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From brain to worksite: the role of 
fNIRS in cognitive studies and 
worker safety
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School of Civil Engineering, Central South University, Changsha, China

Effective hazard recognition and decision-making are crucial factors in ensuring 
workplace safety in the construction industry. Workers’ cognition closely relates 
to that hazard-handling behavior. Functional near-infrared spectroscopy (fNIRS) is 
a neurotechique tool that can evaluate the concentration vibration of oxygenated 
hemoglobin HbO2� � and deoxygenated hemoglobin [HbR] to reflect the cognition 
process. It is essential to monitor workers’ brain activity by fNIRS to analyze their 
cognitive status and reveal the mechanism in hazard recognition and decision-
making process, providing guidance for capability evaluation and management 
enhancement. This review offers a systematic assessment of fNIRS, encompassing 
the basic theory, experiment analysis, data analysis, and discussion. A literature 
search and content analysis are conducted to identify the application of fNIRS in 
construction safety research, the limitations of selected studies, and the prospects 
of fNIRS in future research. This article serves as a guide for researchers keen on 
harnessing fNIRS to bolster construction safety standards and forwards insightful 
recommendations for subsequent studies.
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1. Introduction

Dynamic-complex working environment makes the construction industry one of the most 
dangerous fields. According to the International Labor Organization (ILO), over 381,000 
workers worldwide die from occupational injuries each year, with construction workers facing 
3–4 times higher fatality rates, which escalate to 4–6 times in developing countries (1). According 
to the Ministry of Housing and Urban–Rural Development (MHURD), more than 794 Chinese 
construction workers lost their lives in construction accidents in 2022 (2). In the United States, 
occupations related to construction and extraction recorded 18.3% of all workplace fatalities in 
2021, totaling 951 (3). Consequently, there is an urgent global mandate to enhance construction 
safety management to mitigate fatal accidents.

Construction projects, characterized by their inherent diversity and complexity, are breeding 
grounds for numerous workplace hazards such as machinery mishaps, falls, and fires (4). The 
failure to identify site hazards significantly contributes to unsafe behavior among construction 
workers, which is implicated in over 70% of construction site accidents (5). Furthermore, 
research indicates that up to 57% of job site hazards remain unrecognized, exacerbating the risk 
of accidents (6). Consequently, developing and implementing effective hazard recognition 
strategies emerge as a critical component of risk management and related safety research aimed 
at identifying and mitigating various site safety risks more proficiently. Moreover, considering 
that over 49% of workplace accidents are primarily attributed to the unsafe acts of construction 
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workers (7), it underscores the imperative need to foster the research 
of safety about informed risk decision-making processes.

Hazard recognition and risk decision-making have garnered 
substantial attention in the academic sphere, catalyzing a shift toward 
more objective and scientifically rigorous research methodologies. 
Traditional research methodologies have relied heavily on surveys, 
encompassing questionnaires, interviews, and site surveys, to delve 
into the intrinsic mechanisms (8–10). However, these methods are 
hampered by subjective and memory biases, and the societal backdrop 
of safety research often discourages workers from disclosing unsafe 
behaviors during surveys, interrupting daily operations on sites. To 
circumvent these limitations, experimental methods have been 
adopted, where participants engage in risk identification or operational 
tasks within immersive virtual environments of workplaces, offering 
a more objective tool for evaluating construction workers’ risk 
identification and decision-making capabilities (11–16). Despite these 
advancements, the safety research on a comprehensive understanding 
of the cognitive mechanisms underlying hazard identification and 
decision-making among construction workers remains inadequate.

Addressing this gap, the emerging field of neuro-engineering 
management leverages advancements in sensor technologies to 
integrate neuroscience research methods into construction safety 
studies. This interdisciplinary approach facilitates the exploration of 
human cognition and behavior using advanced neuro-techniques 
such as electroencephalogram (EEG), functional near-infrared 
spectroscopy (fNIRS), and eye-tracker (17). EEG and eye-tracker 
could enhance the studies of brain activities and have been applied in 
research on hazard recognition and decision-making of construction 
workers systematically reviewed (18, 19). However, non-direct 
measurements of the eye tracker and low movement tolerance of EEG 
restrict the application in cognitive process mechanisms research. 
These limitations underscore the necessity for a more direct and 
adaptable tool that can seamlessly integrate into the dynamic 
environment of construction sites.

