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Background: This study aimed to investigate the association between outdoor 
artificial light at night (ALAN) exposure during pregnancy and the risk of preterm 
birth (PTB).

Methods: A retrospective case–control study was conducted, and data were 
collected from pregnant women residing in Beijing, China. The level of ALAN 
exposure during pregnancy was estimated using remote sensing satellite data. 
Propensity score matching was utilized to match the control group. Logistic and 
multivariate linear regression were used to analyze the association between ALAN 
and the risk of PTB. The odds ratio (OR) and partial regression coefficient (β) with 
95% confidence interval (CI) were utilized to assess the association.

Results: A total of 2,850 pregnant women were enrolled in this study. ALAN (nW/
cm2/sr) exposure was higher in the PTB group than in the control group during 
first trimester (mean  ±  standard deviation: 25.30  ±  17.91 vs. 17.56  ±  14.74, p  <  0.001) 
and second trimester (27.07  ±  18.10 vs. 21.93  ±  16.08, p  <  0.001). A negative 
association was found between ALAN exposure and gestation day in the first 
(β  =  −0.151, 95%CI: −0.217 to −0.085, p  <  0.001) and second trimesters (β  =  −0.077, 
95%CI: −0.139 to −0.015, p  =  0.015). ALAN was identified as a risk factor for PTB 
during the first trimester (OR  =  1.032, 95%CI: 1.025–1.040, p  <  0.001) and the 
second trimester (OR  =  1.018, 95%CI: 1.011–1.025, p  <  0.001), while no significant 
association was observed in the third trimester.

Conclusion: Our study suggesting that exposure to outdoor ALAN, especially 
during first and second trimester, was associated with the risk of PTB. These 
findings highlight the potential impact of ALAN on pregnancy health and offer 
new insights into the risk of PTB.
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Introduction

Exposure to various outdoor artificial light at night (ALAN) is a pervasive environmental 
risk factor in modern society (1). In recent decades, urbanization and changes in modern 
lifestyles have led to an increasing exposure of individuals to ALAN in their daily lives (2). While 
ALAN provides safety and convenience, it also brings a range of potential health issues (3).
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Until recent years, researchers had shown limited attention to the 
issue of global light pollution, despite over 80% of the global 
population being exposed to nighttime light pollution (4). Studies 
have shown that ALAN can disrupt the circadian rhythms of humans 
and other organisms, which regulate numerous physiological 
processes and behavioral activities (5–7). Exposure to ALAN may 
suppress the secretion of melatonin, a hormone crucial for sleep 
regulation and other physiological functions (8). Additionally, ALAN 
may affect the functionality of other endocrine systems, such as the 
secretion of adrenocorticotropic hormones and insulin regulation (9).

Using satellite remote sensing data, researchers have observed 
associations between ALAN and diseases such as obesity (10), 
atherosclerosis (11), sleep disorders (12), and cancer (13). However, 
limited evidence exists regarding the impact of outdoor ALAN on 
pregnancy health. Pregnant women, as a unique population, play a 
critical role in the health and development of both mother and child 
during pregnancy. During pregnancy, pregnant women undergo 
various physiological changes (14–16). These physiological changes 
can render pregnant women more susceptible to environmental factors 
(17). Current research has found that exposure to ALAN may 
negatively affect the sleep quality, endocrine system, and circadian 
rhythms of pregnant women, potentially influencing pregnancy 
outcomes (18–20). Nonetheless, the association between ALAN 
exposure during pregnancy and preterm birth (PTB) remains uncertain.

In China, PTB was a significant public health problem, primarily 
attributed to behavioral and environmental risk factors (21, 22). With 
rapid urbanization and economic development, ALAN in Chinese 
cities has significantly increased (23). Individuals living in urban areas 
were more likely to transition from the natural 24-h light–dark cycle 
to patterns involving round-the-clock work, late-night activities, and 
exposure to ALAN. Therefore, there was a need to assess the potential 
risks of PTB associated with ALAN exposure and formulate effective 
prevention strategies.

