency in mid-end neighborhoods. 
In order to achieve spatial justice, society should strive to address the inequality 
phenomena of income gaps and residential differentiation, and promote fair 
distribution of spatial environments.
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1 Introduction

Currently, humanity has entered a risk society, where major public health events can 
have a significant impact on a country’s social, economic, and political order, jeopardizing 
national security and development. The COVID-19 pandemic has had a profound impact 
on lifestyle and the way urban spaces are used. Researching the spatial distribution of 
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COVID-19 in cities and its driving mechanisms can help uncover 
the transmission mechanisms and diffusion patterns of the 
epidemic, providing a theoretical basis for policy design (1).

The various factors related to epidemic outbreaks are complex, 
and many scholars have conducted research on the spatial distribution 
and transmission patterns of COVID-19 from social, economic, 
climate, and population perspectives (2–4). Some studies have found 
that socioenvironmental factors, including seven variables such as the 
internet development index and literacy index, are related to the 
spatial differentiation of COVID-19 (5). There are also studies that 
focus on the association between meteorological factors such as air 
temperature, wind speed, precipitation, and the spatial distribution of 
COVID-19 cases (6). Some scholars believed that many demographic 
factors are significantly correlated with the spread of COVID-19, such 
as population density and human mobility (7, 8). Many studies have 
demonstrated that the disease was more concentrated in central areas 
with high population density and dense urban land use (9).

In addition, different urban forms and design factors can affect the 
dynamics of epidemics. At the urban level, some studies have shown 
that urban spatial environmental factors such as diversity, destination 
accessibility, distance to transit, design, and density are spatially 
consistent with the spread of COVID-19 (10). Some scholars have also 
compared the differences in the impact of density and connectivity on 
the spatial proliferation of COVID-19 (11). These factors may affect 
the spread of the disease by influencing people’s patterns of interaction 
and spatial usage. At the community level, some scholars believe that 
socio-economic factors and community building environments have 
varying degrees of impact on the outbreak, spread, and residents’ 
health condition and health behaviors related to COVID-19 (12–14). 
For example, factors such as community economic status, housing 
conditions, and medical resources may affect people’s sensitivity to 
and ability to respond to the disease. However, there are also studies 
showing that there is no clear conclusion about any association 
between compact neighborhood design and the transmission of 
infection, and further research is needed (15).

Currently, research on urban factors that influence the outbreak of 
COVID-19 mainly focuses on the level of building environment, and 
does not fully consider other urban spatial environmental factors that 
affect the transmission of COVID-19, such as urban green spaces, water 
bodies, and service facilities. There has also been limited exploration of 
the correlation between built environment elements within communities 
and the outbreak of COVID-19, which still has certain limitations.

On the other hand, current research on the environmental impact 
of COVID-19 often obtains data through questionnaire surveys, and 
uses quantitative methods such as multiple linear regression, logistic 
regression, stepwise regression, and factor analysis to determine the 
factors that influence the outbreak and spread of COVID-19 (16, 17). 
These traditional quantitative methods may neglect the spatial 
differences in factors and regression relationships. Therefore, some 
researchers have conducted spatial heterogeneity analysis using 
geographically weighted regression or studied spatial spillover effects 
using spatial econometric models (18–20). This requires researchers to 
obtain continuous and measurable data within a certain spatial range.

In addition, some scholars have focused on the impact of various 
factors on the COVID-19 mortality rate. Using methods such as 
ordinary least squares, spatial econometric models, geographically 
weighted regression, and machine learning, they have analyzed 
population factors such as population density, age, and ethnicity, 

socio-economic factors such as household income, education, and 
rent, as well as individual health factors such as chronic diseases, 
obesity, and unhealthy lifestyle habits, on the relationship between 
COVID-19 mortality rate (21–23).

Therefore, this study aims to explore the correlation between the 
frequency of COVID-19 outbreaks and urban spatial environmental 
factors such as density, environment, and facilities, as well as the 
relationship with internal spatial environmental factors within 
communities such as housing prices, building age, number of 
buildings, and number of households. Our research results can 
contribute to a better understanding of the spatial environmental 
factors that influence the transmission of epidemics and have 
significant implications for improving urban resilience in responding 
to public health emergencies.

2 Materials and methods

2.1 Selection of indicators

Research on the factors influencing the spread of the pandemic 
has been extensive, and there is a general consensus on the 
conclusions. Factors such as population mobility, population density, 
income, ecological environment quality, and urban built environment 
differences have been found to be correlated with the spread of the 
disease. Furthermore, studies have shown that urban geometry plays 
a more significant role in influencing COVID-19 incidence rates than 
sociodemographic characteristics (24). Refer to the selection of urban 
spatial environmental indicators in other studies and incorporate 
internal environmental indicators (25–27). This study aims to 
comprehensively analyze the correlation between various influencing 
indicators and the COVID-19 pandemic, and provide valuable 
supplements to existing research.

The urban spatial environment was divided into two dimensions: 
External environmental elements and Internal environmental 
elements. The external environment was characterized in terms of six 
elements: Building Density (BD), Volume Ratio (VR), Water and 
Greenery Coverage (WGC), Density of Commercial Facilities (DCF), 
Density of Public Service Facilities (DSF), and Density of 
Transportation Facilities (DTF). Building density and floor area ratio 
can represent the development intensity of a city, while water bodies 
and green coverage can reflect the ecological environment. The density 
of commercial facilities, transportation facilities, and public facilities 
can indicate the correlation between the concentration of the 
population in public service facilities and the outbreak of the pandemic.

At the same time, the internal environment was characterized in 
terms of four elements: Housing Price (HP), Building Age (BA), 
Number of Buildings (NB), and Number of Households (NH). 
Housing prices and building age can partly indicate the economic 
conditions of the community, while the number of buildings and the 
number of households can represent the concentration of people in 
the community (Table 1).

2.2 Data sources

According to the Prevention and Control Program for 
COVID-19 Pneumonia (9th Edition) issued by China’s National 
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Health and Health Commission, to better prevent and control the 
source of infection, home health surveillance was required to 
be conducted for 7 days after COVID-19 patients had recovered 
and been discharged from hospital. In addition, the absence of new 
infections for 7 consecutive days in medium- and high-risk areas 
was considered one of the requirements for the release of risk 
areas. In Beijing, the outbreak records and announcements are 
basically based on a 7-day cycle, and new patients in the affected 
areas will not be announced within 7 days. The lockdown will also 
be  lifted after 7 consecutive days with no new cases reported. 
Therefore, this study used a 7-day cycle to record the location of 
new confirmed cases living in within Beijing’s fifth ring road for a 
total of 53 cycles over approximately 1 year from November 1, 2021 
to November 1, 2022, by searching the Beijing Municipal 
Government Data Resource Network,1 the Beijing Municipal 
Health and Wellness Commission,2 and the Beijing Daily.3 Using 
ArcGIS, the above statistical information corresponded to 2,769 
rectangular cells within the study area of 500 m × 500 m. The 
frequency of outbreaks in each rectangular cell was calculated as 
the mean ratio of the cycles in which new cases were recorded or 
classified as medium- to high-risk areas to all 53 cycles in each 
rectangular cell. It has been confirmed that meteorological factors 
caused by seasonal changes can affect the transmission of COVID-
19, but there was currently a large discrepancy in the conclusions 
of relevant research, and the fundamental reasons for the 
discrepancy were not yet clear (28). For example, some studies 
suggest that high temperatures could limit the spread of COVID-19 
(29–31), while others believed that a decrease in temperature is 
negatively correlated with the spread of COVID-19 (32). Therefore, 
this study used 1 year of epidemic data, which could avoid the 
impact of seasonal weather factors on research results.

1 https://data.beijing.gov.cn/index.htm

2 http://wjw.beijing.gov.cn/wjwh/ztzl/xxgzbd/gzbdyqtb/index.html

3 https://www.bjd.com.cn/index.shtml

Data on BD, VR, DCF, DPSF, DTF, NB, NH, HP and BA were 
obtained from Gaode Map.4 In this study, ArcGIS is used to calculate 
the building density and plot ratio based on building outlines and 
building height data, and the density is calculated based on the 
quantity of various public service facilities. Data on WGC were 
obtained from the Landset-8 satellite remote sensing map in the 
Chinese Academy of Sciences Geospatial Data Cloud for July 2020.5 
The supervised classification tool of ArcGIS is used to extract the 
water area and green space coverage range and further calculate their 
area and coverage ratio.

2.3 Evaluation methodology

This study aims to investigate the mechanism of the impact of 
urban spatial environment on the frequency of COVID-19 outbreaks. 
Firstly, geographically weighted regression is used to explore the role 
of external spatial environmental factors in COVID-19 and their 
spatial variations. Then, cluster analysis is applied to classify the 
affected communities, followed by logistic regression to examine the 
influence of internal environmental factors on the frequency of 
COVID-19 outbreaks (Figure 1).

2.3.1 Geographically weighted regression
In this study, Geographically Weighted Regression (GWR) was 

used to investigate the influence of urban spatial environmental 
elements on the COVID-19 outbreaks frequency at different 
spatial locations.

GWR is an extended model of multiple linear regression, which 
can create a local regression equation for each point in the range of the 
model. GWR introduces a spatial weight function to estimate the 
different relationships between variables in different regions based on 

4 https://www.amap.com/

5 https://www.gscloud.cn/

TABLE 1 Selection of indicators and data source.

First-level 
indicator

Second-level 
indicator

Third-level indicator
Unit of 
measurement

Source

Urban spatial 

environment

External spatial 

environmental

Building Density (BD) % https://www.amap.com/

Volume Ratio (VR) % https://www.amap.com/

Water and Greenery Coverage (WGC) % https://www.gscloud.cn/

Density of Commercial Facilities (DCF) per 1/4 square kilometer https://www.amap.com/

Density of Service Facilities (DSF) per 1/4 square kilometer https://www.amap.com/

Density of Transportation Facilities (DTF) per 1/4 square kilometer https://www.amap.com/

Internal spatial 

environment

Housing Price (HP) RMB¥ https://www.amap.com/

Building Age (BA) Year https://www.amap.com/

Number of Buildings (NB) Units https://www.amap.com/

Number of Households (NH) Units https://www.amap.com/

COVID-19 outbreak frequency Times

https://data.beijing.gov.cn/index.htm

http://wjw.beijing.gov.cn/wjwh/ztzl/xxgzbd/gzbdyqtb/

index.html

https://www.bjd.com.cn/index.shtml
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spatial variability to better characterize the quantitative relationships’ 
spatial variation (33). The GWR equation is as follows (Eq. 1):

 
y u v u v Xi i i

k

m
k i i ik i� � � � � � �

�
�� � �0

1

, ,

 
Eq.1

where yI  is the COVID-19 outbreak frequency at spatial position 
u ,vi i� �, Xik  denotes the BD, VR, WGC, DCF, DPSF, DTF at spatial 

position u ,vi i� �, �0 u ,vi i� �  is the intercept term of the regression 
relationship, �k i iu ,v� �  is the regression coefficient of the kth 
independent variable at spatial position u ,vi i� �, which is a continuous 
function of spatial position u ,vi i� �, and µi is a mutually independent 
random error term.

2.3.2 Cluster analysis
In this study, clustering analysis was used to study the division of 

different clusters of neighborhoods that had been affected by COVID-19 
epidemic to subsequently study the relationship between the frequency of 
epidemic outbreaks in different clusters of neighborhoods and the 
environmental elements within each cluster of neighborhoods.

Cluster analysis is an important computational method in data 
mining, which uses the relationships between sample data variables to 
represent the relationships between samples. Through clustering, the 
same or similar objects can be classified into a cluster, and the average 
center of objects belonging to the same cluster can be taken as the 
center of the cluster. The cluster centers can reflect the common 
properties of the objects in the cluster. The relationships between 
cluster centers can be calculated to determine the difference between 
different clusters (34, 35).

2.3.3 Binomial logistic regression
In this study, Binomial Logistic Regression (BLR) was used to find 

the key environmental elements that influence the frequency of 
epidemic outbreaks.

BLR is a classification model represented by a conditional 
probability distribution P(Y|X) in the form of a parametric logistic 
distribution. Here, the random variable X takes the value of a real 
number, and the random variable Y takes the value of 1 or 0. 
We classified the presence or absence of an epidemic as 1 or 0. The 
binomial logistic regression model was the following conditional 
probability distribution (36, 37) (Eqs. 2, 3).

 
P Y x

w x b
w x b

�� � � �� �
� �� �

1
1

|
·

·

exp

exp
 

Eq.2

 
P Y x

w x b
�� � �

� �� �
0

1

1
|

·exp
 

Eq.3

Here, x ∈ Rn is the input, Y ∈ (1) is the output, w ∈ Rn and b ∈ R are 
the parameters, w is called the weight vector, b is called the bias, and 
w∙x is the inner product of w and x.

For a given input instance x, P(Y = 1|x) and P(Y = 0|x) can 
be found according to Eqs. 2 and 3. The logistic regression compares 
the magnitude of the two conditional probability values and assigns 
the instance x to the class with the larger probability value.

For convenience, the weight vector and the input vector can 
be expanded; they are still denoted as w, x, i.e., w = (w(1),w(2),...,w(n),b)
T, x = (x(1),x(2),...,x(n),1)T. The logistic regression model is then as 
follows (Eqs. 4, 5):
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FIGURE 1

Evaluation methodology.
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3 Results and analysis

3.1 Correlation analysis of COVID-19 
outbreak frequency and external spatial 
environment

3.1.1 Analysis of urban spatial environmental 
characteristics

In the analysis of urban spatial environmental characteristics, the 
main urban spatial elements studied comprised BD, VR, WGC, DCF, 
DSF, and DTF. ArcGIS was used to establish 500 m × 500 m rectangular 
cells covering the study area, and the building density and volume 
ratio within the rectangular cells were calculated using building 
outline and building height data from Gaode Map. In addition, 
we calculated the density of commercial facilities, service facilities, 
and transportation facilities. Based on a Landset-8 satellite remote 
sensing map for July 2020 from the Geospatial Data Cloud of the 
Chinese Academy of Sciences, surface cover extraction was performed 
using the supervised classification method to calculate the coverage of 
waters and greenery within the rectangular cells.

The BD and VR of the study area showed a spatial pattern of high 
in the middle and low in the surrounding areas. The areas with the 
highest BD were mainly concentrated within the second ring road, or 
in the northeastern and northwestern parts of Beihai Park; there were 
more points with high BD scattered around the southern fifth ring. 
The areas with higher VR were scattered between the second and 
fourth rings, while the overall VR in the old city within the second 
ring and outside the fourth ring were lower.

The spatial pattern of WGC in the study area was low in the 
central part and high in the surrounding areas, which was opposite to 
the spatial distribution pattern of BD and VR in the study area. The 
areas with the highest levels of WGC were the Summer Palace and 
Olympic Forest Park near the North 5th Ring Road, the Nanyuan 
Forest Wetland Park and several country parks near the South 5th 
Ring Road, followed by the Chaoyang Park area near the Northeast 
4th Ring Road, the Lize Financial and Business District near the 
Southwest 3rd Ring Road, and the Temple of Heaven Park and the Six 
Seas area near the 2nd Ring Road.

The DCF and DSF in the study area showed a spatial pattern of 
high density in the northwest, a scattered distribution in the southeast, 
and low density in other areas. DCF and DSF facilities were mainly 
concentrated in Xicheng District, Dongcheng District and Haidian 
District, and the areas with the highest facility rates were scattered 
within the second ring road and the northwest section between the 
third and fourth ring roads. The next highest density of DSF was in 
the Chaoyang District near the East 4th Ring Road, which showed a 
distribution pattern extending eastward. Areas with high-DCF and 
high-DSF were scattered in a dotted pattern near the fifth ring road in 
the southeast. The DTF was also higher in the northwest, lower in 
other areas, and scattered in the southeast, but these facilities were 
mainly concentrated on either side of the northwest ring road and 
near the main transportation space. Their distribution pattern was 
circular, following the circular road network (Figure 2).

3.1.2 Analysis of spatial characteristics of 
COVID-19 outbreak frequency

In the analysis of the spatial characteristics of COVID-19 outbreak 
frequency, 500 m × 500 m rectangular cells covering the study area was 

established using ArcGIS, and the outbreak frequency within the 
rectangular cells was calculated based on the Beijing Municipal 
Government Data Resource Network, the Beijing Municipal Health 
and Wellness Commission, and Beijing Daily Public by recording 
information on the locations of the residential neighborhoods with 
new daily confirmed cases within Beijing’s fifth ring road from 
November 2021 to October 2022, as well as the locations of medium- 
and high-risk areas.

In terms of its spatial pattern, outbreak frequency was lower in the 
central and peripheral segments and higher in the remaining segments 
of the study area. The highest outbreak frequencies were mainly 
concentrated in the areas outside the South Second Ring Road, with 
the highest in Chaoyang District, followed by Shijingshan and Daxing 
Districts, and scattered in the northwest part of Xicheng District and 
Haidian District (Figure 3).

3.1.3 Geographically weighted regression analysis 
of COVID-19 outbreak frequency and external 
spatial environment

The global spatial autocorrelation analysis was conducted on 
the frequency of COVID-19 outbreaks in the study area, along with 
external spatial environmental indicators. Global spatial 
autocorrelation is a comprehensive measure of spatial data for the 
entire study region. It is used to reflect whether spatial data exhibits 
clustering or dispersal trends, as well as the strength and significance 
of these trends. The Moran Index is the ratio of covariance to 
variance, taking into account spatial location relationships, and it 
represents the spatial autocorrelation coefficient. Moran’s I index 
values can be bounded to the range − 1.0 to +1.0 when the weights 
are row standardized, An index score higher than 0.3 is an 
indication of relatively strong positive autocorrelation. A small 
value of p (usually p < 0.05) indicates that we can reject the null 
hypothesis of complete spatial randomness and accept that spatial 
autocorrelation exists, and z-score values are indicative and can 
be differentiated based on data (38). The results showed that the 
Moran’s I indexes of all indicators were more than 0.3, the z-score 
values were greater than 0, with a value of p less than 0.001, 
indicating that the global spatial autocorrelation of the outbreak 
frequency was highly significant and exhibits a strong positive 
correlation in space.

A test was conducted on the multicollinearity of six indicators in 
the study area: building density, plot ratio, water and green coverage, 
commercial facility density, public service facility density, and 
transportation facility density. Variance inflation factor (VIF) is a 
measure that assesses the severity of multicollinearity in a multiple 
linear regression model. It represents the ratio of the variance of the 
regression coefficient estimate to the variance assuming non-linear 
dependence between the independent variables. The VIF values for all 
indicators were less than 5, indicating that there is little or no 
multicollinearity problem (39) (Table 2).

The COVID-19 outbreak frequency in a total of 2,769 rectangular 
cells of 500 m × 500 m within the study area was used as the dependent 
variable. Six indicators, including BD, VR, WGC, DCF, DSF, and DTF, 
were used as independent variables to construct a GWR model. The 
measured coefficients, R2 and adjusted R2, of the GWR model were 
0.79 and 0.74, respectively. Both were greater than 0.7 and the absolute 
values of the regression coefficients of each element were large, 
indicating that the GWR model had a strong explanatory effect. There 
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was a significant correlation between the frequency of epidemic 
outbreaks and the external spatial environment (Table 3).

The results of the local R2 and regression coefficients in the 
geographically weighted regression model show that the local R2 can 
explain the degree of fit of the model in different spatial areas, ranging 
from 0.009 to 0.574, with a large difference. This indicates significant 
spatial heterogeneity in the relationship between COVID-19 outbreak 
frequency and external spatial environmental factors. In terms of spatial 
distribution, high-value points are mostly clustered in the southwest of 
the central Xicheng District, the southern part of the Dongcheng District, 
as well as the western part of the Fengtai District, the southern part of the 
Daxing District, and the northwest part of the Chaoyang District.

The regression coefficients represent the degree of influence of the 
indicators on COVID-19 outbreak frequency. Among them, the 
regression coefficients of BD, VR, DCF, DSF, and DTF were mostly 
positive in spatial distribution, with positive average values. This 
indicated a positive overall correlation between these five factors and 
COVID-19 outbreak frequency within the study area. The regression 
coefficient of BD had a significantly high-value area in the central part 
of the Dongcheng District, where both BD and outbreak frequency 
were high, indicating a significant positive correlation. The regression 
coefficients of VR were at a medium to high level in the central, 
northwest, and southeast parts of the study area, with extremely high 
values in the southern part of Daxing and the eastern part of 

FIGURE 2

Results of analysis of urban spatial environmental characteristics BD (A), VR (B), WGC (C), DCF (D), DPSF (E), DTF (F).
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Chaoyang, where both VR and COVID-19 outbreak frequency were 
high. The areas with extremely high values for the regression 
coefficient of DCF were mostly clustered in the northern and southern 
parts of the Chaoyang District and the southern part of the Xicheng 
District. The regression coefficients of DSF and DTF showed similar 
trends in spatial distribution, with extremely high values in the 
southern part of the study area. The regression coefficients of WGC 
were mainly negative, with negative average and median values, 
indicating a negative correlation between this factor and COVID-19 
outbreak frequency within the study area. Low-value areas were 
mostly located in the area between the second and fifth ring roads in 
the northern part, and there was also an extremely low point in the 
central Xicheng District, where there were large parks (Figure 4).

To better understand the regression effect of GWR, we plotted the 
spatial distribution map of standardized residuals and estimated 
spatial autocorrelation using local Moran’s I  to track potential 
clustering in the residuals. The results indicated that the residuals were 
not significant in the majority of the areas and were randomly 
dispersed. This suggested that GWR had addressed the spatial 
heterogeneity issue in most locations. However, there were also some 
regions where clustering and spatial outliers were present, indicating 
that cells with significantly high residuals were adjacent to cells with 
significantly low residuals (Figure  5). This pattern had also been 
observed in other studies analyzing COVID-19 using spatial 

regression methods, which could be explained by the presence of 
spatial heterogeneity in certain areas or the need to include additional 
variables in the model (40, 41).

3.2 Correlation analysis of COVID-19 
outbreak frequency and internal spatial 
environment

3.2.1 Cluster analysis
Cluster analysis was mainly to divide the research objects into 

several clusters, and to conduct binary logistic regression for each 
cluster separately, in order to determine the correlation between 
different characteristics such as house prices, construction ages, 
number of buildings, number of households and the frequency of 
COVID-19 outbreak in communities. Using SPSS software, K-means 
cluster analysis was conducted for 344 epidemic-affected 
neighborhoods in the study area. K-means clustering is a commonly 
used partitioning clustering method that is efficient and easy to 
implement. Given a dataset and the desired number of clusters K, the 
user needs to specify the value of K, which represents the number of 
clusters. This algorithm, using various distance functions, iteratively 
calculates and assigns data points to K clusters automatically. We used 
four elements, including HP, BA, NB, and NH, to cluster the disease-
related neighborhoods.

In order to determine the optimal number of clusters for our 
analysis, we employed the elbow method. We calculated the sum of 
squared errors (SSE) for a range of potential cluster numbers and 
plotted the SSE values against the number of clusters. By observing the 
plot, we identified the “elbow point” where the SSE started to level off. 
In our case, this occurred at a cluster number of 3, indicating that 
further increasing the number of clusters did not significantly reduce 
the SSE. Therefore, we concluded that 3 clusters were appropriate for 
our analysis. It is worth noting that the elbow method is a widely used 
approach for determining the optimal number of clusters, providing 
a balance between model complexity and goodness of fit.

The clustering results were obtained by K-means calculation. The 
final clustering centers for HP, BA, NB, and NH in the first cluster 
were at 54,892, 1,991, 18, and 1,904, respectively; in the second cluster, 
the clustering centers of HP, BA, NB, and NH were 81,800, 1,986, 14, 
and 1,392, respectively; in the third cluster, the clustering centers of 
HP, BA, NB, and NH were 107,399, 1,986, 16, and 1,204, respectively. 
In the three clusters, the mean differences were significantly different 
and showed an increasing trend, indicating that clusters 1, 2, and 3 
characterized low-end, mid-end, and high-end neighborhoods, 
respectively. Based on the number of cases in each cluster, 185, 101, 
and 58 low-end, mid-end, and high-end neighborhoods, respectively, 
were involved in the epidemic within the study area.

The clustering results showed that low-end neighborhoods 
generally have lower HP, later BA, more NB and NH. Mid-end 
neighborhoods often have moderate HP and oNH, earlier BA, and 
fewer NB. High-end neighborhoods, on the other hand, generally have 
higher HP, earlier BA, more NB and fewer NH (Table 4).

3.2.2 Correlation analysis of COVID-19 outbreak 
frequency and internal spatial environment

Based on the results of the above cluster analysis, epidemic-
affected neighborhoods in Beijing were classified into three classes: 

FIGURE 3

Spatial distribution of COVID-19 outbreak frequency.

TABLE 2 Global spatial autocorrelation significance and multiple 
collinearity test.

Projects Moran’s I z p VIF

The COVID-19 outbreak 

frequency
0.827 85.905 0.000 –

BD 0.465 48.328 0.000 1.508

VR 0.594 61.682 0.000 1.471

WGC 0.572 59.423 0.000 1.430

DCF 0.498 51.821 0.000 1.783

DSF 0.700 72.717 0.000 1.971

DTF 0.400 41.562 0.000 1.425
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low-end, mid-end, and high-end. Their outbreak frequencies were 
analyzed separately to investigate the correlation between outbreak 
frequency in different classes of residential neighborhoods and four 
representative internal environmental factors, including HP, BA, 
NB, and NH.

 (1) Correlation between COVID-19 outbreak frequency and the 
internal spatial environment in low-end neighborhoods

First, the COVID-19 outbreak frequency was assigned to the 
low-end neighborhoods according to the dichotomous method, and 

TABLE 3 GWR model determination coefficients.

R2 R2 adjusted AICc Residual squares Bandwidth (km)

0.792374 0.735484 −4862.462265 19.40998 1717.829009

Projects Average value Median Maximum value Minimum value

Local R2 0.178944 0.168504 0.574433 0.008505

BD 0.093273 −0.061378 1.984351 −1.200134

VR 0.023199 0.024738 0.444783 −0.4181

WGC −0.022804 −0.023266 0.584145 −0.543087

DCF 0.292249 0.053153 1.420713 −0.98085

DSF 0.036014 0.029701 3.324738 −3.515115

DTF 0.385493 0.082922 16.427417 −11.016806

FIGURE 4

Geographically weighted regression model local R2 (A), regression coefficients of BD (B), VR (C), WGC (D), DCF (E), DSF (F), DTF (G).

https://doi.org/10.3389/fpubh.2023.1287999
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yang et al. 10.3389/fpubh.2023.1287999

Frontiers in Public Health 09 frontiersin.org

the neighborhoods where the COVID-19 outbreak frequency was 
greater than 0.019 was assigned a value of 1, and the opposite was 
assigned a value of 0. Second, the assigned Outbreak Frequency was 
logistically regressed with the above four representative internal 
environmental factors, and the results showed a significance of 0.730. 
This was greater than the comparative value of 0.05, indicating that 
there was no significant difference between the predicted and true 
values and the model fit was good (42).

Next, the regression equation model was established using the 
best predictive elements. A total of four urban spatial environmental 
factors affecting the probability of events were selected. After the 
model had been tested and screened, the significance of HP and NH 
in the model was <0.05, which passed the significance test and was 
entered into the equation (Table  5). We  then concluded that the 

frequency of epidemic outbreaks in low-end neighborhoods was 
positively correlated with HP and the NH: the higher the HP and the 
larger the NH, the more frequent the epidemic outbreaks.

 (2) Correlation between COVID-19 outbreak frequency and the 
internal spatial environment in mid-end neighborhoods

First, the COVID-19 outbreak frequency was assigned to the 
middle-grade neighborhoods according to the dichotomous method, 
and the neighborhoods where the COVID-19 outbreak frequency was 
greater than 0.019 was assigned a value of 1, and the opposite was 
assigned a value of 0. Second, the assigned Outbreak Frequency was 
logistically regressed against the above four representative internal 
environmental factors, and the results showed a significance of 0.853. 
This is greater than the comparative value of 0.05, indicating that there 
was no significant difference between the predicted and true values 
and the model fit was good.

Next, the regression equation model was established using the 
best predictive elements. A total of four urban spatial environmental 
elements that affected the probability of events were selected. After the 
model had been tested and screened, the significance of the NH in the 
model was <0.05, which passed the significance test and was entered 
into the equation (Table  6). We  concluded that the frequency of 
epidemic outbreaks in mid-range neighborhoods was positively 
correlated with the NH: the more households, the more COVID-19 
outbreak frequency.

 (3) Correlation between COVID-19 outbreak frequency and the 
internal spatial environment in high-end neighborhoods

First, epidemic COVID-19 outbreak frequency was assigned to 
cluster 1 if it was greater than 0.019 and 0 if it was greater than 0.019. 
Second, the assigned COVID-19 outbreak frequency was logistically 
regressed against the above four representative internal environmental 
factors, and the results showed a significance of 0.036 (Table 7). As this 
is less than the comparative value of 0.05, we concluded that there was 
a significant difference between the predicted and true values and the 
model fit was poor. Therefore, there was no significant correlation 

FIGURE 5

The spatial distribution of the standardized residues (A), and the spatial autocorrelation (B).

TABLE 4 Final clustering centers.

Clustering

1 2 3

HP 54,892 81,800 107,399

BA 1991 1986 1986

NB 18 14 16

NH 1904 1,392 1,204

Distance

1 2 3

1 26912.940 52511.492

2 26912.940 25599.441

3 52511.492 25599.441

Case items

1 185.000

2 101.000

3 58.000

Effective 344.000

Missing 0.000
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between the COVID-19 outbreak frequency and the HP, BA, NB, and 
NH in high-end neighborhoods.

4 Discussion

4.1 Correlation of COVID-19 outbreak 
frequency and external spatial environment 
from the perspective of spatial justice

In regards to the correlation analysis between the COVID-19 
outbreak frequency and urban external spatial environment, GWR 
regression results indicated a significant correlation between the 
urban spatial environmental factors and COVID-19 outbreak 
frequency. Building density, volume ratio, density of commercial 
facilities, density of service facilities, and density of transportation 
facilities showed a positive correlation with COVID-19 outbreak 
frequency, as these factors can increase population mobility and 
contact opportunities, therefore increasing the risk of disease spread. 
Water and green coverage had a negative correlation with epidemic 
outbreaks, as they provided better air quality, reduced pollution, and 
the opportunity for disease spread.

From the perspective of spatial justice, these research results 
remind us of the need to consider principles of fairness and sustainable 
development in urban planning and development. Urban spatial 
environmental planning should strive to achieve a fair distribution of 
resources, ensuring that all residents can enjoy good living conditions 
and a healthy environment. For example, water and green coverage 
have a significant negative impact on epidemic outbreaks, so 
increasing water and green coverage in high-density building areas 
can improve air and environmental quality.

Studies have shown that urban green space planning is particularly 
important for inhibiting the spread and diffusion of epidemics in 
cities, and establishing an integrated green open space system can 
effectively improve urban environments, enhancing the ability of cities 
to respond to epidemics and climate natural disasters (43, 44). On the 

other hand, even with restrictions caused by epidemics, people’s 
demand for outdoor green spaces is still significant, and landscapes 
and plants can relieve users’ moods and have a positive effect on post-
illness recovery (45–47).

Compared with previous studies, this research focuses on the 
green and water coverage extracted from satellite imagery. While 
previous studies primarily relied on park greenery points of interest 
(POI) (48, 49), the findings of this study demonstrate that in addition 
to park green spaces, environmental factors such as road greening and 
community greening also have a positive effect on impeding the 
spread of epidemics. Therefore, attention should be given to spatial 
justice issues regarding green infrastructure, as well as the planning, 
design, and utilization of informal blue-green spaces outside of parks. 
By narrowing the inequalities in urban greening, it is possible to 
ensure equal opportunities for urban residents to enjoy green 
resources and establish a balanced, inclusive, hierarchically classified, 
highly accessible, and efficient blue-green space system (50).

Places where people gather in large numbers, such as commercial 
and service facilities, are more likely to promote the spread of COVID-
19, often becoming the first outbreak site, and leading to pandemics 
in other areas of the city due to population density (51, 52). Regions 
with high building density and floor area ratio also tend to create 
population density, and the higher the aggregation degree of urban 
space, the more likely it is to be  an enclosed space with poor 
ventilation, which promotes the spread of viruses (53, 54). The city’s 
vulnerability to various external shocks, especially sudden shocks, 
increases and urban safety risks become higher.

The spatial distribution of facility distribution and construction 
density in Beijing addressed in this study was highly uneven, resulting 
in a non-uniform spatial distribution of population. This not only 
affected the daily living experience of residents, but also had a 
significant adverse impact on epidemic prevention and control 
(55, 56).

In the central urban area within the second ring road of Beijing, 
the living style adopted a high-density hutong-like residential form. 
In this living style, the community had narrow roads and dense 

TABLE 5 Hosmer-Lemeshaw test and introduction of covariates in the model of low-end neighborhoods.

Card side Degree of freedom Significance

5.258 8 0.730

B Significance Significance

Enter the equation 

elements

HP 0.000*** 0.034
Not entered into the 

equation elements

BA 0.777

NB 0.000*** 0.037 NH 0.916

Constants 0.936

Note: *** represents significance level of 1% respectively.

TABLE 6 Hosmer-Lemeshaw test and Introduction of covariates in the model of mid-end neighborhoods.

Card side Degree of freedom Significance

4.043 8 0.853

B Significance Significance

Enter the equation 

elements

NB 0.001*** 0.035

Not entered into the 

equation elements

HP 0.718

BA 0.552

NH 0.543

Constants 0.555

Note: *** represents significance level of 1% respectively.
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housing, and there might be facilities with a high risk of transmission, 
such as shared kitchens and public toilets. This undoubtedly posed 
challenges to epidemic prevention and control. On the other hand, 
being a vast city, Beijing attracted a large number of migrants, and the 
number of migrants had been increasing year after year. Influenced by 
high housing prices, many migrants chose to rent housing, often in 
the form of shared apartments with multiple occupants. This led to the 
concentration of populations in relatively small living spaces, 
facilitating the spread of epidemics (57).

Furthermore, some studies have found that in the short term, 
epidemic occurrences and spread are often associated with large-scale 
commercial markets. These markets typically involved significant 
movements of people and goods (58–60). Particularly as the core city 
in the Beijing-Tianjin-Hebei urban agglomeration, large-scale 
commercial markets and transportation hubs in Beijing became 
centers for the dispersal of people and goods in the metropolitan area, 
resulting in a high frequency and rapid spread of epidemics over a 
wide area (61, 62). Therefore, it is important to pay attention to the 
popularization of public service facilities, fully consider the needs and 
accessibility of residents in the layout of facilities, reduce high-density 
urban development, and avoid the concentration of human flow. This 
can reduce the inequality of resources and services and improve the 
public welfare of residents.

4.2 Correlation of COVID-19 outbreak 
frequency and internal spatial environment 
from the perspective of spatial justice

According to the analysis of the correlation between the 
COVID-19 outbreak frequency and the internal spatial environment 
of cities, the COVID-19 outbreak frequency is significantly correlated 
with the internal environment of low-end and mid-end, while it is not 
significantly correlated with the internal environment of high-end. 
This may mean that there are some factors in the internal environment 
of low-end and mid-end that are not conducive to interrupting the 
transmission of diseases.

The key to understanding spatial justice is recognizing that the 
unequal distribution of spatial resources and services within cities can 
lead to inequality among social groups. In this case, low-end and 
mid-end may face a higher risk of epidemic outbreaks because they 
may not have access to the favorable internal environmental 
conditions found in high-end (63, 64). Research has shown that the 
age of community construction can affect the degree of spatial 
openness, with older communities being much more exposed than 
newly built ones. Characteristics such as the age, quality, property 
level, and spatial environment of a community can be  used to 
differentiate between different grades, and thus their correlation with 
the frequency of epidemic outbreaks may vary (65–67).

Many existing studies indicate that economic inequality between 
communities often leads to disparities in material spatial environment 
and access to public infrastructure and services, resulting in 
neighborhood deprivation. This phenomenon is manifested in 

communities of different races, ages, genders, and economic structures 
(68–72). Compared to other related studies focusing on the urban 
environmental impact of epidemics in developing countries and 
regions in Asia, Africa, and Latin America, this study chose Beijing, 
which is a relatively developed city, but still suffers from unbalanced 
urban space and community development. As a developing country’s 
city, research on Beijing could illustrate that income gaps among 
residents have caused spatial residential differentiation, resulting in 
differences in the spatial environment within and surrounding 
different income groups’ residential areas. This might even affect the 
resilience and robustness of different income groups to epidemics.

The COVID-19 outbreak frequency in low-end is positively 
correlated with housing prices and the number of households. This 
may be due to the fact that low-end are often located in remote areas, 
where the population consists mainly of low-income individuals who 
need to commute for longer distances. As the distance and commuting 
time increase while the housing prices decrease, the number of 
households and population density relative to the area may decrease, 
thus reducing the likelihood of residents getting infected and leading 
to lower outbreak frequencies. The COVID-19 outbreak frequency in 
medium-end is positively correlated with the number of households 
and population density. The more households there are within a 
neighborhood, the higher the population density becomes. Since the 
primary transmission pathways of COVID-19 are related to gatherings 
in households and various types of public spaces, an increase in the 
number of households leads to higher population mobility and 
frequency of gathering in public places, resulting in higher outbreak 
frequencies. On the other hand, the COVID-19 outbreak frequency 
in high-end showed no significant correlation with the internal 
environment, possibly due to stricter control measures and relatively 
well-equipped healthcare facilities, which effectively prevent and 
control the outbreak of epidemics.

The conclusions of this study can provide new insights for 
epidemic prevention and control in densely populated developing 
countries, including Beijing, China, and even in Asia. In order to 
achieve spatial justice, society should strive to address the inequality 
phenomena of income gaps and residential differentiation, and 
promote fair distribution of spatial environments. This includes 
providing sufficient medical resources and healthcare facilities, 
improving internal environmental conditions in low-income and 
middle-income communities, reducing the risk of disease outbreaks, 
and ensuring that all social groups have equal access to urban spatial 
resources and services.

5 Conclusion

This study used Geographically Weighted Regression, cluster 
analysis, Binomial Logistic Regression, and BP neural network to 
investigate the correlation between COVID-19 outbreak frequency 
and the internal and external spatial environment of cities. We drew 
the following conclusions.

Firstly, the results of the GWR showed that the COVID-19 
outbreak frequency was evidently correlated with the external spatial 
environment of the city. Elements of the urban external spatial 
environment, such as building density, volume ratio, density of 
commercial facilities, density of service facilities, and density of 
transportation facilities, were positively correlated with COVID-19 

TABLE 7 Hosmer-Lemeshaw test of high-end neighborhoods.

Card side Degree of freedom Significance

16.518 8 0.036
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outbreak frequency, while water and greenery coverage was negatively 
correlated with COVID-19 outbreak frequency.

Secondly, the correlation between the COVID-19 outbreak 
frequency and the internal spatial environmental elements of the 
neighborhood varied among different grades of neighborhoods. The 
COVID-19 outbreak frequency in low-end neighborhoods was 
significantly correlated with the internal spatial environmental factors, 
among which house price and the number of households were 
positively correlated with the COVID-19 outbreak frequency. The 
higher the house prices and the more households in low-end 
neighborhoods, the more frequent the epidemic outbreaks. The 
COVID-19 outbreak frequency in mid-end neighborhoods was 
significantly correlated with internal spatial environmental factors. 
The number of households in mid-end neighborhoods was positively 
correlated with the COVID-19 outbreak frequency. The larger the 
number of households, the more frequent the epidemic outbreaks. 
There was no significant correlation between the COVID-19 outbreak 
frequency in high-end neighborhoods and the internal spatial 
environmental elements of these neighborhoods.

Finally, to optimize urban spatial environment and reduce the 
spread of the COVID-19 pandemic, measures can be taken in terms 
of density, green spaces, public service facilities.

Density: Implement urban planning policies to promote balanced 
population density distribution and avoid overcrowding in certain areas. 
Encourage mixed land-use development to create diverse and well-
connected. Improve transportation infrastructure to reduce congestion 
and crowded public spaces. Promote remote work and flexible working 
hours to reduce commuting and crowded public transportation.

Green Spaces: Increase the availability and accessibility of green 
spaces, such as parks, gardens, and urban forests, in all. Enhance the 
maintenance and cleanliness of existing green spaces to encourage 
their utilization by residents. Promote rooftop gardens and vertical 
greenery to optimize limited urban space.

Public Service Facilities: Ensure equitable distribution of essential 
public service facilities, such as healthcare centers, hospitals, and 
testing centers, across all. Improve the capacity and efficiency of 
healthcare facilities to handle a surge in the number of cases. Enhance 
sanitation and hygiene infrastructure, including public restrooms and 
handwashing stations, especially in densely populated areas.

These measures can contribute to optimizing the urban spatial 
environment, reducing the transmission of the COVID-19 pandemic, 
and promoting more equitable and resilient urban communities.
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