Here, fNIRS emerges as a pivotal tool, utilizing near-infrared light 
(~650–1,000 nm) to irradiate the human brain and collect scattered 
light through an optical detector (Figure 1), thereby directly detecting 
variations in oxygenated and deoxygenated hemoglobin 
concentrations in the cortex (20). These variations, supported by 
cerebral blood flow (CBF), indicate different brain activation states 
and are central to the cognitive processes involved in hazard 

recognition and decision-making. The modified Beer–Lambert law 
facilitates the statistical analysis of these concentration changes 
( 2HbO∆  and HbR∆ ), offering an objective response to the 
associated CBF dynamics (21). The advent of miniaturized, wearable 
fNIRS devices has further propelled the field, enabling wireless 
cognition detection with high movement tolerance, thereby offering 
enhanced safety, convenience, and minimal disruption to daily work 
compared to traditional neuroscience methods (22). This development 
ensures the authenticity of the data collected and enhances the 
feasibility of implementing fNIRS technology on a larger scale in the 
construction industry.

Given these promising attributes, fNIRS has rapidly gained 
traction as a vital scientific tool in cognitive process research, 
presenting a promising avenue for unraveling the mechanisms of 
hazard recognition and decision-making in construction safety (23). 
Since its initial application in 2018, there has been a burgeoning 
interest in utilizing fNIRS for construction safety research, showcasing 
its potential as a burgeoning neuro-management technique in this 
domain (24). Its ability to provide direct, real-time insights into the 
cognitive processes underlying hazard recognition and decision-
making by detecting hemoglobin concentration variation in the brain 
regions reflecting the cognition status with high movement tolerance 
and positions it as a revolutionary tool in advancing construction 
safety research.

However, the current landscape is marred by a lack of systematic 
reviews, limiting the full realization of fNIRS’s potential in 
construction safety research. There is an urgent need to scrutinize 
existing publications to furnish scholars venturing into fNIRS-based 
construction safety research with organized guidance on research 
topics, methodologies, and analysis of findings. This endeavor aims to 
foster collaborative knowledge sharing and research expansion, 
offering constructive recommendations for future scholarly 
explorations and management practices in construction safety 
through a comprehensive examination of pertinent studies in 
this arena.

2. Research methodology

This study proposes a rigorous three-step methodology to 
facilitate a comprehensive literature review (Figure 2). Initially, two 

FIGURE 1

Schematic representation of the basic theory of the fNIRS device.
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preeminent academic databases are utilized to procure articles 
pertinent to this investigation. Subsequently, the identified academic 
findings undergo a meticulous two-stage screening process. During 
this phase, papers failing to satisfy the predetermined criteria are 
excluded from further consideration, thereby delineating the 
boundaries of this literature review. Finally, a thorough examination 
of the full texts of the selected articles is undertaken to ascertain the 
research objectives, experimental methodologies, and data analysis 
techniques employed.

The Web of Science and Scopus are two of the most reputable 
scientific databases, encompassing over 15,000 scientific journals 
globally. An exhaustive search is conducted within these databases, 
scrutinizing literature titles, abstracts, and keywords to identify 
relevant academic publications. The focal point of this literature 
review is the application of functional near-infrared spectroscopy 
(fNIRS) in enhancing safety within the construction sector, with a 

particular emphasis on utilizing NIRS to monitor the cognitive states 
or mental workload of construction workers, thereby fostering a safer 
work environment. The research scope is bifurcated into two primary 
dimensions: near-infrared spectroscopy and construction safety. 
Consequently, the search queries formulated for the databases above 
are as follows: for Web of Science, “TS = (construction safety) AND 
(TS = (near-infrared spectroscopy) OR TS = (NIRS)),” and for Scopus, 
“TITLE-ABS-KEY (construction AND safety) AND (TITLE-
ABS-KEY (nirs) OR TITLE-ABS-KEY (near-infrared-spectroscopy)).” 
In these queries, the pivotal research terms are linked using the “AND” 
operator, while the critical term “near-infrared spectroscopy” is 
coupled with its acronym “NIRS” using the “OR” operator.

A further screening process is instituted to ascertain the relevance 
and alignment of the articles retrieved with the research objectives, 
guided by pre-established criteria. Firstly, the literature selection is 
confined to English language publications, given that most seminal 

FIGURE 2

Research methodology.
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works and high-quality information in this domain are predominantly 
published in English. Secondly, the articles must explicitly employ 
near-infrared spectroscopy to assess the cognitive dynamics of 
individuals engaged in construction-related tasks, thereby aligning 
with the dual focus on near-infrared spectroscopy and construction 
safety. Lastly, considering the developing integration of near-infrared 
spectroscopy in construction safety research, this study encompasses 
peer-reviewed articles, review papers, and conference proceedings to 
provide a holistic overview of the current research landscape.

Articles failing to meet the stipulated criteria are excluded from 
further analysis. Upon the completion of the database search, a three-
tiered approach is adopted to refine the selection: (1) Preliminary 
screening through an analysis of titles, abstracts, and keywords to 
eliminate duplicates and irrelevant literature, adhering to the 
established screening guidelines. (2) Detailed full-text review to 
identify articles that fulfill the research criteria for in-depth analysis. 
(3) Implementation of a snowball search strategy to explore the 
citations of the articles shortlisted during the second stage, with the 
aim of incorporating additional literature that, although not identified 
in the initial database search, aligns with the study’s screening 
principles for a comprehensive analysis.

A systematic search was carried out using predetermined key 
terms on Web of Science and Scopus. This resulted in the retrieval of 
21 articles from Web of Science and 16 from Scopus. Out of the 37 
articles identified, 11 were found to be duplicates and were 
subsequently excluded. A further 18 articles were removed due to 
their lack of relevance to the research topic. A supplementary snowball 
search recommended the addition of three more publications. After 
the selection process, 11 articles were finalized for this review.

3. Experiment analysis

This section explores key considerations in applying functional 
Near-Infrared Spectroscopy (fNIRS) to construction safety research, 
encompassing detection area identification, equipment selection, 
foundational theory comprehension, task design, and participant 
selection. It delves into how fNIRS is employed to measure brain 
activity in different regions, with a focus on the prefrontal cortex 
involved in hazard recognition and decision-making in 
construction safety.

3.1. Detection area

Brain regions are associated with various specific functions, and 
fNIRS can be applied to confirm the brain active state of different 
regions by estimating data variables such as hemoglobin concentration 
(25). Therefore, identifying the brain regions for measurement is a 
crucial component of fNIRS-based studies. The human brain consists 
of four parts in the fNIRS-based construction safety research, such as: 
the frontal, parietal, temporal, and occipital lobes (Figure 3).

Within the frontal lobe, the blue area depicted in Figure  3 
represents the prefrontal cortex (PFC), which is closely associated 
with functions such as thinking, planning, management, and motor 
execution (26). Previous studies focusing on the PFC have attempted 
to identify subjects’ emotional regulation and mental stress (27, 28). 
Since the PFC is involved in brain functions necessary for hazard 

recognition and decision-making by workers, existing fNIRS-based 
studies have predominantly chosen the PFC as the detection area to 
explore the cognitive mechanism of hazard recognition and decision-
making in construction safety management (29, 30).

3.2. Apparatus

3.2.1. Equipment evolution
In fNIRS-based research, equipment selection is a critical factor 

that influences experimental operation, test cost, and measurement 
quality (Figure 4). Early functional near-infrared spectroscopy devices 
were bulky and primarily used for indoor experiments (31). However, 
the advent of wearable fNIRS devices has garnered increased attention 
from scholars, particularly those interested in applying the technique 
to construction safety management research (32).

To ensure sufficient fNIRS detection, researchers should consider 
their research objectives when determining the spatial resolution, 
sampling rate, and number of channels for choosing fNIRS devices. 
Although higher resolution devices offer more precise localization of 
brain activity, they tend to be  more expensive and require more 
sophisticated analysis techniques. Similarly, while higher sampling 
rates provide more detailed temporal information, they may generate 
larger datasets and demand more processing power. Additionally, 

FIGURE 3

Brain area in fNIRS-based construction safety research.

FIGURE 4

(A) Wearable and (B) indoor fNIRS devices.
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including more detection channels can lead to better coverage and 
localization, but may also increase the system’s cost and complexity. 
For example, to detect PFC and motor cortex of human brain, the 
selected fNIRS device-Oxymon (33) has 24 channels (34).

After considering the factors mentioned above, researchers should 
investigate whether the fNIRS device includes compatible data 
analysis software or if additional software is required to process and 
analyze the collected data. If the experiment involves combining 
fNIRS with other neuroimaging techniques (e.g., EEG, MRI), it is 
essential to ensure that the selected fNIRS device is compatible with 
the other equipment and allows for synchronized data collection. For 
instance, when integrating an eye-tracker, Liao et  al. (29) choose 
NirSmart (35) with 20 channels.

3.2.2. Multimodal insights
Furthermore, with the development of neuroscience, multimodal 

study has been proposed as a new research agenda. To carry out joint 
research with different human cognition indicators associated, a 
multimodal monitoring method has been generated by integrating 
several neuro techniques, such as eye tracking, EEG, and fNIRS (36). 
In the fNIRS-based experiment research of construction safety, 
scholars typically choose eye tracking for multimodal monitoring 
(29). Besides, even carrying out experiments in simulated construction 
scenarios, the participant injuries cannot be avoided entirely. Thus, 
researchers tried to conduct the fNIRS-based study in a mix-reality 
environment with a virtual technique like VR, in which participants 
can explore the surrounding information or perform interactive 
actions realistically and safely (37). Furthermore, the model 
development of VR scenarios should achieve more realistic with 
various construction hazards, which would be a challenge for future 
fNIRS-based research.

3.3. Task design

The design of fNIRS-based experiments in construction safety 
typically focuses on hazard recognition and decision-making. 
Participants are tasked with identifying hazards or completing 
practical operational tasks in realistic environments that reflect the 
daily work of construction workers.

3.3.1. Hazard recognition
The hazard recognition process is a fundamental aspect of safety 

activity, which involves signal detection, comprehension, and 
projection (38). This process requires the involvement of cognitive 
resources and includes the tasks of detection, evaluation, and 
forecasting. The brain cognition principle indicates that the increase 
in cerebral activity leads to the regional blood flow variation for 
delivering glucose and oxygen for metabolic demands (23). This 
neural phenomenon is explicitly reflected as the value vibration of 
indicators: HbO2� � and HbR� � (39). Typically, the representation of 
brain activities is considered to be  the concentration changes  
of oxygenated hemoglobin 2HbO∆  (40–42). For instance, in 
transportation neuroscience research, it has been reported that 
measuring 2HbO∆  in the PFC effectively captures brain cortex 
activities, serving as a highly sensitive indicator of CBF (43). Through 
information synthesizing, the prefrontal cortex coordinates the act 
and thought based on internal goals via the nerve signal transmission 

within the brain system during hazard recognition (23, 44). In 
conclusion, by measuring the oxygenated hemoglobin of PCF, the 
neuroimaging technology fNIRS offers the methodology to 
quantitatively describe cognitive activities in the hazard recognition 
process (24).

In studies utilizing fNIRS for risk identification, some researchers 
focus on specific areas within a single category of risk, such as fatigue 
(45), risk attitude (46), and experience (47). Other studies have 
focused on replicating environments with potential hazards to 
investigate their effects, including settings that mimic workplaces (29), 
driving scenarios (48), and equipment usage (34). When it comes to 
construction safety, researchers place greater emphasis on adequately 
reflecting construction-related risks in their experiments, such as 
gravitational, electrical, mechanical, chemical, and individual factors.

Early fNIRS-based studies in construction safety primarily 
emphasized straightforward risk recognition tasks. Participants were 
presented with 24 images showcasing varied types and levels of risks 
(24). Throughout these experiments, scholars captured the 
participants’ BOLD data from the prefrontal cortex using 
fNIRS. However, the experimental design did not accurately represent 
the participants’ real-world work situations. Consequently, there were 
suggestions to deploy fNIRS measurements in more authentic 
contexts. For instance, controlled experiments were proposed to 
examine the impact of fatigue on risk identification, specifically within 
the driving domain (43) and neurorehabilitation (49). Nevertheless, 
in the realm of construction safety, workers are often extensively 
engaged in their routine tasks, leaving little to no opportunity for in 
situ fNIRS experimental manipulations (50).

In response to the constraints observed in earlier fNIRS research 
methodologies, there’s been a notable shift toward lab-simulated 
experiments. These experiments allow participants to recognize potential 
construction-related hazards under the monitoring of fNIRS. The setup 
often involves a predefined route within a lab-created simulation of a 
construction environment. Participants, wearing fNIRS devices, follow 
this route and use tools, such as laser pointers, to identify and report 
perceived risks. Sun and Liao (30) set a precedent in this direction, 
tailoring their simulated jobsite settings based on expert guidance. In 
their study, participants were tasked with recognizing hazards over a span 
of 25 min, from initial spotting to final decision-making. Essential data 
points like cognitive responses, identified hazards, and time taken were 
meticulously captured. This structured 25-min time frame was also 
incorporated by Zhou et al. (51). Their experimental design encompassed 
multiple phases: preparation, device calibration, task execution, and 
hazard verification. Deviating from this model, Qingwen Zhang et al. 
(52) conducted hazard-searching experiments without adhering to the 
25-minute time constraint, but before initiating their core experiment, 
they evaluated participants on their familiarity with the site, 
understanding of safety protocols, and risk tolerance.

In essence, these fNIRS-simulated studies underscore the 
advantages of laboratory experiments, notably the ability to maintain 
controlled conditions while negating participants’ exposure to real-
world hazards. However, a tangible disparity remains: the controlled 
simulations, no matter how intricate, still cannot fully emulate the 
complexities and nuances of actual construction worksites.

3.3.2. Decision-making
In the realm of fNIRS-based decision-making research, Wilde 

(53) introduced the risk homeostasis theory in psychology. This 
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theory posits that workers are often inclined to compromise their 
fundamental interests, such as safety, in pursuit of potential profits 
amidst risks. Such a mindset might account for why construction site 
accidents are intrinsically linked to workers engaging in unsafe 
behaviors (7). Numerous variables come into play in workplace risk 
decision-making, encompassing factors like time pressure, cognitive 
demands, and risk attitude. A notable observation is that workers 
inclined toward unsafe actions tend to focus more on the enticing 
positive outcomes associated with these risky behaviors (54). 
Therefore, a comprehensive analysis of these influential variables is 
indispensable for effective construction safety management.

fNIRS, a non-invasive neuroscience technique, stands out for its 
wearability and tolerance to movement, making it apt for monitoring 
workers’ cognitive activities during decision-making processes in 
construction. This method evaluates changes in the cerebral cortex’s 
blood oxygen concentration, a direct indicator of brain activity. These 
changes can shed light on the effects of various influencing factors on 
cognition. As the intensity of cognitive tasks rises, there’s a 
commensurate increase in oxygen consumption by the brain’s 
neurons. This, in turn, leads to variations in the concentration of 
hemoglobin within the active neural regions, offering insights into 
cognitive processes (55).

Within the domain of cognitive studies centered on decision-
making, control experiments play a pivotal role (56). However, when 
the focus shifts to decision-making in construction safety, the 
research dynamics change considerably. The inherently risky and 
unpredictable nature of construction environments necessitates a 
more tailored and rigorous experimental design. The aim is to 
accurately capture the nuanced cognitive processes influenced by 
factors such as time constraints. Recognizing this specificity, there 
has been a discernible trend toward adopting simulation 
experiments, particularly those leveraging the capabilities of fNIRS, 
in cognitive research related to construction safety. Illustratively, 
Pooladvand et al. (46) recommended a laboratory-based electrical 
construction work experiment with mixed reality environment using 
fNIRS. Within this framework, participants don VR and fNIRS 
devices to perform high-risk tasks, post-self-assessment, in two 
scenarios: standard and high-risk with potential rewards, with their 
behaviors and cognitive states being rigorously recorded. To ensure 
the simulation’s authenticity, researchers implemented a preliminary 
questionnaire, and, after a 30-min training, participants began tasks 
with the fNIRS system recording real-time cognitive data in an 
immersive environment (37).

3.4. Participants selection

The selection of participants can significantly impact the quality 
of an experiment. For instance, differences in memory performance 
among subjects can affect fNIRS measuring results (34). To address 
this issue, scholars recommend administering a brief questionnaire, 
such as the factor-referenced cognitive test, to ensure that abnormal 
mental conditions do not affect fNIRS measuring results (57). 
Additionally, having a sufficient sample size is essential in experimental 
design to reduce fNIRS measurement errors resulting from individual 
variations. In the reviewed studies on fNIRS applied in construction 
safety, the experiment participants range from 14 to 48, with a mean 
number of 40 and a median of 47. To enhance the reliability of results, 

researchers suggest having no fewer than 50 participants in 
psychological experiments, allowing for the simple comparison of two 
cognitive process indicators with 80% power (58). This assertion is 
based on the acceptable effect size of d = 0.4, with the sample size 
growing to 100 or more in the presence of within-group variable 
interactions. The existing sample sizes in studies are less than the ideal 
estimation, which may impact the reliability of experiment conclusions 
considering the complicated cognition status and related jumbled and 
violated measuring data in labor’s daily work.

In the reviewed papers that used experimental research methods 
with fNIRS, students in the field of civil engineering were selected as 
participants, with an average age of no less than 20 years (59, 60). High 
labor costs may be a reason for using students for experiments in some 
regions, such as the United  States (46). Additionally, complex 
neuroscientific experiment tasks of fNIRS require participants to have 
a higher ability to learn and understand. However, construction 
workers are often perceived to lack higher education and to be older, 
which is contrary to the requirements of the fNIRS-based experiment. 
No studies have selected construction workers as subjects yet to 
generate convincing fNIRS experiment results. Moreover, there are 
fewer personal characteristic differences among students, which has 
the advantage of controlling irrelevant variables in fNIRS-based 
experiments (61). However, replacing construction workers with 
college students as fNIRS experiment participants has aroused 
suspicion for lacking sufficient working experience in construction. 
Furthermore, these fNIRS studies do not provide a reasonable 
explanation for why the findings of undergraduate participating 
experiments are equally applicable to construction workers, requiring 
further exploration.

4. Data analysis

4.1. Feature extraction

Hematoxylin plays an essential role in oxygen transport (62), 
particularly in industries like construction that involve significant 
physical work. The brain activity of construction workers leads to an 
increase in oxygen consumption, causing regional fluctuations in the 
concentration of oxyhemoglobin ( HbO2� �) and deoxyhemoglobin 
( HbR� �) (63). This forms the basis for fNIRS-based studies on 
construction safety, which enables the acquisition of HbO2� � and 
HbR� � data (64). From this data, it is possible to generate the total 

hemoglobin concentration ( tHb� �, i.e., the sum of HbO2� � and HbR� �) 
and tissue oxygen saturation ( StO2� �) (21). The result of HbO2� � and 
HbR� � do not originate from direct fNIRS-based measurements but 

are calculated by processing the raw light intensity data based on the 
optical attenuation of the measured near-infrared spectroscopy light 
(65, 66). However, it is important to note that fNIRS measurements 
are susceptible to motion artifacts and physiological disturbances, 
especially when monitoring construction workers. Therefore, the 
successful extraction of essential features through the processing of 
raw functional near-infrared spectroscopy data becomes a critical 
factor in related neuroscience research (67).

In the fNIRS data analysis, the MBLL (Modified Beer–Lambert 
law) can be used to calculate the optical density variation for high 
dispersion media, which is the physics underlying the calculation of 
HbO2� � and HbR� � (21). The MBLL is generally formulated as (68):
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In this equation, OD∆  represents the change in optical density 
concerning the position of the light source, the position of the fNIRS 
device probe, the detection light wavelength (λ), and the detection 
time (t) (66). On the right-hand side of this equation, I  denotes the 
photon flux received by the probe at its position at time t, when the 
light source position (69). And the incident photon flux of the light 
source at the same time is then expressed as I 0. In this equation, ���  
represents the change in the absorption coefficient (70). B and L 
shown above are parameters related to the position of the probe and 
the light source (B is the differential path coefficient, and L is the 
distance between the probe and the light source) (71). For the 
calculation of the ���  coefficient on the right side of Equation (1), 
based on the underlying assumption that the optical density variation 
in fNIRS-based studies is mainly from HbO2� � and HbR� � (72).

4.2. Signal preprocessing

The signal data collected in the reviewed fNIRS-based 
construction safety research are derived from three components, 
namely, (i) evoked neurovascular coupling from external stimuli or 
task design, (ii) spontaneous neurovascular coupling, and (iii) 
systemic physiological processes, including “physiological 
disturbances” or “systemic disturbances,” evoked by non-neurovascular 
coupling. Relying on the fNIRS signal, changes in blood oxygen 
concentration in the grey matter of the construction worker’s brain 
can be measured, which also reflects physiologically based systematic 
confounding in the superficial layers of the head (skin and frontal 
bone) (73). Recording a systematically confounded fNIRS signal can 
obscure participants’ brain activity and produce experimental error 
(74). To ensure effective and accurate statistical analysis of fNIRS-
based construction safety research, it is necessary to preprocess signal 
data to exclude systematic confusion and remove unwanted 
signals (75).

The usual elements of signal processing and analysis of near-
infrared spectroscopy include correction for motion artifacts, short-
range correction, and physiological noise separation (66). In 
experimental studies applying fNIRS, low-pass filtering is one of the 
most commonly used signal processing methods to reduce 
experimental error by removing non-evoked signal content (76). As 
fNIRS-based construction safety research has evolved, data processing 
methods have been iteratively upgraded. Scholars raise a new 
approach for motion artifact removal by machine learning which 
shows a similar treatment effect between walking and stationary state 
in fNIRS measurement (77).

4.3. Analysis method

4.3.1. Statistical models
In the nascent stages of fNIRS-based construction safety research, 

the primary focus was on the rudimentary analysis of variations in 
hemoglobin oxygen content, which were then integrated with time 
series to formulate visualized results for analytical reference (24). 

However, as the field advanced, the complexity of experimental 
objectives and procedures increased, necessitating the integration of 
more sophisticated statistical approaches.

To address this growing complexity, researchers have expanded 
their analytical toolkit to include a diverse range of statistical models 
in fNIRS-based studies such as the two-sample t-test, paired t-test, 
one-way ANOVA, and multinomial ANOVA (20). Initially, simple 
t-tests were predominantly utilized to analyze mean value differences, 
offering a straightforward approach to data analysis (78). Subsequently, 
introducing more complex statistical models became imperative to 
cater to the evolving needs of fNIRS research. These later developments 
included the adoption of paired t-tests, which have proven 
instrumental in comparing activation levels under varying brain 
conditions (79), and the integration of ANOVA models, facilitating a 
nuanced analysis of data derived from fNIRS-based experiments (80).

Meanwhile, these statistical models reveal distinct advantages and 
disadvantages in fNIRS experiments. For instance, while t-tests are 
relatively simple to implement and adept at comparing means between 
two groups, researchers should consider whether the data in fNIRS-
based study presuppose a normal distribution (47). Furthermore, the 
application of t-tests in multiple comparisons elevates the risk of type 
I error, potentially compromising the validity of the research findings 
for construction safety (81). Conversely, ANOVA models, though 
capable of handling multiple comparisons simultaneously in fNIRS 
experiments and offering a holistic view of the data, necessitating 
larger sample sizes in construction safety research can sometimes be a 
limiting factor (82). Moreover, interpreting results from multi-
factorial ANOVA models can be  complex, requiring a profound 
understanding of the statistical principles and proposing rational 
experimental designs that underpin these models in fNIRS-based 
safety research of construction workers (66).

Selecting an appropriate statistical model in the context of fNIRS-
based construction safety research is multifaceted and influenced by 
numerous critical factors (83). These factors encompass specific 
research objectives, the nature of the collected data, and the intricacies 
inherent in the experimental design. For instance, in the pursuit of 
introducing a quantitative metric for assessing the hazard recognition 
capability of construction workers, researchers strategically opted for 
multivariate analysis of variance to compare diverse multimodal data, 
which included fNIRS measurements (30). This selection process 
demands a profound understanding of the underlying data 
distribution, considerations regarding sample size, and a meticulous 
evaluation of the potential consequences associated with both type 
I and type II errors in fNIRS experiments (84). Consequently, some 
research teams expanded the cohort of participants involved in fNIRS 
experiment and augmented the number of measurement channels for 
fNIRS to accumulate a more extensive dataset, thereby enhancing the 
robustness of their construction safety analysis (59). Furthermore, in 
selecting statistical models for the analysis of fNIRS data, it is crucial 
that these models not only facilitate the extraction of meaningful 
insights but also contribute to a deeper understanding of the intricate 
dynamics within the realm of construction safety. As an illustrative 
example, the adoption of a general linear model to investigate the 
relationship between individual risk attitudes and decision-making 
related to construction risk emerged as a rational and well-founded 
choice (46). Looking toward the future, as fNIRS experiments in 
construction safety evolve toward greater complexity and 
comprehensiveness, there is a burgeoning anticipation for the 
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development of specialized statistical tools and software (85). These 
tools are poised to enable a more exhaustive and intricate analysis of 
fNIRS data, fostering a deeper and more nuanced understanding of 
the intricacies within the field of construction safety research.

4.3.2. Machine learning models
Increasing requirements of the fNIRS application in sectors such 

as healthcare are impeded by restricted monitoring regions (86). This 
has propelled the evolution of fNIRS devices, like the bundled optode 
approach, which could potentially augment the number of detection 
channels by thousands for experiments in construction safety 
research, thus introducing more complex statistical demands (87). 
Moreover, statistical analysis of a larger array of fNIRS data features 
elevates the volume and intricacy of data processing and comparison 
in construction safety research. These features include peak, mean, 
skewness, variance, slope, root mean square, and median (88). In 
response to this research trend, machine learning has been raised to 
achieve automatic feature extraction and classification tasks, like linear 
discriminant analysis (LDA), support vector machines (SVM), deep 
belief networks (DBN), and convolutional neural networks (CNN) 
(89, 90). Ho et al. (91) suggest a methodology using CNN and DBN 
achieving better classification accuracies of 84.26 ± 9.10% in 
comparison of [HbO2] and [HbR] concentrations among two mental 
stages. In the mental load research by fNIRS, researchers compare the 
effect of a machine learning algorithm in data classification tasks, and 
it shows that DBN and CNN have higher accuracy than traditional 
methods like AdaBoost and SVM, one of the most popular models 
utilized widely for the cognition research of workers (92).

Integrating many algorithms, called ensemble learning, shows the 
potential for greater classification performance than applying a single 
traditional model in fNIRS-based research (93). This promising 
prospect has prompted scholars to consider the application of 
ensemble learning to fNIRS-based construction safety research, 
specifically in the cognitive exploration of construction workers. Two 
major categories of algorithms in ensemble learning contain bagging 
methods and boosting methods, such as XGBoost and Random Forest 
(RF). Linear support vector machine and linear discriminant analysis 
are integrated for classification work to improve the functional 
performance of fNIRS-based brain-computer interfaces (fNIRS-BCIs) 
(94). Li et al. (95) report that the ensemble learning of the 2-layer-
GA-SVM model could enhance the average accuracy from 70.6 to 
84.4% compared to the single GA-SVM model in fNIRS statistical 
analysis. Li et al. (96) also achieve an effective recognition rate of 
94.4% (151/160) by fNIRS data using the gradient boosting tree 
(GBDT) and random forest (RF) models. These research cases in 
machine learning aiding data processing in the fNIRS-based study of 
construction safety are insufficient for further review analysis. Still, it 
provides guidance and insight for related research and deserves 
further observation in the future.

5. Discussion

5.1. