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Introduction: Given the rapid geographic spread of dengue and the growing 
frequency and intensity of heavy rainfall events, it is imperative to understand the 
relationship between these phenomena in order to propose effective interventions. 
However, studies exploring the association between heavy rainfall and dengue 
infection risk have reached conflicting conclusions, potentially due to the neglect 
of prior water availability in mosquito breeding sites as an effect modifier.

Methods: In this study, we addressed this research gap by considering the impact 
of prior water availability for the first time. We measured prior water availability as 
the cumulative precipitation over the preceding 8 weeks and utilized a distributed 
lag non-linear model stratified by the level of prior water availability to examine 
the association between dengue infection risk and heavy rainfall in Guangzhou, a 
dengue transmission hotspot in southern China.

Results: Our findings suggest that the effects of heavy rainfall are likely to be modified 
by prior water availability. A 24–55 day lagged impact of heavy rainfall was associated 
with an increase in dengue risk when prior water availability was low, with the greatest 
incidence rate ratio (IRR) of 1.37 [95% credible interval (CI): 1.02–1.83] occurring at a 
lag of 27 days. In contrast, a heavy rainfall lag of 7–121 days decreased dengue risk 
when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43–
0.79), occurring at a lag of 45 days. 

Discussion: These findings may help to reconcile the inconsistent conclusions 
reached by previous studies and improve our understanding of the complex 
relationship between heavy rainfall and dengue infection risk.
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1 Background

Dengue is a viral infection caused by the dengue virus and 
transmitted by Aedes aegypti and Ae. Albopictus mosquitoes (1). The 
burden of disease attributed to dengue has increased drastically over 
the past two decades, with the number of cases reported to World 
Health Organization increasing from 0.5 million cases in 2000 to 5.2 
million in 2019 (2). Moreover, the true dengue disease burden is likely 
to be  substantially higher than the reported. Modeling and 
seroprevalence studies indicate that about 75% of dengue infections 
may be missed by the surveillance system once they do not present 
noticeable symptoms (3, 4).

Although a commercial vaccine is available, its application is 
limited to those who have had prior dengue infection, since the 
vaccine may increase the risk of severe dengue among those who have 
not been previously infected (5). As a result, vector control measures 
remain the primary means for prevention of dengue outbreaks. 
Therefore, having accurate knowledge of the environmental 
determinants of mosquito proliferation and dengue virus transmission 
is essential for reducing the burden of dengue via the design of 
appropriate vector control measures.

The vectors for dengue, mosquitoes of the genus Aedes, undergo 
four distinct life stages: the aquatic egg, larva and pupa stages, and the 
terrestrial adult stage (Figure 1). The rate of development between 
these stages and the mortality rate at each stage depend heavily on 
temperature and rainfall through complex pathways (8). Higher 
temperatures can accelerate mosquito development and reproduction, 

as well as viral replication within mosquitoes, potentially raising the 
risk of dengue infection (Figure 1). Higher temperatures can also 
increase mosquito mortality, potentially reducing the risk of 
transmission (8). Similarly, rainfall has been shown to increase dengue 
risk by providing additional water for mosquito breeding sites, thereby 
increasing the environmental capacity for the immature aquatic life 
stages of mosquitoes (9). On the other hand, it can flush out immature 
mosquitoes from their breeding sites, thereby impeding the 
transmission of dengue when the water level in breeding sites is 
already close to maximum capacity, as demonstrated by field and 
laboratory experiments (10).

The number of previous studies that have investigated the impact 
of heavy rainfall events on dengue risk have been limited and have 
reached inconsistent conclusions. Using data from 35 provinces in 
Southeast Asia, Wang et al. found that extreme rainfall was associated 
with a 25 percent reduction in dengue risk (RR: 0.75, 95% CI: 0.62–
0.90) compared to no rainfall (11). Conversely, studies in Asia 
observed a positive association between heavy rainfall and dengue risk 
(12–15). However, none of the studies mentioned above stratified the 
analyses by prior water availability, and many were constrained by 
their reliance on data with low temporal resolution (i.e., weekly or 
monthly, instead of daily), as well as their limited consideration of the 
effects of heavy rainfall across multiple time lags.

In this study, we examined the relationship between heavy rainfall 
and dengue risk using a distributed lag non-linear modeling approach 
taking into consideration interactions between heavy rainfall events 
and prior water availability. Using data on the daily number of dengue 

FIGURE 1

Life stages of the Aedes mosquitoes and the transmission of dengue virus. Aedes mosquitoes have four distinct life stages, including the aquatic egg, 
larva, and pupa stages, and the terrestrial adult stage. Upon emergence, female adults seek mates and blood meals before laying eggs. They can 
become infected with dengue virus by feeding on an infectious human, and, following an incubation period, can transmit the virus to other susceptible 
humans during subsequent blood meals. Times required for completion of each stage of the cycle at varying temperatures were estimated from 
enzyme kinetics models fitted to data collected from laboratory studies (6), except for the intrinsic incubation period, which was obtained directly from 
Chan and Johansson (7). The figure displays times required at 17, 26, and 32°C, which represent the minimum, average, and maximum of daily mean 
temperatures in Guangzhou, respectively, between August and October, the months during which Guangzhou experiences high dengue case counts 
(Figure 2C) and frequent heavy rainfall events (Supplementary Figure S2B).
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cases in Guangzhou collected by a passive surveillance system from 
2006 to 2018, we  aimed to test the hypothesis that prior water 
availability modified the relationship between heavy rainfall and 
dengue risk.

2 Methods

2.1 Study area

Guangzhou, a subtropical prefecture located in southern China, 
has the fifth largest population (18.7 million) and the fourth highest 
gross domestic product across all prefectures in the country (16). The 
burden of dengue in this region is high: between 1990 and 2015, 
dengue cases in Guangzhou accounted for over 65 percent of dengue 
cases reported in China (6, 17). Guangzhou is located around the 
Tropic of Cancer and has a typical subtropical climate with hot and 
humid summers and mild and dry winters (Figures 2A,B), which is 
favorable for mosquito growth. Heavy rainfall is common in summer 
months (Figure 3C; Supplementary Figure S2B). Notably, unlike most 
other dengue transmission areas, where the primary vector is Ae. 
aegypti, the sole vector in Guangzhou is Ae. albopictus, which tolerates 
cold during the winter months better through egg diapause (18). 

Dengue transmission in Guangzhou follows a clearly defined seasonal 
pattern. No local transmission is reported during the winter months, 
when the climate is cooler, and over 99 percent of cases are reported 
between July and December, when the climate is more favorable by 
the vectors (Figure 2C). Each year, the initiation of local transmission 
requires the arrival of imported cases (17, 19). The starting time of 
local transmissions play a crucial role in determining the outbreak size 
of that year, with earlier local transmission associated with larger 
outbreaks (6). As a result, the number of cases varies significantly from 
year to year. For example, 37,338 cases were recorded in 2014 (89 
percent of the 41,939 cases recorded during the 2006–2018 study 
period) while only three cases were reported during 2008 and 2009 
(Figure 2D).

2.2 Data collection and processing

Dengue is a notifiable disease in China. Cases are diagnosed 
according to the National Diagnostic Criteria for Dengue Fever 
(WS216-2008) (20). Once diagnosed, cases are required to be reported 
within 24 h via the web-based National Infectious Disease Reporting 
System that covers almost all healthcare facilities in China (20, 21). 
Travel history is a mandatory reporting field, and cases where the 

FIGURE 2

Climate conditions and dengue transmission in Guangzhou prefecture, China between 2006 and 2018. (A) Monthly average daily maximum (blue), 
mean (red), and minimum (green) temperatures. (B) Monthly average cumulative rainfall. (C) Average percentage of annual dengue cases reported in 
each month. Red squares represent transmission season months included in the statistical analyses, while black crosses represent those excluded. 
(D) Number of dengue cases reported in each year. Only years with more than 100 reported cases (red squares) were included in the statistical 
analyses. Climate data was obtained from China Meteorological Data Service Centre, while dengue case count data was obtained from Guangzhou 
Center for Disease Control and Prevention.
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patient did not report travel to dengue endemic areas in the 15 days 
prior to the onset of illness are considered to be locally-acquired (21). 
We  obtained daily counts of locally acquired incidence cases, 
including both clinically-diagnosed and laboratory-confirmed 
infections, in Guangzhou throughout the period between January 1st, 

2006 to December 31st, 2018 from the Guangzhou Center for Disease 
Control and Prevention. Year-end population data for Guangzhou 
from 2005 to 2018 were collected from the Guangdong Statistical 
Yearbooks (22) and used to interpolate the population size on each 
day linearly.

FIGURE 3

Dengue incidence and climate variables in years where over 100 dengue cases were reported. (A) Daily incidence of locally acquired dengue cases 
reported during transmission seasons (black dots). (B) Daily maximum temperature (°C); yellow shaded areas represent the transmission season of July 
to December. (C) Daily prior water availability (defined as 8-week cumulative precipitation; black line) and heavy rainfall events (defined as daily 
precipitation levels exceeding the 95th percentile value of rainy days in the study period, 51  mm, blue dots); yellow shaded areas represent the 
transmission seasons of July to December. Dengue incidence and climate variables for all years and months between 2006 and 2018 are shown in 
Supplementary Figure S1.
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Daily minimum, mean, and maximum temperature and 
cumulative precipitation between 2006 and 2018 from a weather 
station in Guangzhou were collected from the China Meteorological 
Data Service Centre.1 We defined a heavy rainfall event as a day when 
total precipitation exceeded the 95th percentile of all non-zero daily 
precipitation values in the study period (13, 14). The resulting cutoff 
of 51 mm corresponds well with the definition used by the China 
Meteorological Administration, which considers a heavy rainfall event 
as cumulative rainfall exceeding 50 mm within 24 h (23). We used the 
cumulative precipitation during the preceding 8 weeks as a proxy 
measure of water availability in mosquito breeding sites (hereafter 
referred to as prior water availability) following previous literature 
(24, 25).

2.3 Statistical analysis

We constructed a distributed lag non-linear model (DLNM) to 
examine the effects of temperature, heavy rainfall, prior water 
availability, and the interaction between heavy rainfall and prior water 
availability on dengue incidence at multiple lags. We  used the 
distributed lag model to account for the delayed effects of climatic and 
hydrological factors on dengue infection risk. We  assumed the 
outcome followed a negative binomial distribution to account for 
potential overdispersion of daily case counts. We  specified the 
DLNM as:

 Y kt t~ NB ,�� �

 

log � �t t t tt� � � � � � � �� � � � � �0 ns DOW cb Temp cb HeavyRain

cb WaterLevell cb HeavyRain WaterLevel

offset population

t t t

t

� � � �
� �� �

� � �

log  

(1)

where NB "� � represents the negative binomial distribution; Yt 
and tµ represent the number of observed and expected locally-
acquired dengue cases whose symptoms onset on day t, 
respectively; k is the dispersion parameter of the negative binomial 
distribution; α0 is the model intercept; ns t� �  is a natural spline 
smooth function of prospective time with 7 degrees of freedom per 
year, included to control for long-term and seasonal trends of any 
unmeasured confounders as in a majority of the existing 
environmental epidemiology studies (26–28); and DOW (day-of-
week) is a categorical variable for day of the week, included to 
control for the day of week effects in reporting and incidence. The 
symbol cb "� � denotes the cross-basis function in DLNM, which 
models the smooth effect surface in both lag and variable value 
dimensions. In the lag dimension, we modeled the delayed effects 
of temperature (Tempt), heavy rainfall events (HeavyRaint ), 
prior water availability (WaterLevelt ) and the interaction 
between heavy rainfall events and prior water availability 
(HeavyRain WaterLevelt t∗ ) with natural cubic splines with two 
internal knots equally placed in the log range of lags (29, 30). 

1 http://data.cma.cn/

We used a maximum lag of 140 days (i.e., 20 weeks) based on the 
results of previous studies about the lagged effects of climatic 
factors on dengue transmission (12, 31). In the variable value 
dimension, we modeled the effects of temperature with a natural 
cubic spline with two internal knots equally placed along the range 
of observed temperatures (29, 30), the effect of a heavy rainfall 
using binary indicators for occurrence of heavy rainfall events, and 
effects of prior water availability and their modification by heavy 
rainfall as linear functions (24). To account for shifts over time in 
the population at risk, a population offset term log populationt� �  
was included. Daily maximum temperature, rather than the mean 
or minimum temperature, was used in the model since it exhibited 
the lowest collinearity with the other variables. We  used ns t� �  
instead of ns year ns day of the year� � � � �  to control for long-term 
and seasonal trends of any unmeasured confounders, since the 
seasonal pattern of dengue incidence rates in Guangzhou varied 
from year to year, and the model with flexible seasonal terms ns t� � 
had a remarkably lower deviance than the model with a fixed 
seasonal term ns year ns day of the year� � � � �  (4749.0 vs. 5807.3). 
To obtain the effects of heavy rainfall events under the low, 
medium, and high prior water level scenarios, we  centered 
WaterLevelt  at its 5th, 50th, and 95th percentile values between 
2006 and 2018 (25.0, 260.6, and 786.9 mm) in three separate model 
fits. In doing so, the cross basis on heavy rainfall events can 
be interpreted as the delayed effects of a heavy rainfall event when 
prior water availability is at the centered value (either high, 
medium, or low), as the interaction term in Equation ((1) will 
equal zero. We restricted our analysis to local transmission months 
(i.e., July–December) in years with over 100 reported cases (2006, 
2012–14, and 2016–18, Figure  2D) to examine effects of heavy 
rainfall events and prior water availability on dengue only among 
time periods with continuous local transmission. Cases during 
these periods contributed over 99 percent of all cases between 2006 
and 2018.

2.4 Sensitivity analyses

To test the robustness of our findings, we conducted sensitivity 
analyses that explored the results with alternative centering values for 
prior water availability (such as using the 15th, 25th, …, 85th 
percentile values); definitions of heavy rainfall events (daily 
precipitation levels above the 90th percentile value on rainy days 
within the study period, which is 34.6 mm); number of preceding 
weeks over which to aggregate measures of prior water availability (7 
or 9 weeks); degrees of freedom used for controlling long-term and 
seasonal trends of potential unmeasured confounders (8 or 9 degrees 
of freedom per year); and numbers of knots for the lag-response 
relationship of heavy rainfall events (3 or 4 knots). We also examined 
the results when excluding data in 2014 from the analyses due to its 
notably high number of reported cases (Figure 2D).

All analyses were conducted in R 4.2.1 (32) with packages 
tidyverse 1.3.2 (33), data.table 1.14.2 (34), and lubridate 1.8.0 (35) for 
data processing, tsModel 0.6–1 (36), splines 4.2.1 (37), dlnm 2.4.7 (38) 
and INLA 22.07.23 (39) for statistical modeling, and ggplot2 3.3.6. 
(40), ggsci 2.9 (41) and cowplot 1.1.1 (42) for visualization. All data 
and code are available from https://github.com/qu-cheng/
dengue_heavyrain.
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3 Results

From 2006 to 2018, a total of 41,939 locally acquired and 
clinically-diagnosed or laboratory-confirmed dengue cases were 
reported in Guangzhou. The number of newly-onset cases reported 
varied across years, with 37,338 cases reported in 2014, and only 3 
cases reported in both 2008 and 2009. Seven years (2006, 2012–2014, 
and 2016–2018) met our inclusion criteria of having more than 100 
cases reported. Figure  3A illustrates the number of dengue cases 
reported per day between July and December for included years.

In years with more than 100 reported dengue cases, daily maximum 
temperature ranged from 5.6 to 38.3°C, with an average of 26.8°C and a 
median of 27.9°C (Figure 3B). The number of heavy rainfall events 
varied year-to-year (Figure 3C; Supplementary Figure S2A), with 2016 
having the most (13 events) and 2013 having the least (7 events). 
Heavy rainfall events were most frequent between April and 
September, and least frequent between November to February 
(Supplementary Figure S2B), with two seasonal peaks of event frequency 
in May and August. Average prior water availability, calculated as the 
cumulative precipitation during the previous 8 weeks, was at its highest 
in 2016 and its lowest in 2012 among years included in the statistical 
analyses (Figure 3C; Supplementary Figure S3A). Across months, prior 
water availability was greatest from May to October and lowest from 
November to March (Supplementary Figure S3B). Mean 8-week 
cumulative rainfall exhibited a single seasonal peak in June.

The effects of heavy rainfall on the risk of dengue infection were 
modified by prior water availability. When the cumulative rainfall 
during the preceding 8 weeks was at its 5th percentile value (indicating 
low prior water availability), the occurrence of heavy rainfall events 
was associated with increased risk of dengue infection at a lag of 
24–55 days. The strongest increase in dengue incidence occurred 
27 days after a heavy rainfall event (incidence rate ratio, IRR: 1.37, 95% 
CI: 1.02–1.83, Figure 4A). By contrast, when the cumulative rainfall 
during the preceding 8 weeks was at its 95th percentile value 
(indicating high prior water availability), the occurrence of heavy 
rainfall events was associated with reduced dengue risk at a lag of 
7–121 days, with the strongest negative effect occurring 45 days after 
the heavy rainfall events (IRR: 0.59, 95% CI: 0.43–0.79, Figure 4C). 

The shape of the lag-response curve of heavy rainfall events under 
medium prior water availability scenario was very similar to that of the 
low prior water availability scenario. However, the delayed effects of 
heavy rainfall events observed under medium prior water availability 
on dengue incidence were closer to the null (Figure 4B).

To identify the level of prior water availability at which the effect of 
heavy rainfall events switches from increasing to decreasing dengue 
incidence rates, we examined other centering values for the cumulative 
rainfall in the proceeding 8 weeks (i.e., the 15th, 25th, …, 85th percentile 
values, Supplementary Figure S5). Using the RR at a 35-day lag, 
we found that the association between heavy rainfall events was positive 
when prior rainfall availability was below the 15th percentile, null when 
prior rainfall availability was between the 25th and 75th percentile, and 
negative when prior rainfall availability was above the 85th percentile.

We examined the lag-response relationship for different 
temperatures compared to 28°C, the median daily maximum 
temperature observed between 2006 and 2018. Our findings revealed 
that lower temperatures were associated with a reduced risk of dengue 
infection, while higher temperatures were associated with an increased 
risk (Figure 5). When compared with the reference temperature, a 
daily maximum temperature at 18°C, the 10th percentile of daily 
maximum temperature observed between 2006 and 2018, was 
associated with reduced dengue infection risk at lags of 1–32 days. The 
strongest negative association occurred at a lag of 10 days (IRR: 0.89, 
95% CI: 0.85–0.94, Figure 5B). In comparison, a daily temperature of 
35°C, the 90th percentile of daily maximum temperature observed 
between 2006 and 2018, was associated with increased risk of dengue 
infection at lags of 7–140 days, with the strongest positive association 
occurring at a lag of 63 days (IRR: 1.07, 95% CI: 1.03–1.11) (Figure 5B).

Varying thresholds used to define heavy rainfall 
(Supplementary Figure S6), weeks over which prior precipitation was 
aggregated to estimate water availability (Supplementary Figure S7), 
degrees of freedom in the temporal trend term (Supplementary Figure S8), 
knots used to model the lag-response of temperature, heavy rainfall 
events, and prior water availability (Supplementary Figure S9), and 
excluding data from 2014 (Supplementary Figure S10) did not 
qualitatively change the conclusion of our analyses. Across these 
scenarios, we consistently observed a positive association between heavy 

FIGURE 4

Lagged effects of heavy rainfall events on dengue infection risk stratified by prior water availability scenarios. (A) Low prior water availability scenario, 
defined as cumulative rainfall during the preceding 8  weeks at its 5th percentile value; (B) Medium prior water availability scenario, defined as 
cumulative rainfall during the preceding 8  weeks at its 50th percentile value; and (C) High prior water availability scenario, defined as cumulative rainfall 
during the preceding 8  weeks at its 95th percentile value.
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rainfall events and dengue infection risk when prior water availability 
was low, and a negative association when prior water availability was 
high, although the strength of the associations varied. Comparable to the 
baseline scenario, the occurrence of a heavy rainfall event was generally 
associated with a significant change in dengue risk at a lag of 25–45 days. 
The exact lag days with significant associations, the lag day with the 
strongest association (including both positive and negative association), 
and the relative risk and its 95% CI on the lag day with the strongest 
association are shown in Supplementary Table S1.

4 Discussion

As the climate changes, heavy rainfall events are projected to 
increase in frequency and intensity globally (43). Understanding the 
effects of heavy rainfall events on dengue transmission is critical for 
developing targeted public health interventions to reduce the risk of 
dengue transmission following extreme weather events. Heavy rainfall 
has long been hypothesized to increase dengue risk when water 
availability is low by creating more mosquito habitats. However, risk 
may decrease when water availability is high as immature aquatic 
stages of mosquitoes are flushed out of existing habitats (44, 45). To 
the best of our knowledge, this hypothesis had not been formally 
tested with observational data up to this point. Using daily weather 
and dengue case data from Guangzhou, China, we  developed a 
distributed lag non-linear model and found evidence supporting this 
theory. Our results suggest that heavy rainfall events were likely to 
increase dengue risk at a lag of 25–45 days (3–7 weeks) when water 
availability before the heavy rainfall was medium to low, but decrease 
dengue risk when prior water availability was high.

This lag period corresponds well with the time from development 
of immature aquatic stages to the onset of human dengue cases at 
26°C, the average daily mean temperature in Guangzhou between 
August and October. These months observe high dengue case counts 
and frequent heavy rainfall events in our study area. According to a 
previous study using enzyme kinetic models fit to data collected from 

laboratory studies (6), at 26°C, the times required for the development 
of eggs into larvae, larvae into pupae, and pupae into adults are 5, 7, 
and 3 days, respectively; the average time required for Ae. albopictus 
to find a host for a blood meal is 1 day, meaning at least 2 days would 
be required for a mosquito to acquire the virus from a human and 
transmit it to another; and the average length of the extrinsic and 
intrinsic incubation periods are 11 and 6 days (7), respectively 
(Figure 1). Together these processes take 22 days when counting from 
the last aquatic stage (pupa), or 34 days when counting from the first 
aquatic stage (egg). The concordance between these time periods and 
the lag times identified by our study (25–45 days) suggest that heavy 
rainfall events can influence various stages of the entire process.

Although some research has shed light on the effects of heavy 
rainfall on dengue infection risk, results have been inconsistent and 
heterogenous between study locations. For instance, a study conducted 
across all 21 prefectures in Guangdong Province, China, found that 
heavy rainfall events were significantly associated with increased 
dengue risk in seven prefectures (including Guangzhou) yet reduced 
dengue risk in four prefectures (13). Another study across 35 provinces 
in Southeast Asia observed a negative association between heavy 
rainfall and dengue risk in Sri Lanka, with no significant associations 
in Malaysia, Thailand, and Singapore (11). Stratifying data by prior 
water availability could potentially result in more consistent conclusions.

Our findings suggest that warmer daily maximum temperatures 
are linked to a higher risk of dengue infection, with the delayed effects 
of warmer temperatures likely to persist for several months. These 
results align with earlier studies conducted in regions with a 
subtropical climate. For example, a study in Guangzhou observed the 
highest dengue risk between 20 and 45 days after a daily maximum 
temperature of 30 to 35°C, with the lagged effects lasting up to 
141 days (46). Similarly, a study in Barbados identified a positive 
association between monthly minimum temperature and dengue 
infection risk, with peaks occurring after 1–2 months (29). Our results 
also make sense in the context of the mosquito and dengue lifecycle, 
as temperatures in the upper range observed in our study region are 
hypothesized to enhance nearly all stages, ranging from egg 

FIGURE 5

Lagged effects of daily maximum temperature on dengue infection risk. (A) Contour plot of the association between daily maximum temperature and 
the risk of dengue infection at various lag times, relative to the study period’s median daily maximum temperature of 28°C (horizontal dashed line). 
(B) Lag-response association for low (18°C, the 10th percentile of daily maximum temperature observed between 2006 and 2018) and high (35°C, the 
90th percentile of daily maximum temperature observed between 2006 and 2018) daily maximum temperature relative to median daily maximum 
temperature (28°C).
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development to virus replication (Figure 1). In contrast, research from 
tropical regions has suggested an inverted U-shaped relationship 
between temperature and dengue risk, where relative risk increases 
first before decreasing (11, 47, 48). While these results suggest that 
extreme heat may hinder parts of the mosquito or viral lifecycle, the 
optimal temperature for mosquito development and virus 
transmission may vary depending on the location (11, 47, 48).

Some limitations should be acknowledged for this study. First, our 
findings rely on data acquired via passive surveillance, which may 
be influenced by local healthcare-seeking behavior, disease reporting 
practices, and the clinical severity of disease. However, these factors 
seem unlikely to change with the exposure status, meaning that any 
resulting bias would be expected to pull effect estimates toward the 
null. Second, because of data availability, our study was limited to a 
single subtropical prefecture in southern China, which has different 
seasonal patterns in rainfall compared to other dengue transmission 
hotspots in tropical regions. While we expect that effect modification 
by prior water availability of the association between heavy rainfall 
events and dengue incidence may work similarly in other locations, 
further research from diverse settings is needed to confirm this and to 
estimate location-specific effects.

5 Conclusion

Our study has shown that the impact of heavy rainfall events on 
dengue risk relies on prior water availability. To gain a deeper 
understanding of the modification effect of prior water availability, it is 
essential to conduct future studies that go beyond the scope of our 
research. These studies include epidemiological investigations conducted 
in regions beyond southern China, allowing for a broader assessment of 
our hypothesis. Additionally, direct observational studies on mosquito 
density would provide valuable insights into the association between 
prior water availability and mosquito populations. These findings may 
help to reconcile the inconsistent conclusions reached by previous 
studies and improve our understanding of the complex relationship 
between heavy rainfall and dengue risk. Moreover, they can provide 
support for the development of more precise prevention strategies 
during extreme events under future climate conditions.
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