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Introduction: There is a vast literature on the performance of di�erent short-term

forecasting models for country specific COVID-19 cases, but much less research

with respect to city level cases. This paper employs daily case counts for 25

Metropolitan Statistical Areas (MSAs) in the U.S. to evaluate the e�cacy of a variety

of statistical forecasting models with respect to 7 and 28-day ahead predictions.

Methods: This study employed Gradient Boosted Regression Trees (GBRT), Linear

Mixed E�ects (LME), Susceptible, Infectious, or Recovered (SIR), and Seasonal

Autoregressive Integrated Moving Average (SARIMA) models to generate daily

forecasts of COVID-19 cases from November 2020 to March 2021.

Results: Consistent with other research that have employed Machine Learning

(ML) based methods, we find that Median Absolute Percentage Error (MAPE)

values for both 7-day ahead and 28-day ahead predictions from GBRTs are lower

than corresponding values from SIR, Linear Mixed E�ects (LME), and Seasonal

Autoregressive IntegratedMoving Average (SARIMA) specifications for themajority

of MSAs during November-December 2020 and January 2021. GBRT and SARIMA

models do not o�er high-quality predictions for February 2021. However, SARIMA

generated MAPE values for 28-day ahead predictions are slightly lower than

corresponding GBRT estimates for March 2021.

Discussion: The results of this research demonstrate that basic ML models can

lead to relatively accurate forecasts at the local level, which is important for

resource allocation decisions and epidemiological surveillance by policymakers.

KEYWORDS

daily COVID-19 cases, epidemiological surveillance, Metropolitan Statistical Areas,

Gradient Boosted Regression Trees, Seasonal Autoregressive Integrated Moving Average

(SARIMA), Susceptible, Infectious, or Recovered (SIR), Linear Mixed E�ects

1 Introduction

On May 5, 2023, the World Health Organization (WHO) officially ended the global

COVID-19 emergency, referring to increased population immunity, fewer deaths, and

reduced pressure on hospitals. The COVID-19 pandemic, which was first declared an

international crisis by WHO on January 30, 2020, resulted in severe lockdowns, closure of

international borders, devastating economic costs upheaval and the deaths of at least seven

million people across the world.1 Hundreds of published and working research papers have

1 Please see https://www.cbc.ca/news/health/canada-who-pandemic-no-longer-emergency (last

accessed June 1st 2023) for further details.
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attempted to evaluate the efficacy of traditional statistical models

and Machine Learning (ML)/Artificial Intelligence (AI) methods

in forecasting COVID-19 cases. Accurate short-term forecasts

can inform government decision-making in terms of resource

allocation to health practitioners and hospitals, as well as in

deciding on the magnitude and severity of lockdowns and timing

of re-openings.

The focus on ML and AI methods might be explained by

the poor performance of Susceptible-Infected-Removed (SIR)

models—traditionally used by epidemiologists to predict the

spread of infectious diseases—in forecasting daily COVID-19

counts (1–3). However, many sophisticated statistical methods

developed for COVID-19 modeling and forecasting, such as the

models from the Institute of Health Metrics and Evaluations,

the University of Texas at Austin, and the Los Alamos National

Laboratory, have also yielded unsatisfactory results (4). Hence,

there is value in identifying alternative models that are relatively

easy to implement and interpret, and that are capable of

producing accurate predictions. This study evaluates the efficacy of

Gradient Boosted Regression Tree (GBRT), Susceptible, Infectious,

or Recovered (SIR), Seasonal Autoregressive Integrated Moving

Average (SARIMA), and Linear Mixed Effects (LME) models in

forecasting daily trends in COVID-19 cases across 25 cities in the

U.S. (Albuquerque, Atlanta, Baltimore, Boston, Charlotte, Chicago,

Cleveland, Dallas, Denver, Detroit, Houston, Indianapolis, Los

Angeles, Louisville, Memphis, Miami, New York, Oklahoma,

Phoenix, Pittsburgh, Portland, Sacramento, San Francisco, Seattle,

Tampa). We forecast daily COVID-19 case rates one-week and

four-weeks ahead over different testing periods. The models chosen

are reasonably basic, but this choice is intentional and motivated

by the desire to explore the efficacy of simpler models that

are relatively easily interpretable and computationally efficient,

while also crossing disciplinary boundaries to benchmark the

performance of traditionalmethods employed by researchers across

different fields.

The choice of these forecastingmodels and periods is consistent

with other studies. For example, Chumachenko et al. (5) used

Random Forest, K-Nearest Neighbors, and Gradient Boosting

methods to forecast COVID-19 cases for Germany, Japan, South

Korea, and Ukraine with respect to 3, 7, 10, 14, 21, and 30 days. The

objective of the study is similar to ours, in terms of assisting public

health agencies to identify models that could generate predictions

to address various pandemic containment challenges. Krivtsov et al.

(6) is a relatively recent example of research based onmore complex

Neural Network (NN) methods using data for the same countries.

Mohammadi and Chumachenko (7) employ ARIMA methods to

forecast cases for Ukraine. Other examples of ARIMA based studies

at the country level include Dansana et al. (8), Singh et al. (9), and

Sahai et al. (10). Devaraj et al. (11) use ARIMA and other deep

learning methods. Fang et al. (12) compare the performances for

XGBoost and ARIMA specifications using U.S. time-series data and

Liu et al. (13) employ ARIMA models to study US national data as

well.

Our focus on short-term predictions is guided by the

importance of such forecasts for the allocation of local health

resources, such as the supply of personal protective equipment

(PPE), adequate testing infrastructure, and the availability of

hospital care teams. Further, our use of data across several U.S.

Metropolitan Statistical Areas (MSAs) or cities is a contribution to

the literature as most studies rely on either cross-country, national,

state/province, or county level data. While employing aggregated

data has benefits, identifying models that are capable of relatively

accurate forecasts at the local level can result in more targeted

decisions by policymakers. In this respect, we are unaware of any

study that has attempted to forecast COVID-19 case counts using a

panel of MSAs in the United States. Our study is also a contribution

to the literature given that a large fraction of studies, which have

attempted to forecast the spread of COVID-19 in the U.S., have not

provided any benchmarking of their forecasts against the truth, or

stated their limitations (14). Constructing forecasting models at a

local level is challenging, given the need to account for unobserved

jurisdiction level heterogeneity, and corresponding volatility in

daily COVID-19 cases which we observe for several U.S. cities.

Such volatility often disappears when data are aggregated across

jurisdictions, resulting in a smoother time-series of observations in

training datasets, and hence, more accurate predictions. However,

such predictions may not be very useful for policymakers interested

in epidemic trends within a specific jurisdiction.