To fill the existing knowledge gaps regarding the association 
between outdoor ALAN exposure during pregnancy and PTB, 
we conducted a retrospective case–control study in Beijing, China. 
This investigation seeks to shed light on the crucial aspects of ALAN’s 
impact on pregnancy outcomes.

Materials and methods

Study population

This retrospective case–control study was conducted at the China-
Japan Friendship Hospital. The geographic distribution of study 
subjects was depicted in Figure 1. Participants were selected based on 
specific inclusion criteria, which included the following: (1) Residence 
in Beijing; (2) Delivery at the China-Japan Friendship Hospital; (3) 

Maternal age ≥ 18 years; (4) Singleton pregnancies; and (5) Live births. 
Exclusion criteria comprised the following: (1) Missing residential 
address during pregnancy; (2) Severe pregnancy complications (e.g., 
gestational hypertension, gestational diabetes, and placental 
abruption); and (3) Incomplete essential information (e.g., age, 
delivery date, and last menstrual period date). Propensity score 
matching with a 1:5 ratio was used to select controls based on age, 
ethnicity, parity, and gravidity. The final study comprised 2,850 
subjects, and its workflow was presented in Figure 2.

This retrospective case–control study design precluded the 
acquisition of informed consent from the participants. However, this 
approach was in accordance with the ethical approval obtained from 
the Ethics Committee of the China-Japan Friendship Hospital (No. 
2023-KY-137), which acknowledged the impracticality of obtaining 
informed consent in a retrospective study.

Assessment of outdoor ALAN

To date, two types of ALAN satellite data were utilized in human 
health research, including the Operational Linescan System of Defense 
Meteorological Satellite Program (OLS-DMSP) and the Suomi 
National Polar-Orbiting Partnership Visible Infrared Imaging 
Radiometer Suite (NPP-VIIRS) (24, 25). DMSP-OLS was launched in 
1992, with a spatial resolution of 1 km × 1 km for its data products (26). 
Compared to OLS-DMSP, NPP-VIIRS provides higher spatial 
resolution, improved temporal resolution, expanded spectral range, 
and advanced calibration and correction (27). Therefore, in this study, 
we  utilized monthly NPP-VIIRS as the source of ALAN data. 
NPP-VIIRS, beginning in April 2012, captures data within the 
wavelength range of 500–900 nm, with a spatial resolution of 
500 m × 500 m at the Equator (28). The unit of measurement is 
nanowatts per square centimeter per steradian (nW/cm2/sr), which 
quantifies the radiative intensity per unit area, considering the solid 
angle spanning all directions. Monthly NPP-VIIRS nighttime light 
data for the period from 2013 to 2020 were obtained from the Earth 
Observation Group,1 in the GeoTIFF file format.

Outcomes and covariates

The patients’ last menstrual date and delivery date were collected, and 
based on these dates, the gestational age of the pregnant women was 
calculated. If the gestational age was ≤37 weeks, it was defined as PTB 
(29). This study simultaneously collected data on fetal sex and birth 
weight. Additionally, the following covariates were also collected: maternal 
ethnicity (Han, non-Han), age (years), parity (primiparous, multiparous), 
gravidity (nulliparous, one or more), and gestational age (weeks).

Other environmental variables

Considering the role of environmental factors in PTB, 
we  incorporated ambient inhalable particulate matter (PM10) and 

1 https://eogdata.mines.edu/

Abbreviations: ALAN, Artificial light at night; PTB, Preterm birth; CI, Confidence 

interval; OR, Odds ratio; OLS-DMSP, Operational Linescan System of Defense 

Meteorological Satellite Program; NPP-VIIRS, National Polar-Orbiting Partnership 

Visible Infrared Imaging Radiometer Suite; PM10, Ambient inhalable particulate 

matter; PM2.5, Ambient fine particulate matter; CHAP, China high air pollutants; 

NDVI, Normalized difference vegetation index; RMSE, Root mean square error; 

R2, Coefficient of determination.
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ambient fine particulate matter (PM2.5), along with green space, as 
environmental covariates. The PM2.5 and PM10 data were obtained 
from China High Air Pollutants (CHAP). PM2.5 and PM10 data were 
derived using a spatio-temporal extreme random tree model, which 
incorporated model data to fill in the spatial gaps of the Moderate 

Resolution Imaging Spectroradiometer Multi-Angle Implementation 
of Atmospheric Correction Aerosol Optical Depth satellite product. 
This approach combined ground observations, atmospheric reanalysis, 
emission inventories, and other big data sources to generate seamless 
nationwide surface PM2.5 and PM10 data from 2000 to 2021. The 

FIGURE 1

Geographical distribution of participants in Beijing. ALAN, Artificial light at night; PTB, Preterm birth; Red dots represent PTBs, and green dots represent 
term birth of pregnant women.

FIGURE 2

Flowchart of the study. LMP, Last menstrual period; PTB, Preterm birth; PSM, Propensity score matching.

https://doi.org/10.3389/fpubh.2023.1280790
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Sun et al. 10.3389/fpubh.2023.1280790

Frontiers in Public Health 04 frontiersin.org

10-fold cross-validation coefficient of determination (R2) for PM2.5 
data was 0.92, with a root mean square error (RMSE) of 10.76 μg/m3 
(30). For PM10 data, the 10-fold cross-validation R2 was 0.9, with an 
RMSE of 21.12 μg/m3 (31). The normalized difference vegetation 
index (NDVI) was used as a proxy for residential greenness. NDVI 
was a widely used indicator in environmental research that quantifies 
the density and health of vegetation in each area (32). The index 
ranges from 0 to 1, where higher NDVI values indicate denser and 
healthier vegetation, while lower values indicate sparse or stressed 
vegetation (33). In our study, NDVI was estimated based on 16-day 
composite images derived from the Terra Moderate Resolution 
Imaging Spectroradiometer satellite of NASA.2 After acquiring annual 
data on PM2.5, PM10, and NDVI, we performed a matching of pregnant 
women’s residential weights during the gestation period and computed 
the yearly gestational environmental pollution exposure.

Exposure time window

The participants’ residential addresses were geocoded using Baidu 
Maps.3 Subsequently, we proceeded to estimate the average exposures 
during first, second, and third trimester to investigate potential 
heterogeneity in the association between various exposure windows 
of ALAN and PTB. The exposure windows encompassed the first, 
second, and third trimesters of pregnancy, corresponding to 3, 6, and 
up to delivery after the last menstrual period, respectively. The 
definition of exposure windows was presented in Figure 3.

Statistical analysis

Continuous variables following a normal distribution were 
expressed as mean ± standard deviation, while categorical variables 
were presented as counts (percentages). Differences in continuous 
variables between groups were compared using the t-test or Wilcoxon 
test. Differences in categorical variables between groups were 
compared using the chi-square test or Fisher’s test.

A multivariable linear regression model was fitted to estimate 
the association between outdoor ALAN and gestational days, 

2 https://ladsweb.modaps.eosdis.nasa.gov

3 https://map.baidu.com

with these indicators being modeled as continuous variables. 
We  initially established an unadjusted crude model without 
considering any potential confounding factors. Subsequently, 
we  adjusted for potential confounders. Finally, we  further 
controlled for PM2.5, PM10, and NDVI based on addressing 
potential confounding sources. The association between ALAN 
and PTB was analyzed using a binary logistic regression model, 
and the odds ratio (OR) along with its 95% confidence interval 
(CI) was reported. Furthermore, we performed stratified analysis 
by infant sex to examine potential effect modification and to 
assess the interaction between ALAN and infant sex. All 
statistical analyses were performed using R (version 4.1.0, 
available from: https://www.r-project.org/).

Sensitivity analysis

Several sensitivity analyses were conducted in this study: (1) 
ALAN was categorized into five categories based on percentiles and 
included in all analysis to assess the influence of a 20% increase in 
ALAN on the outcomes (Supplementary Tables S1–S4). (2) Evaluation 
of participants of non-Han ethnicity to assess the potential impact of 
ethic (Supplementary Table S5). (3) Similar analysis was conducted in 
the primiparous population to assess potential differences attributed 
to multiparity (Supplementary Table S6).

Results

Characteristics of the study population

A total of 2,850 pregnant women were included in this study, 
with no significant differences observed between the two groups in 
terms of ethnicity, age, gravidity, and parity. The proportion of 
male newborns was higher in the preterm group compared to the 
control group (PTB group: 57.26%, control group: 50.69%, 
p = 0.010). Newborns in the PTB group had shorter length (PTB 
group: 45.89 ± 4.41 cm, control group: 51.06 ± 1.85 cm, p < 0.001) 
and lower birth weight (PTB group: 2386.57 ± 614.07 g, control 
group: 3374.72 ± 412.38 g, p < 0.001) compared to the control 
group. Gestational age in PTB group lower than that in control 
group (PTB group: 243.08 ± 17.11 days, control group: 
278.35 ± 25.87 days, p < 0.001). All participant characteristics were 
presented in Table 1.

FIGURE 3

Definition of the exposure window.
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Distribution of environmental factors in 
different trimesters

There were no statistically significant differences in ambient PM2.5 
and PM10 levels between the two groups across trimesters, while the 
vegetation index was higher in the control group compared to the PTB 
group (p = 0.001). ALAN (nW/cm2/sr) was significantly higher in the 
PTB group compared to the control group during the first (PTB group: 
25.30 ± 17.91, control group: 17.56 ± 14.74, p < 0.001) and second 
trimesters (PTB group: 27.07 ± 18.10, control group: 21.93 ± 16.08, 
p < 0.001, respectively; Table 2). The distribution of ALAN between the 
two groups was depicted in Supplementary Figure S1. However, there 
were no statistically significant differences in ALAN exposure during 
the third trimester between the two groups.

Association of outdoor ALAN exposure in 
different trimesters with gestation day

Table 3 presents the results of the multiple linear regression model 
examining the association between outdoor ALAN exposure and 
gestation day. In the crude model, a significant negative association 
was observed between ALAN exposure and gestation day in the first 
trimester (T1: β = −0.151, 95%CI: −0.217 to −0.085, p < 0.001) and 
second trimester (T2: β = −0.077, 95%CI: −0.139 to −0.015, p = 0.015), 

whereas no significant association was found in the third trimester. 
After adjusting for age, ethnicity, gravidity, and parity, similar results 
were obtained. In the fully adjusted model, which additionally 

TABLE 1 Characteristics of pregnant women and newborns.

Variables Control group (n  =  2,375) PTB group (n  =  475) p

Han Chinese (%) No 107 (4.51) 22 (4.63) 1.000

Yes 2,268 (95.49) 453 (95.37)

Age (years) 31.44 ± 3.71 31.66 ± 4.14 0.262

Multipara (%) No 1720 (72.42) 342 (72.00) 0.896

Yes 655 (27.58) 133 (28.00)

Gravidity (times) 0 1,380 (58.11) 272 (57.26) 0.516

1 566 (23.83) 107 (22.53)

≥ 2 429 (18.06) 96 (20.21)

Neonatal sex (%) Male 1,204 (50.69) 272 (57.26) 0.010

Female 1,171 (49.31) 203 (42.74)

Neonatal length (cm) 51.06 ± 1.85 45.89 ± 4.41 <0.001

Birth weight (g) 3374.72 ± 412.38 2386.57 ± 614.07 <0.001

Days of pregnancy (days) 278.35 ± 25.87 243.08 ± 17.11 <0.001

TABLE 2 Differences in outdoor ALAN between the PTB and control groups.

Variables Control group PTB group p

PM10 (μg/m3) 102.29 ± 20.74 103.01 ± 21.05 0.491

PM25 (μg/m3) 64.02 ± 17.01 65.17 ± 17.65 0.183

NDVI 0.33 ± 0.07 0.32 ± 0.07 0.001

ALAN T1 (nW/cm2/sr) 17.56 ± 14.74 25.30 ± 17.91 <0.001

ALAN T2 (nW/cm2/sr) 21.93 ± 16.08 27.07 ± 18.10 <0.001

ALAN T3 (nW/cm2/sr) 24.85 ± 16.61 26.76 ± 19.67 0.057

ALAN, Artificial light at night; NDVI, Normalized difference vegetation index; T1, First trimester; T2, Second; T3, Third trimester.

TABLE 3 Association of outdoor ALAN exposure with gestation day.

β (95%CI) p

Model 1

  T1 −0.151 (−0.217, −0.085) <0.001

  T2 −0.077 (−0.139, −0.015) 0.015

  T3 −0.002 (−0.060, 0.056) 0.939

Model 2

  T1 −0.141 (−0.207, −0.075) <0.001

  T2 −0.073 (−0.135, −0.011) 0.021

  T3 0.003 (−0.055, 0.061) 0.910

Model 3

  T1 −0.156 (−0.201, −0.111) <0.001

  T2 −0.076 (−0.120, −0.033) 0.001

  T3 −0.016 (−0.050, 0.018) 0.368

ALAN, Artificial light at night; T1, First trimester; T2, Second trimester; T3, Third trimester; 
β represents the partial regression coefficient of the multiple linear regression model. 95%CI, 
95% confidence interval; Model 1: Crude model; Model 2: Adjusted for age, ethnicity, 
gravidity, and parity; Model 3: Further adjusted for normalized difference vegetation index 
(NDVI), ambient fine particulate matter (PM2.5), and ambient inhalable particulate matter 
(PM10), based on Model 2.
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accounted for NDVI, PM2.5, and PM10, the associations between ALAN 
exposure and gestation day in the first trimester (T1: β = −0.156, 
95%CI: −0.201 to −0.111, p < 0.001) and second trimester (T2: 
β = −0.076, 95%CI: −0.120 to −0.033, p = 0.001) remained consistent.

Association of outdoor ALAN exposure in 
different trimesters with PTB

Table 4 presents the association of outdoor ALAN exposure with 
PTB using logistic regression models. In crude model, a significant 
positive association was found between ALAN exposure and PTB in 
the first trimester (T1: OR = 1.029, 95%CI: 1.023–1.036, p < 0.001) and 

second trimester (T2: OR = 1.018, 95%CI: 1.012–1.024, p < 0.001). 
After adjusting for age, ethnicity, gravidity, and parity, similar results 
were obtained. In the fully adjusted model, with additional 
adjustments for NDVI, PM2.5, and PM10, ALAN exposure remained 
significantly associated with an increased risk of PTB in the first 
trimester (T1: OR = 1.032, 95%CI: 1.025–1.040, p < 0.001) and second 
trimester (T2: OR = 1.018, 95%CI: 1.011–1.025, p < 0.001), while no 
significant association was observed in the third trimester.

Sex difference in the association of 
outdoor ALAN exposure in different 
trimesters with PTB

Table 5 presents the sex-specific associations of ALAN exposure 
with PTB. In the fully adjusted model, after controlling for potential 
confounding factors, the results indicated no significant difference 
between males and females (p > 0.05). ALAN exposure during the first 
trimester showed significant associations with PTB in both males (OR 
1.033, 95% CI 1.023–1.044, p < 0.001) and females (OR 1.032, 95% CI 
1.021–1.042, p < 0.001). The significant associations persisted for the 
second trimester in both males (OR 1.019, 95% CI 1.010–1.028, 
p < 0.001) and females (OR 1.017, 95% CI 1.007–1.028, p = 0.001). 
However, no significant association was observed for the third 
trimester in either males or females.

Discussion

To investigate the association between outdoor ALAN exposure 
and PTB, we conducted a retrospective case–control study. Our study 
found a significant association between exposure to outdoor ALAN 
during pregnancy and an increased risk of PTB, as well as a decrease 
in gestational age after adjusting for confounding factors. Furthermore, 
the association between outdoor ALAN and the risk of PTB did not 
differ between male and female infants. Our findings provide evidence 

TABLE 4 Association of outdoor ALAN exposure with PTB.

OR (95%CI) p

Model 1

  T1 1.029 (1.023, 1.036) <0.001

  T2 1.018 (1.012, 1.024) <0.001

  T3 1.006 (1.000, 1.013) 0.057

Model 2

  T1 1.030 (1.023, 1.036) <0.001

  T2 1.018 (1.012, 1.024) <0.001

  T3 1.006 (0.999, 1.013) 0.073

Model 3

  T1 1.032 (1.025, 1.040) <0.001

  T2 1.018 (1.011, 1.025) <0.001

  T3 1.001 (0.993, 1.009) 0.841

PTB, Preterm birth; ALAN, Artificial light at night; T1, First trimester; T2, Second trimester; 
T3, Third trimester; OR, Odds ratio; 95%CI, 95% confidence interval. Model 1: Crude logistic 
regression model; Model 2: Adjusted for age, ethnicity, gravidity, and parity; Model 3: Further 
adjusted for normalized difference vegetation index (NDVI), ambient fine particulate matter 
(PM2.5), and ambient inhalable particulate matter (PM10), based on Model 2.

TABLE 5 Sex-specific associations of ALAN exposure with PTB.

Male Female
p for interaction

OR (95%CI) p OR (95%CI) p

Model 1

  T1 1.031 (1.022, 1.040) <0.001 1.028 (1.019, 1.037) <0.001 0.680

  T2 1.019 (1.011, 1.027) <0.001 1.017 (1.008, 1.026) <0.001 0.699

  T3 1.008 (0.999, 1.016) 0.068 1.004 (0.994, 1.014) 0.442 0.573

Model 2

  T1 1.031 (1.023, 1.040) <0.001 1.028 (1.019, 1.037) <0.001 0.625

  T2 1.019 (1.011, 1.027) <0.001 1.016 (1.007, 1.025) <0.001 0.681

  T3 1.008 (0.999, 1.016) 0.081 1.004 (0.994, 1.015) 0.447 0.569

Model 3

  T1 1.033 (1.023, 1.044) <0.001 1.032 (1.021, 1.042) <0.001 0.741

  T2 1.019 (1.010, 1.028) <0.001 1.017 (1.007, 1.028) 0.001 0.736

  T3 1.002 (0.991, 1.012) 0.700 0.999 (0.986, 1.011) 0.827 0.694

ALAN, Artificial light at night; T1, First trimester; T2, Second trimester; T3, Third trimester; OR, Odds ratio; 95%CI: 95% confidence interval. Model 1: Crude logistic regression model; 
Model 2: Adjusted for age, ethnicity, gravidity, and parity; Model 3: Further adjusted for normalized difference vegetation index (NDVI), ambient fine particulate matter (PM2.5), and ambient 
inhalable particulate matter (PM10), based on Model 2.
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supporting the role of outdoor ALAN in the risk of PTB among 
pregnant women.

In the past few decades, the impact of light pollution on 
human health has become a global focal point of concern. 
Numerous studies have explored the association between 
nighttime light exposure and chronic diseases such as 
cardiovascular diseases (34), obesity (35), and mental disorders 
(36). However, there was a relative scarcity of research 
investigating the association between outdoor ALAN exposure 
and the risk of PTB during pregnancy. Our study provides the 
evidence indicating that higher levels of outdoor ALAN exposure 
during pregnancy were associated with an increased risk of 
PTB. A prospective cohort study among pregnant women found 
that higher outdoor ALAN exposure during pregnancy was 
associated with larger fetal abdominal circumference and a 
higher risk of macrosomia (37). A study conducted in New Jersey 
supports our findings, where the authors used visual observations 
to measure light pollution and identified it as a risk factor for 
PTB (38). In our study, we utilized remote sensing satellite data 
to precisely quantify the level of ALAN exposure during 
pregnancy. Moreover, our investigation went beyond conventional 
approaches by comprehensively adjusting for crucial 
environmental variables, such as PM2.5, PM10, and the NDVI, 
thereby enhancing the robustness and validity of our research 
findings. Additionally, the study was conducted in Beijing, a 
megacity (39), and its results carry significant public health 
implications for addressing light pollution in densely populated 
urban areas.

Exploring the window of ALAN exposure associated with PTB in 
pregnant women was paramount importance for devising targeted 
intervention measures. The early and mid-stages of pregnancy were 
critical periods for embryonic and fetal development, as well as being 
particularly vulnerable to external environmental influences (40). In 
our study, we  found that during the first and second trimester of 
pregnancy, pregnant women exposed to higher levels of ALAN may 
experience an increased risk of PTB. This association could 
be attributed to potential disruptions in pregnant women’s biological 
clocks and hormonal levels, consequently affecting fetal development 
(41). However, our research did not reveal a significant association 
between ALAN exposure during the third trimester of gestation and 
the risk of PTB. This finding may be attributed to the relative maturity 
of fetuses during the third trimester of pregnancy, resulting in reduced 
responsiveness to external environmental factors.

The mechanisms underlying the association between ALAN 
exposure during pregnancy and the risk of PTB were not yet fully 
elucidated. Several potential mechanisms may be involved. First, the 
disruption of the internal circadian rhythm system, responsible for 
regulating the sleep–wake cycle and physiological processes, could 
play a role (42). ALAN exposure may disturb the delicate balance of 
circadian rhythm-related genes, such as CLOCK (43). Disruption of 
these genes has been linked to altered sleep–wake patterns and 
reduced melatonin production, potentially impacting fetal 
neurodevelopment (44). Second, ALAN exposure may influence 
pregnant women’s hormone levels, particularly melatonin, a hormone 
critical for regulating circadian rhythms during pregnancy (45). 
ALAN exposure has been associated with the suppression of 
melatonin secretion, disrupting the delicate hormonal balance integral 
to maintaining maternal physiological equilibrium (46). This 

disruption may extend its influence on fetal development by 
potentially altering key pathways linked to melatonin’s protective 
effects on the developing fetus, encompassing neurodevelopmental 
processes and gestational health (47). Finally, the potential 
consequences of ALAN exposure on pregnant women extend to the 
realm of immune and inflammatory responses (48). Additionally, the 
interactive effects of ALAN with other environmental factors might 
amplify these immunomodulatory effects (49). In conclusion, the 
mechanisms linking ALAN exposure during pregnancy to the risk of 
PTB remain complex and multifaceted, more research was needed to 
explore these mechanisms.

This study has several limitations. Firstly, in our research, 
we estimated outdoor ALAN exposure during pregnancy using high-
resolution satellite images. However, we did not have data on indoor 
light exposure and whether participants used blackout curtains 
during the night, which could potentially lead to exposure 
misclassification. Future studies should consider collecting 
information on both indoor and outdoor light exposure. Secondly, 
while we adjusted for environmental confounders related to PTB, 
such as environmental particulate matter (21) and greenness (50) at 
the residential area, we  did not account for other potential 
confounding factors such as noise (51) and socioeconomic status. 
The lack of this information needs to be addressed and improved in 
future research. Thirdly, our study adopted a retrospective case–
control study design, which limits the ability to establish causality 
between ALAN exposure and PTB. Therefore, the association 
between ALAN and PTB needs further confirmation through 
prospective study designs. Fourth, considering practicality and cost 
constraints, gestational age was determined based on the last 
menstrual period, introducing potential bias. Future research 
endeavors were encouraged to employ ultrasound measurements for 
a more precise assessment of gestational age. Finally, our study was 
conducted as a single-center study, with participants residing in the 
Beijing area and having relatively higher socioeconomic status. 
Therefore, caution should be exercised when extrapolating the study 
results to regions with lower economic development. Future research 
should validate these findings in other regions with different 
socioeconomic backgrounds.

Despite these limitations, our study still possesses several 
strengths. Firstly, we  elucidated the association between ALAN 
exposure during pregnancy and PTB, identifying the critical exposure 
window for this association. This finding provides valuable reference 
for targeted intervention measures during the identified exposure 
window. Additionally, we conducted a series of sensitivity analyses and 
performed stratified analyses by newborn sex to assess the consistency 
and robustness of this association.

Conclusion

In conclusion, our study found that higher levels of outdoor 
ALAN, particularly during first and second trimester, were associated 
with reduced gestational age and an increased risk of PTB. These 
findings underscore the potential impact of outdoor ALAN exposure 
during pregnancy on health and provide new insights into the 
occurrence of PTB. Our study offers valuable references for 
policymakers to implement measures to curb the escalating light 
pollution during nighttime.
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