A primary objective of our study is to evaluate the performance

of traditional SIR models employed by epidemiologists, given

findings on the inaccuracy of COVID-19 case forecasts, relative

to other methods. A possible explanation behind the poor

performance of SIR models is because of the need for properly

accounting for relevant geographical characteristics such as the

number and distribution of outbreaks, and population size and

density (15). The results from SIR modeling are compared to

GBRT models intended to evaluate the efficacy of a common

ML model. Besides being used by other research, our choice of

GBRTs is also motivated by the ease in which models can be

implemented by policymakers with limited knowledge of Machine

Learning or Artificial Intelligence methods. SARIMA modeling

is commonly used for time-series forecasting by economists and

is especially useful when the modeled data has pronounced

trend and seasonality. LME models are popular with researchers

working at the intersection of statistics and health. They enable

the researcher to flexibly control for the potentially confounding

effects of unit-specific (in this paper, city-specific) heterogeneity

through the accommodation of random effects, which themselves

accommodate the correlation of within-city repeated measures

over time. LME specifications also allow information to be

borrowed across geographies, which might result in more accurate

predictions, especially for cities that experience considerable

within-city variation during the training phase and whose case

rates may be spatially correlated with other cities. We do not

explore the performance of Neural Network or Long Short-Term

Memory (LSTM) models as we restrict our analysis of methods

that are relatively straightforward to implement. Finally, given

results from other studies [for example, (16–20)], which suggest

benefits from the use of ML/statistical models in tandem with

social mobility/internet data, we downloaded Apple mobility data

for each MSA to evaluate their potential in generating more

accurate forecasts.

Citing all papers that have employed such methods in

forecasting daily COVID-19 case trends is beyond the scope of
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this study. Focusing on studies that have employed either county

or state/province level data, Altieri et al. (21) and Liu et al. (22)

construct one- and two-week-ahead forecasts (of case or death

counts) using either different types of linear and exponential

predictors or Bayesian methods. Chu and Qureshi (1), Chen

et al. (2), Stevens et al. (23), and Sen et al. (24) find different

autoregressive time series and ML models to be capable of

comparable or superior short-term out-of-sample forecasts of daily

cases relative to SIR models. In terms of cities, Wathore et al. (25)

rely on deep learning models such as LSTM to forecast cases for 8

cities in India, U.S., and Sweden. Their study contains a summary

of other LSTM based papers. Devaraj et al. (11) also contains a

detailed discussion of deep learning-based papers. Zhang et al. (26)

develop a hybrid predictive model of COVID-19 cases based on

autoregressive and LSTM models, which they test for 8 counties in

California and some countries.

The limited amount of research exploiting variation across

cities over time is probably because of the lack of publicly available

data. For U.S. cities, we surmount this difficulty by employing

county level data collected by theNewYork Times and constructing

corresponding MSA level daily case counts. As a result, we are able

to clearly see patterns and differences in COVID-19 cases across

some major U.S. metropolitan areas during the first and second

waves of the pandemic. Another contribution of our study is that we

produce forecasts during time periods that coincide with the peak

of the second wave of infections, specifically during November 15

- December 12, 2020, along with subsequent time periods, which

saw significant declines in cases counts for many MSAs. This is

in contrast to many early published studies that are focused on

forecasts of the first wave and Summer of 2020.

Our choice of this time period is also motivated by the

considerable volatility in daily case counts observed across cities

during November–December 2020, making the forecasting exercise

more challenging. We also conduct forecasting exercises for

January–March 2021 as well, to evaluate model efficacy during

periods of significant declines in daily case counts. The need to

ensure that training data for forecasting models capture dynamic

changes in the spread of the virus has been noted by other

studies (11, 25, 27). Employing data from these time periods is

further justified given the rise in population vaccination rates from

March 2021 onwards, and the widespread use of home testing kits

from late 2021 onwards, which impacts the reliability of official

statistics, given the possibility of under-reporting of positive tests

to health authorities.

For most MSAs, GBRT and SARIMAmodels produce forecasts

for November 15–December 12, 2020, with lower Median Absolute

Percentage Errors (MAPEs) than corresponding one-week ahead

predictions produced by LME and SIR models and are consistent

with other studies that find SIR models to produce inaccurate

forecasts of the incidence and spread of COVID-19. Apple mobility

data do not make a significant difference for the forecast accuracy

of SARIMA models. With respect to 7-day ahead forecasts, GBRTs

produce MAPEs lower than SARIMA models for most MSAs

for the November-December 2020, January, and February 2021

testing periods. On the other hand, SARIMA MAPEs are lower

for the March 2021 testing period. Likewise, the 28-day ahead

forecasts produced by SARIMA models generate lower MAPE

values in March 2021. However, for the other months considered,

28-day ahead GBRT forecasts tend to be associated with lower

MAPE values.

2 Methods and materials

2.1 Data

Daily COVID-19 case data at the county level were downloaded

from the Github repository maintained by the New York Times2

We note that the COVID-19 data maintained by the New York

Times and John Hopkins University3 have been widely employed

by researchers. Using Federal Information Processing System

(FIPS) codes, county-level data were mapped to Metropolitan

Statistical Areas (MSAs), which include city cores and adjoining

suburbs, to provide daily case counts at the MSA level. We

herein use the terms city and MSA interchangeably. Our choice

of MSAs was based on investigating COVID-19 trends in the

largest cities across the U.S, while ensuring representation across

different regions.

Figure 1 shows significant variation in COVID-19 daily cases

across MSAs and over time. Some MSAs such as Miami, Phoenix,

Oklahoma City, Atlanta, Dallas, Charlotte, Tampa, Houston, San

Francisco, and Sacramento had much higher daily case counts

per 100,000 of population during July and August of 2020,

relative to the first wave in March and April of the same

year. In contrast, New York, Boston, and Chicago had much

higher case counts per 100,000 of population or per capita daily

cases during the first wave. Most cities experienced a decline in

COVID-19 cases during September, which was succeeded by a

rapid increase during November and December that coincided

with intensive campaigning associated with the U.S. Presidential

Election. Increases in daily case counts during this time period were

succeeded by declines that began sometime during December 2020

or January 2021 for almost all MSAs, and that continued through

March 2021.

Five other points should be noted. First, some cities such as

Atlanta, Boston, Cleveland, and Houston, have peaks in daily case

counts that are clearly anomalous with previous and successive

trends. This can be traced to errors in data collection and reporting.

The most common explanation we were able to find is that

spikes are attributable to the reporting of a significant backlog of

cases that, for some reason, were not reported correctly earlier.4

Second, most cities seem to experience considerable volatility in

daily COVID-19 case counts during November and December

2020. Third, days with zero cases reported are likely due to batch

reporting in previous days or non-working days and were changed

to 0.5 to prevent our performance metrics from having nonsensical

results when dividing by zero, as well as to allow us to model the

natural logarithm of the counts (specifically, the log of standardized

2 https://github.com/nytimes/covid-19-data

3 https://coronavirus.jhu.edu/map.html

4 See, for example, https://www.click2houston.com/news/local/2020/09/

23/explained-why-nearly-15000-new-coronavirus-cases-were-reported-

in-the-houston-area-in-one-day/ and https://www.wsbtv.com/news/

local/georgia-records-highest-daily-increase-coronavirus-cases-since-

bef7IAY2EPRURABPICVYA3PO7AEJ4/.
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case counts per 100,000) for the LME and SARIMAmodels. Fourth,

unlike other MSAs, Detroit experienced a significant rise in daily

case counts during March 2021. Daily COVID-19 cases also rose

modestly duringMarch 2021 in Pittsburgh and Boston. Fifth, across

all MSAs, case rates are clearly non-stationary with pronounced

trend and seasonality. Effective modeling and forecasting should

account for this correlation structure. Table 1 contains means and

standard deviations of standardized daily case counts per 100,000

for eachMSA for our training period of March 22, 2020–November

14, 2020.

2.2 Methods

We begin by introducing notation that will be used for all the

different methods introduced in this section. Let t = 0, 1, 2, . . . , T

represent time, which here we take to be measured in days. Thus,

for a given analysis of an MSA’s daily case counts, we will observe

a maximum of T + 1 time points. Each city is represented by the

index i = 1, 2, . . . , N, where N = 25 in this paper’s analyses. The

response variable, denoted by Yi,t , is documented COVID-19 case

counts per 100,000 people, standardized by the city population size.

In particular,

Yi,t = (# new cases in city i on day t/Population size of city i)

× 100, 000

represents the per capita daily case count (per 100,000 people) in

city i at time point t. Note that this standardization is necessary

to ensure that case rates are comparable across cities of different

sizes. For models where lagged case values are included as predictor

variables, the earliest first day used for the response will be

constrained by the number of lagged terms; for example, if we

include predictors Yt−1 and Yt−2, then the first response in the

model will be at t = 2. In our models specified in the following

subsections, the first date to be used for Yt is March 22, 2020, since

FIGURE 1

Standardized daily case counts per 100,000 people in 25U.S. cities (March 22, 2020–March 31, 2021).
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TABLE 1 Sample statistics.

Sample mean (s.d.) of daily COVID-19 standardized cases per 100K (March 22–Nov 14, 2020)

Albuquerque Atlanta Baltimore Boston Charlotte

9.65 14.36 10.98 11.69 13.50

(12.53) (14.69) (5.47) (11.02) (8.41)

Chicago Cleveland Dallas Denver Detroit

18.84 8.59 14.59 13.03 11.74

(19.39) (9.81) (11.77) (16.58) (12.71)

Houston Indianapolis Los Angeles Louisville Memphis

14.30 13.52 12.81 15.17 19.54

(15.95) (12.82) (7.97) (15.02) (13.49)

Miami New York Oklahoma Phoenix Pittsburgh

23.81 8.45 15.42 16.06 6.49

(23.42) (10.05) (15.54) (17.72) (6.47)

Portland Sacramento San Francisco Seattle Tampa

5.52 7.16 7.06 6.23 12.87

(5.06) (7.18) (4.85) (4.54) (12.18)

this is the date that we start to see (at least some) non-zero case

counts in all 25 cities.

As discussed in Section 1, some studies have used social

media or cellular data to model population mobility and forecast

the incidence and spread of COVID-19. Therefore, we use

three separate social mobility indices released by Apple, that

measure walking, driving, and transit use, respectively, for certain

geographies. While most studies have relied on Google mobility

data, Google does not offer publicly available data at the MSA

level. The Apple data are collected from Apple Maps app

usage through individual iPhones. The indices show changes

in relative volume of directions requests per country/region,

sub-region, or city compared to a baseline volume on January

13th, 2020. While we do not claim these indices necessarily

capture population-wide mobility trends, using these data at

least allows us to evaluate the effects of social mobility on

daily COVID-19 cases counts, and assess the usefulness of this

information in constructing daily predictions of COVID-19 cases

in MSAs. Moreover, the walking mobility indicator is highly

correlated with temperature and therefore serves as a useful

proxy for weather, which is known to be an important factor in

transmission (28).

In terms of quantifying the forecasting performance of different

models, we consider the Median Absolute Error (MAE) and

Median Absolute Percentage Error (MAPE) of predicted daily

case counts for each Metropolitan Statistical Area. The MAE

is the median of the absolute value of the difference between

actual and predicted daily case counts over the chosen testing

period, while the MAPE is the median of the absolute value

of the corresponding percentage difference. While MAEs are

reported, our comparisons are primarily based on the MAPE

as it is a standardized metric interpreted equivalently across

all cities. Hence, for a city i, if the actual observed daily case

count is Yt and the predicted value from a chosen model is

Ŷt , the MAE is the median absolute value of their difference or
∣

∣

∣

Yt − Ŷt

∣

∣

∣

, calculated from daily values over the testing period.

The MAPE is therefore the median of
∣

∣

∣

Yt−Ŷt
Yt

∣

∣

∣

×100 over the

testing sample. For further sensitivity analysis, we also report the

proportion of daily forecasts with an absolute percentage forecast

error <20%.

2.2.1 Linear Mixed E�ects (LME) models
To assess the statistical importance of Apple mobility

indicators, we ran LME regressions using Yi,t (i.e., standardized

case count per 100,000 for city i at time j) as the dependent

variable and based on data pooled across cities and over days

for the training period. As a sensitivity analysis, we also ran

the LME regressions for the time period March 22 - August 31,

2020, before the beginning of the steady rise in case counts for

most cities. The LME models considered contain the seven-day

lag of the walking index, one and two day lags of the dependent

variable along with a weekend indicator variable.5 Estimation

results are reported in Table 2. First, while these specific results

are not reported, we note that lagged dependent variables of a

higher order than 3 days were statistically insignificant in these

models. Second, one and two-day lags in the dependent variable

are statistically significant at the 1% level. Third, the seven-day

5 Only the Walking Index was employed in these specifications because of

a high correlation with the Driving Index (r= 0.85) and the fact that the Transit

Index was consistently insignificant in preliminary regressions that contained

all three mobility indicators. More complicated forms of autocorrelation are

handled di�erently in the various models, but generally through the inclusion

of lagged case rates as predictor variables.
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TABLE 2 Baseline linear mixed e�ect model summaries (standard errors in parentheses).

Mar 22–Aug
31, 2020

Mar 22–Nov
14, 2020

Mar 22–Aug 31,
2020 with Apple

Mobility

Mar 22–Nov 14,
2020 with Apple

Mobility

Estimation results

Log casest–1 0.49 (0.018) 0.444 (0.012) 0.489 (0.019) 0.435 (0.013)

Log casest–2 0.38 (0.015) 0.407 (0.011) 0.371 (0.015) 0.401 (0.012)

Seven day lag Apple Walking Mobility index 0.001 (0.0003) 0.002 (0.0002)

Weekend dummy Yes Yes Yes Yes

AIC 7,137.503 13,607.74 7,136.557 13,582.3

Log-likelihood −3,560.75 −6,795.87 −3,559.28 −6,782.16

lagged Apple mobility Walking Index is also statistically significant

at the 1% level. These results offer some support to the inclusion

of a mobility index in the models used to forecast daily case

counts. On the other hand, we note that the inclusion of the

Apple mobility index does not significantly improve the fit of the

LME models as measured through the AIC and Log-Likelihood,

and so its inclusion may not drastically improve a model’s

forecasting capability.

In terms of the specific LME model:

log(Yi,t) = β0 + b0,i + β1 log(Yi,t−1)+ β2 log(Yi,t−2)+ β3WEt

+ εi,t , (1)

where:

• β0 is the population-level intercept;

• b0,i is a city-specific random intercept, with b0,i ∼ N(02, σb0 );

• β1 is the fixed-effect parameter connected with one-day lagged

(log) count for city i;

• β2 is the fixed-effect parameter connected with two-day lagged

(log) count for city i;

• β3 is the fixed-effect parameter connected with the weekend

indicator, common to all cities. Specifically, if day t falls on a

weekend, thenWEt = 1, otherwiseWEt = 0;

• εi,t is the model error term, with εi = (εi,1, . . ., εi,T)
t ∼ NT (0,

σ 2
IT), and εi independent of b 0,i.

Note we have initially assumed that the model error terms are

conditionally independent, with the random intercept being the

only term to induce correlation between the repeated measures

of daily counts within the same city. We also see that all cities

have a common T repeated measures observed. We found that a

modified version of (1) provides a better fit to the standardized

city-level daily COVID-19 case count data. Specifically, allowing

for heterogeneity in both time-varying predictors, i.e., attaching

city-specific random effects to each, and properly handling existing

heteroskedasticity among the model error terms was also required,

leading to:

log(Yi,t) = β0 + b0,i + (β1 + b1,i) log(Yi,t−1)

+ (β2 + b2,i) log(Yi,t−2)+ β3WEt + εi,t , (2)

where the changes relative to

(1) are:

• b1,i is a city-specific random effect connected to the first-order

lagged (log) counts, with b1,i ∼ N(02, σb1);

• b2,i is a city-specific random effect connected to the second-

order lagged (log) counts, with b2,i ∼ N(02, σb2); we allow

for all three random effects to be correlated, though each are

independent of εi;

• εi ∼ NT (0, Σ), with Σ diagonal, but weighted in such a

way to remove the original heteroskedasticity in the model

error terms.

From (2), we can forecast one time point ahead (e.g., one

day ahead), then use that forecast as the first-order lagged term

to forecast one additional day ahead (where the prior first-order

lagged term is now the second-order lagged term), and so on, until

we have forecasted forward the desired number of days. Note that

linear mixed effect models have units borrow strength from other

units for a given unit’s trajectory prediction. Though not all cities

are aligned in time in terms of model dynamics, not nearly as much

borrowing of strength from other city’s predictions will affect a

given city’s predictions, due to the extensive collection of repeated

measures per city paired with the relatively reasonable within-city

variation. Based on the results in Table 2, the Apple Walking Index

is employed as a predictor for some specifications. Estimation of

LME models and forecasts were conducted using the lme4 package

from the R programming language.

2.2.2 Susceptible-Infected-Removed (SIR) model
SIR models are the dominant methodology to model the

spread of epidemics; see, for example, Tolles and Luong (29)

for further details. The SIR model uses differential equations to

describe the dynamic status of an individual switching between

three compartments in a population at time t: susceptible

(St), infected (It), and removed (Rt) (including recovered and

deceased individuals) and is a standard approach employed by

epidemiologists to forecast disease spread.Nt is the total population

at time t and is identified byNt = St +It +Rt, where β is the average

number of contacts per infectious person per time unit, γ is the

transition rate from It toRt, andRt includes recovered and deceased
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individuals. The SIR model is then given by the following ordinary

differential equations:

∂St

∂t
= −

βItSt

N
(3)

∂It

∂t
=

βItSt

N
− γ It (4)

∂Rt

∂t
= γ It (5)

where β is the average number of contacts per infectious person per

time unit and γ is the transition rate from It to Rt . While the SIR

model is based on the modeling of St , It , and Rt , our focus here is

the daily infection numbers and aims to conduct predictions such

that the prediction errors are minimized. With the daily number of

confirmed cases on day t considered as the difference of St and St−1,

we calculate the predicted number of daily confirmed cases on day

t, denoted Ŷt(β , γ ), as follows:

Ŷt (β , γ ) = St−1 − St = It − It−1 + Rt − Rt−1 (6)

for t = 1, . . . ,T, where T represents the end of the study period.

We implicitly assume that N, β , and γ are constant over time.

Then, the parameters β and γ can be obtained by minimizing

the squared prediction error

PE (β , γ ) =
∑T

t=1
{Y t − Ŷt(β , γ )}

2
(7)

for β and γ . Yt is the total number of daily cases in a province at

time t and is not in per capita terms. We convert the forecasts into

per capita terms. Our forecasting procedures model predictions of

total daily cases as these are the numbers that are reported and are

of interest to policymakers in tracking the incidence and spread of

COVID-19. This is consistent with the approach employed by Chen

et al. (2). Estimation of the SIRmodels and construction of forecasts

were done using the R programming language. Specifically, we

utilized the EpiDynamics and bbmle packages to estimate the

parameters of the SIR model.

2.2.3 Box-Jenkins time series modeling
In this paper we also employ the Box-Jenkins class of time series

models referred to herein as SARIMA (Seasonal Autoregressive

Integrated Moving Average) models and we use the notation

log(Yi,t) ∼ SARIMA(p, d, q)(P, D, Q)[m], where, again, Yi,t is the

standardized case count per 100,000 in city i on day t. Thus, for

each city i= 1, 2, . . ., N, we separately fit a model of the form

φ(B)Φ(Bm)D(1−B)dlog(Yi,t) = θ(B)Θ(Bm)Dεi,t , (8)

where B is the backshift operator6 and m is the period of the

seasonal component, which here we take to be 7 given the daily

data. We also assume that εi,t
i i d
∼ N(0, σ 2) and we define φ(z), θ(z),

Φ(z), and Θ(z) respectively to be the following pth order, qth order,

P th order, and

6 B is a notational operator that shifts subscripts t back by 1: BYt = Yt−1.

And when raised to the k
th power, it shifts subscripts t back by k: Bk

Yt = Yt−k.

Qth order polynomials:

φ(z) = 1−φ1z − φ2z
2−...− φpz

p

θ(z) = 1+ θ1z + θ2z
2 + ...+ θpz

q

Φ(z) = 1−Φ1z−Φ2z
2−...− Φpz

P

Θ(z) = 1+ Θ1z + Θ2z
2 + ...+ Θpz

Q

Simple algebra shows that the response for city i on day t,

log(Yi,t), is therefore a weighted sum of historical log case counts.

Note that different values of the non-seasonal (p, d, q) and seasonal

(P, D, Q) orders give rise to different configurations of the model,

accounting for different forms of correlation structure in the

observed time series. We choose the values of p, d, q, P, D, Q that

minimize the corrected Akaike information criterion to ensure the

model fits the observed data well. The models themselves are fit

using maximum likelihood estimation. As with the LME model,

the 7-day lag of the Apple Walking Index is also employed as

an exogenous variable in some specifications. These time-series

models were estimated employing the forecast package in the R

programming language.

2.2.4 Gradient Boosted Regression Trees (GBRTs)
Gradient Boosted Regression Trees are a commonly used

ML algorithm based on decision trees to produce forecasts of

particular outcomes. The algorithm sequentially tests the predictive

power of different trees to reduce forecast errors, until no

further improvements can be made. These predictions are then

combined through a weighted average of regressions to produce

a final prediction. Although there are other more sophisticated

ML methods that can be employed to generate predictions, our

choice of GBRTs was motivated by their relative simplicity and

interpretability, as well as their ease of implementation through

software such as R and Python. This makes them an attractive

choice for policymakers with limited resources and fairly limited

experience with machine learning.

We assume again our sample contains T + 1 observations for

each MSA i. In particular, we assume that we observe the response

variable Yi,t (standardized case count per 100,000 for city i at time j)

and a vector of predictors given by Xi,t for i = 1,2,. . . , N and t = 0,

1, 2, . . . ., T. The model that forecasts Yi,t based on Xi,t is a weighted

additive model of the form

Yi,t =
∑K

k=1
αkfk(Xi,t)+ εi,t , (9)

where fk(·) for k = 1,2, . . . , K are regression trees, αk are weights,

and εi,t is an error term. The algorithm estimates both the weights

αk for k = 1,2, . . . , K and fk(·) by sequentially minimizing a

penalized differentiable convex loss function of Yt−
∑K

k=1 αkfk(Xk)

with respect to both αk and fk(·) over K boosting iterations for k =

1,2, . . . , K. These estimates can then be used to produce forecasts

of Yi,t . For the Xi,t variables, we employ: the weekend dummy

variable; city-specific fixed effects; one- to seven-day lags of the

dependent variable; and seven- to ten-day lags of all the Apple

mobility variables. GBRTs enable the use of all Apple mobility

variables and more lagged dependent variables without concern of

collinearity issues, as weak predictor variables are given less weight

in constructing forecasts. The XGBoost package in Python was used
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FIGURE 2

Forecast performance as a function of MSA for 7-day (A, B) and 28-day (C, D) forecasting strategies for November 15-December 12, 2020. (B, D)

Quantify forecast performance by MAPE (smaller values are better); (A, C) do so using the proportion of daily predictions with a forecast error lower

than 20% (larger values are better).

to estimate the GBRT models and construct predictions. Code for

all of the above models and algorithms are available upon request.

3 Results

We begin with predictions that are 1 week or 7-day ahead

forecasts for each of the 25 MSAs for November 15–December

12, 2020 based on all the models. Given the poor performance

of SIR and LME models, we then evaluate the sensitivity of

our findings by constructing forecasts from SARIMA and GBRT

models for different time periods in January, February, and March

of 2021. Figure 2 visualizes MAPE values and the proportion of

daily predictions with a forecast error lower than 20% for daily

standardized COVID-19 cases (per 100,000 of population) based

on LME, SIR, SARIMA, SARIMA models with the Apple Walking

Index (referred to as SARIMAA), and GBRTs for each MSA. Note

the values displayed in these plots are also tabulated in Table 3. In

Figure 2, Panels A and C report the proportion of daily predictions

with a forecast error lower than 20% with respect to 7-day and 28-

day forecast performances, respectively. Panels B and D contain

corresponding visualizations for MAPE values based on 7-day and

28-day forecast errors. For Panels B and D we seek to identify the

methodology that has the lowest averageMAPE values across cities.

On the other hand, for Panels A and C we are interested in the

methodology which has the highest average of the proportion of

daily predictions with a forecast error lower than 20%, across cities.

3.1 LME and SIR 7-day ahead

With respect to 7-day ahead predictions, LME models produce

lower MAPEs for 9 MSAs, relative to SIR models. However,

the LME MAPEs are also quite high, with Baltimore having the

lowest one at 28.63%. SIR models also do not offer consistently

accurate forecasts across cities. With the exception of Denver,

Louisville, and Portland, SIR MAPE values are always above 25%

for such models. Further, SIR models perform poorly on the

basis of the proportion of daily forecasts falling within 20% of
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TABLE 3 7-day forecasting performance from LME, SIR, and SARIMA models November 15-December 12, 2020.

LME SIR SARIMA SARIMAA GBRT

City MAE MAPE Prop<20% FE MAE MAPE Prop<20% FE MAE MAPE Prop<20% FE MAE MAPE Prop<20% FE MAE MAPE Prop<20%FE

Albuquerque 43.97 47.93 0.14 25.91 29.31 0.25 28.12 37.97 0.25 32.79 37.21 0.29 18.4 21.69 0.46

Atlanta 13.89 45.27 0.21 12.72 41.31 0.14 6.59 22.2 0.43 8.99 25.63 0.32 9.79 21.66 0.43

Baltimore 9.3 28.63 0.14 18.71 45.09 0.11 7.08 21.09 0.5 7.1 21.18 0.46 6.18 18.12 0.57

Boston 19.01 44.44 0.14 33.23 89.18 0 12.02 29.27 0.39 9.93 25.78 0.43 6.21 15.72 0.64

Charlotte 14.67 33.43 0.18 19.29 43.59 0 9.51 22.8 0.43 8.85 18.38 0.57 5.66 12.61 0.64

Chicago 22.26 28.47 0.32 20.03 26.61 0.36 13.99 22.01 0.43 14.17 22.47 0.43 11.81 14.45 0.61

Cleveland 41.95 63.77 0 22.28 33.65 0.29 33.32 44.39 0.18 33.38 45.73 0.14 19.85 27.21 0.39

Dallas 27.69 52.43 0.11 20.67 44.03 0.14 17.89 32.81 0.36 17.65 32.84 0.39 17.6 30.49 0.36

Denver 26.57 37.55 0.25 15.43 22.19 0.43 17.13 22.81 0.46 18.29 25.31 0.32 10.76 13.81 0.68

Detroit 43.82 74.78 0 28.71 42.99 0.18 20.33 31.05 0.36 13.64 26.16 0.39 25.04 39.86 0.18

Houston 11.51 46.72 0.18 14.1 49.37 0.18 11.08 36.37 0.25 11.15 37.35 0.21 9.1 33.18 0.36

Indianapolis 38.5 45.82 0.07 25.18 25.84 0.36 15.7 17.32 0.57 14.03 16.85 0.64 6.89 8.77 0.71

Los Angeles 19.88 44.47 0.14 31.99 67.81 0 14.56 33.86 0.29 14.81 32.15 0.32 10.76 22.53 0.39

Louisville 28.24 40.63 0.32 12.21 17.63 0.61 10.03 15.03 0.64 9.77 15.42 0.82 8.95 11.99 0.64

Memphis 15.07 35.55 0.21 18.69 37.78 0.18 14.02 29.11 0.32 14.15 29.03 0.32 15.64 28.53 0.36

Miami 23.62 45.33 0.18 32.43 59.62 0 15.35 28.69 0.39 17.83 33.77 0.29 11.6 22.33 0.43

New York 6.53 30.08 0.18 25.95 99.97 0 4.28 17.56 0.68 3.42 13.41 0.82 3.27 14.04 0.75

Oklahoma 31.79 44.99 0.14 26.61 37.92 0.14 25.81 33.28 0.29 26.26 37.77 0.21 16.72 25.09 0.32

Phoenix 34.4 58.45 0.11 42.71 82.78 0 17.74 32.23 0.29 16.28 27.28 0.36 18.23 32.29 0.32

Pittsburgh 28.53 57.17 0.14 21.81 44.38 0.25 9.83 19.45 0.54 9.86 17.32 0.54 10.4 21.2 0.43

Portland 14.38 43.91 0.11 6.2 20.05 0.5 5.46 19.77 0.5 6.15 21.26 0.46 4.9 15.83 0.57

Sacramento 27.5 73.97 0.11 20.56 60.25 0.04 9.14 23.27 0.43 9.27 23.72 0.46 12.75 27.41 0.32

San Francisco 7.13 36.19 0.21 9.87 51.06 0.11 5.8 28.45 0.32 5.13 28.16 0.32 6.88 5.97 30.58

Seattle 15.39 50.07 0.14 9.89 34.83 0.25 8.44 29.59 0.32 7.4 25.92 0.39 6.22 20.1 0.5

Tampa 12.3 36.56 0.32 15.69 53.29 0 9.59 31.74 0.36 11.48 44.97 0.32 5.63 19.52 0.57
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TABLE 4 28-day forecasting performance from GBRT and SARIMA models with and without Apple Mobility November 15- December 12, 2020.

GBRT SARIMAA SARIMA

City MAE MAPE Prop<20% FE MAE MAPE Prop<20% FE MAE MAPE Prop<20%FE

Albuquerque 17.01 18.41 0.57 31.17 32.77 0.29 34.61 38.91 0.29

Atlanta 11.9 39.49 0.29 6.59 21.61 0.46 6.46 20.07 0.5

Baltimore 7.48 18.86 0.54 4.34 12.79 0.64 4.33 12.79 0.68

Boston 9.39 22.77 0.39 8.04 16.56 0.57 7.19 15.56 0.57

Charlotte 11.22 27.48 0.32 5.07 12.84 0.57 5.62 14.86 0.61

Chicago 30.41 42.21 0.21 88.57 134.28 0.07 88.29 135.05 0.07

Cleveland 29.51 41.2 0.32 32.69 38.41 0.29 32.45 38.17 0.25

Dallas 19.71 30.59 0.39 11.22 20.43 0.5 11.22 20.4 0.5

Denver 13.83 17.08 0.54 72.34 93.8 0.07 57.8 71.89 0.18

Detroit 19.8 30.41 0.36 25.42 47.38 0.29 36.66 52.67 0.18

Houston 8.8 30.78 0.29 11.4 39.78 0.18 11.82 44.9 0.11

Indianapolis 11.99 14.09 0.68 10.63 11.38 0.61 12.84 14.99 0.57

Los Angeles 18.97 42.17 0.07 26.59 54.23 0.04 26.15 54.11 0.04

Louisville 10.59 16.21 0.57 10.79 16.29 0.61 10.75 15.68 0.61

Memphis 20.26 35.76 0.25 14.9 29.93 0.39 13.73 26.5 0.43

Miami 11 21.13 0.46 17.01 34.17 0.04 18.27 34.01 0.07

New York 3.43 14.21 0.61 5.66 25.32 0.39 1.79 7.73 0.82

Oklahoma 22.32 28.81 0.39 33.3 45.14 0.11 34.27 45.5 0.18

Phoenix 26.42 51.49 0.04 20.12 45.83 0.11 22.38 46.04 0.08

Pittsburgh 21.08 39.06 0.11 10.9 20.19 0.46 14.11 27.3 0.29

Portland 5.42 16.52 0.61 4.46 13.7 0.68 4.86 16.61 0.54

Sacramento 19 51.31 0.25 6.23 19.18 0.54 4.33 19.37 0.5

San Francisco 7.8 40.96 0.18 8.58 43.84 0.29 8.65 44.77 0.25

Seattle 6.73 21.82 0.46 10.99 32.15 0.32 10.62 31.88 0.32

Tampa 5.23 21.65 0.46 5.88 20.36 0.46 7.52 26.29 0.29

the actual value, as there are 7 cities for which the value of

this measure is zero. It is also important to note the extremely

high MAPE values of approximately 90% and 100% for Boston

and New York, respectively, as these two cities experienced

extremely high per capita daily case counts during the first wave

of infections. Further, the MAPE results indicate that even the

use of a long training period is not sufficient to enable the SIR

models to acknowledge the subsequent downward trend in daily

infections and readjust to generate more accurate forecasts for the

testing period.

3.2 SARIMA 7-day ahead

Relative to SIR and LME forecasts, SARIMA models produce

forecasts with MAPEs that are lower for the majority of cities.

SARIMA forecasts yield MAPEs smaller than 20% for four cities

and smaller than 25% for six more cities. Another observation

is that SARIMA modeling generates predictions that are within

tighter bounds for almost each city. Specifically, there is only one

MSA (Cleveland) with aMAPE>40%with SARIMAmodeling. On

the other hand, the number of MSAs with MAPEs >40% based

on LME and SIR models are 17 and 15, respectively. Another

measure that supports the notion that SARIMA models produce

superior forecasts to SIR and LME methods, is the fact that no

MSA has a proportion of absolute forecast errors lower than 20%

equal to zero, based on SARIMA predictions. Further, for 11 MSAs

the proportion of such observations, generated from SARIMA

models, is>0.4. Based on these findings, we conclude that SARIMA

is a superior forecasting strategy for the vast majority of MSAs.

Employing the Apple Walking Index does not make much of a

difference in SARIMA forecasts. As we can see in Figure 2, with

the exception of a few MSAs, SARIMA MAPEs with and without

the Apple Walking Index are comparable. For seventeen cities the

difference betweenMAPEs is<3 percentage points. The proportion

of daily forecasts falling within 20% of the actual values are also

quite comparable between SARIMA forecasts with and without

Apple mobility data.
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FIGURE 3

Forecast performance as a function of MSA for January, February, and March 2021. Forecast performance is quantified by MAPE for two di�erent

model types and two di�erent forecasting strategies.
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FIGURE 4

Model residuals associated with the SARIMA model fit to March 2020-December 2020 data.

3.3 GBRT 7-day ahead

For most MSAs, GBRTs produce more accurate forecasts of

the methods considered. Specifically, GBRTs generate predictions

with lowerMAPEs for 17MSAs, relative to corresponding forecasts

from SARIMAmodels with and without the Apple Mobility Index.

Eleven MSAs have GBRT forecasts with MAPEs lower than 20%,

with Baltimore, Boston, Charlotte, Chicago, Denver, Indianapolis,

Miami, and New York having the lowest values. These results

suggest that GBRTs are capable of producing relatively accurate

7-day ahead forecasts even during time periods of steep increases

and some volatility in daily case counts. The GBRT results are

driven by the lagged dependent variables, and not the Apple

mobility variables. Specifically, the feature importance scores of

the one- to five-day lagged dependent variables range from 0.01

to 0.29. Among the Apple mobility indicators, only the 8-day

lagged Driving Index has a feature score above zero, but which is

still low at 0.01. These results are consistent with the satisfactory

performance of SARIMA specifications without the AppleWalking

Index for some MSAs, as the predictors in these models are lagged

dependent variables.

3.4 SARIMA, SARIMAA, and GBRT 28-day
ahead

Based on the noticeably poorer performance of the LME and

SIR models, the 28-day ahead forecasts (Figures 2C, D) are based

on SARIMA, SARIMAA, and GBRT models only. The predictions

are constructed from a single sequence of 28-day ahead forecasts

(without model updating) for each of the 25 MSAs for November

15–December 12, 2020. Note the values displayed in these plots

are also tabulated in Table 4. Here, we note that SARIMA models

produce lower MAPEs for a majority of MSAs, as there are 14

MSAs for which SARIMA MAPEs are lower than corresponding

GBRT values. However, when the SARIMA MAPEs are larger

than the GBRT MAPEs, they are often much larger, and when

SARIMAMAPEs are smaller than GBRTMAPEs, they tend only to

be marginally smaller. Consequently, across all MSAs the average

SARIMA MAPE is higher than the corresponding GBRT value,

despite individual SARIMA MAPEs being smaller for a larger

number of cities. As such, GBRTs appear to be the best choice for

forecasting both 7-day ahead and 28-day ahead daily standardized

COVID-19 case counts for November 15–December 12, 2020.
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TABLE 5 MAPE values—7-day- and 28-day forecasts from SARIMA models January—March 2021.

January 1–28 2021 February 1–28 2021 March 1–28 2021

City 7-day 28-day 7-day 28-day 7-day 28-day

Albuquerque 25.78 28.84 24 97.09 37.89 34.88

Atlanta 23.5 29.37 21.82 105.21 23.73 49.47

Baltimore 16.49 24.58 33.04 111.57 17.67 26.88

Boston 23.32 46.21 28.2 88.76 18.85 22.33

Charlotte 31.8 35.54 44.53 100.47 39.12 39.82

Chicago 20.68 22.69 9.91 35.04 17.8 18.46

Cleveland 27.41 21.98 47.47 108.83 23.59 22.42

Dallas 29.13 27.76 57.02 178.42 22.12 26.81

Denver 42.92 42.75 29.45 27.35 59.24 54.72

Detroit 38.63 63.27 31.11 42.85 24.69 56

Houston 24.01 32.47 54.79 196.61 23.84 34.01

Indianapolis 25.9 37.15 25.49 79.09 17.07 17.75

Los Angeles 24.75 53.61 45.55 210.15 17.94 43.55

Louisville 22.38 29.89 30.8 41.36 20.7 34.48

Memphis 36.55 42.52 58.42 97.32 42.85 35.16

Miami 31.29 23.99 30.34 73.81 16.62 32.52

New York 16.44 16.18 20.92 68.7 5.87 10.22

Phoenix 36.39 32.84 32.62 121.21 45.25 42.64

Pittsburgh 32.89 66.6 18.56 37.4 19.95 19.22

Portland 41.2 54.7 33.94 66.91 33.52 25.63

Sacramento 26.99 50.22 42.02 76.86 24.97 27.27

San Francisco 14.49 21.44 25.74 92.98 24.58 69.25

Tampa 39.33 32.47 28.56 92.65 16.36 25.48

3.5 SARIMA and GBRT 7-day and 28-day
ahead for January, February, and March
2021

A relevant question is whether these findings are robust to the

use of other time periods. Figure 3 visualizes the MAPEs associated

with 7-day and 28-day ahead SARIMA and GBRT forecasts for

the following testing periods: January 1–28 2021; February 1–28

2021; and March 1–28 2021. For the sake of brevity, we only

report MAPEs. The proportion of daily forecasts falling within

20% of the actual values for these time periods are available upon

request. As discussed, daily case counts dropped significantly for

most MSAs during these months, making the evaluation of the

predictive abilities an interesting contrast to our previous exercise

of constructing forecasts during a period of rising daily COVID-

19 cases during November-December 2020. We do not construct

forecasts for Oklahoma City and Seattle, given the presence of

a significant number of zeros in daily case values that seem

anomalous to case counts in other days.

The results visualized in Figure 3 (and tabulated in Tables 5, 6)

demonstrate that for almost all MSAs, with respect to 7-day ahead

forecasts, GBRTs offer superior predictions relative to SARIMA

models for the month of January. GBRT MAPEs are lower than

20% for 9 MSAs, with another 8 MSAs having MAPEs ranging

from 20 to 25%. Therefore, for a number of MSAs, GBRTs were

able to recognize the change in the trend in daily case counts,

from increases to a steady decline. Like the November–December

2020 results, GBRTs are also able to produce more accurate 28-

day predictions relative to SARIMA models. GBRT MAPEs are

lower than 20% for 6 MSAs, with another 7 MSAs having MAPEs

between 20% and 25%. In terms of specific MSAs, Albuquerque,

Atlanta, Baltimore, Boston, Cleveland, Louisville, Miami, New

York, San Francisco, and Tampa all have GBRT-generated 7-day

ahead MAPEs lower than 20% for January 2021, with most of

the MSAs (with the addition of Chicago) also possessing low

GBRT MAPEs for 28-day ahead forecasts. Including Denver and

Indianapolis, these are the same MSAs with low GBRT MAPEs

during November - December 2020.

Some of the same trends are visible for February forecasts with

GBRT 7-day ahead MAPEs lower than corresponding SARIMA

values for 15 MSAs. Further, 9 MSAs have GBRT MAPEs lower

than 20% and 4 MSAs possess GBRT MAPEs for from 20 to 25%.

On the other hand, both GBRTs and SARIMA models produce

low-quality forecasts with high 28-day ahead MAPEs for the same

February time period; 17 or more cities possessing MAPE values

>50%, and both methods result in MAPEs of over 100% for
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TABLE 6 MAPE values—7-day- and 28-day forecasts from GBRT models January—March 2021.

January 1–28 2021 February 1–28 2021 March 1–28 2021

City 7-day 28-day 7-day 28-day 7-day 28-day

Albuquerque 19.34 23.89 35.19 83.11 14.94 28.43

Atlanta 18.84 24.18 15.52 52.28 22.12 32.84

Baltimore 23.07 21.2 16.49 91.01 15.54 28.31

Boston 12.4 15.76 15.1 73.26 15.01 14.14

Charlotte 14.41 18.21 25.56 48.66 31.05 47.94

Chicago 23.47 17.08 16.49 73.65 15.04 20.08

Cleveland 13.07 19.62 23.55 105.68 21.81 36.84

Dallas 20.8 21.2 31.01 63.77 29.89 80.1

Denver 36.26 44.47 24.97 26.39 60.43 56.56

Detroit 23.86 32.95 25.91 78.08 22.45 67.72

Houston 25.81 21.41 39.58 113.14 33.14 36.39

Indianapolis 21.59 27.82 23.56 96.7 19.48 17.45

Los Angeles 21.12 28.82 19.2 142.85 21.11 81.42

Louisville 17.9 22.39 22.82 108.54 24.27 77.49

Memphis 34.52 39.05 36.97 138.54 48.39 117.08

Miami 11.18 13.1 15.84 26.81 15.43 17.1

New York 14.14 14.26 14.96 32.69 8.03 11.24

Phoenix 24.08 35.68 37.75 148.52 36.63 137.68

Pittsburgh 26.5 48.61 14.07 30.69 20.29 18.92

Portland 29.73 53.59 30.08 197.17 33.57 46.15

Sacramento 23.97 31.12 30.93 30.71 25.67 38.8

San Francisco 14.27 23.95 12.39 112.16 27.09 110.62

Tampa 18.5 20.65 28.56 70.38 12.01 23.09

8 MSAs. These results suggest that both GBRT and SARIMA

models were unable to accurately predict the downward trend

in daily case rates that occurred in February for most MSAs.

While we cannot confirm this, a possible reason for the decline

in daily case rates might be the increased availability and uptake

in vaccinations during and preceding February 2021. To the

best of our knowledge, data on city-level vaccination rates are

unavailable and, therefore, cannot be included as predictors to test

this hypothesis.

In contrast to the February 2021 results, both GBRT and

SARIMA March 2021 MAPEs become much lower for 7-day

ahead forecasts and are comparable to previous months. GBRT

and SARIMA performance are comparable in the sense that the

number of MSAs are roughly split between the two methods

in terms of which approach has the lowest MAPE. With both

methods, 10MSAs have 7-day aheadMAPEs lower than 20%, while

another 8 MSAs possess MAPEs between 20 and 25%. On the

other hand, SARIMA seems to be a superior method for generating

28-day ahead predictions in March 2021. Specifically, SARIMA

forecasts yield MAPEs that are either comparable or much

lower than corresponding MAPE values from GBRT models for

most MSAs.

To summarize, the GBRT and SARIMA models are the most

reliable in terms of producing 7-day ahead daily predictions with

the lowest MAPE values for November-December 2020. With

respect to 28-day ahead forecasts for the same time-period, while

SARIMA and GBRT MAPES are comparable for several MSAs,

there are MSAs where SARIMA MAPEs are much higher. Using

Apple Mobility data does not considerably improve forecasts from

SARIMA models. GBRT models similarly outperform SARIMA

models for 7-day and 28-day ahead predictions for January, but

neither model produces high quality predictions for February

2021, with MAPE values from GBRT models, on average, being

slightly lower. For March 2021, 7-day ahead forecasts from

GBRT and SARIMA models are comparable, with 28-day ahead

SARIMAMAPE values being somewhat lower than corresponding

GBRT estimates.

4 Discussion

Findings from previous studies suggest that the standard SIR

model used by epidemiologists for disease predictions resulted

in inaccurate forecasts for multiple jurisdictions. Further, we are
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FIGURE 5

Autocorrelation function (ACF) plots of model residuals associated with the SARIMA model fit to March 2020-December 2020 data.

unaware of any other study that has attempted to construct

daily forecasts of a panel of U.S. cities. While there is an

abundance of research based on country-level data, research

attempting to predict daily COVID-19 cases across cities is scarce

(11). This is unfortunate, as cities or MSAs have often been

the center of significant occurrences and spread of COVID-

19 infections. Besides difficulties associated with obtaining city

level data, forecasting daily cases is extremely challenging given

the considerable heterogeneity in daily case trends across cities.

Perhaps even more important are factors such as differences in

testing rates, lack of uniformity in data collection protocols, and

inaccurate processing of data, that make comparisons of cases

across jurisdictions difficult (30).

This study explores the efficacy of SIR, LME, SARIMA, and

GBRT models in producing one and four-week ahead predictions.

The choice of these models is premised on different advantages.

GBRTs are an example of supervised ML methods that have proved

to be effective in different cases (12, 24) and can be developed with

less knowledge thanmore sophisticatedmachine learningmethods,

such as deep learning. LME models accommodate city-level

heterogeneity, enabling the researcher to borrow information

across geographies, and hence do not rely exclusively on time-series

variation within geographies. SIR models are the conventional

workhorses in epidemiology, but do not have the flexibility to

accommodate time-specific changes in external factors, such as

population mobility, that can plausibly impact spread of infections.

SARIMA models are relatively simple to implement and as noted

earlier, are useful when the modeled data have pronounced trend

and seasonality. These models have been employed by other studies

(11, 12).

We evaluate model performance primarily through MAPEs

and find that the prediction accuracy associated with LME and

SIR forecasts tends to be inferior relative to that of SARIMA

and GBRT forecasts. Compared to SARIMA, GBRTs generate 7-

day ahead and 28-day forecasts with lower MAPEs for a vast

majority of MSAs for most months. While SARIMA produces

lower MAPEs for 28-day ahead predictions for March 2021, the

good performance of GBRTs more broadly make it a suitable

choice for modeling and forecasting daily COVID-19 case counts

during time periods of both increase and decrease in infections.

From a policy perspective, these results are important as they

imply the availability of superior forecasting methods relative to

conventional epidemiological methods. The performance of GBRTs

should be noted, given that they are relatively straightforward to

use through available statistical packages. The performance of these

models is comparable to findings from other studies that use more

disaggregated data than at the country level. For example, using

provincial level data from Canada, Sen et al. (24) find MAPEs from

GBRTs ranging from 8 to 30% for 2 week ahead daily forecasts.

Zhang et al. (26) obtain Mean Absolute Percentage Errors ranging

from 4 to 8% for 8 counties in California, but not for time-periods

of 4 weeks or over.
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FIGURE 6

Normal QQ-plots of model residuals associated with the SARIMA model fit to March 2020-December 2020 data.

We note the following limitations. It is important to

acknowledge that several of the chosen models make strong and

potentially restrictive assumptions including, but not limited to,

errors that are independently and identically distributed normal

random variables. Such assumptions have been evaluated using a

battery of residual diagnostic tools. Although many models and

many specifications of these models were considered, we present

results only for those whose assumptions were reasonably satisfied.

To demonstrate this, we include Figures 4–6 which depict residuals,

autocorrelation function and normal quantile-quantile plots of the

residuals of the SARIMA model fit to the March 2020-December

2020. As is evident, we do not observe serious violations of

stationarity or normality.

5 Conclusion

Along with other papers that have emerged over the past 2

years, the results of this study suggest that GBRTs can also be used

for predicting the spread of highly infectious diseases on a daily

basis. These findings suggest that the relatively basic ML modeling

can lead to vital insights for government resource allocation

and decision-making, and result in superior disease surveillance

relative to conventional epidemiological methods. Future work

will investigate the benefits of employing more complex deep

learning and neural network-based methods, which have the

trade-off of being more complex and possibly more accurate but

also more difficult to interpret, especially for a wider audience of

policy practitioners.
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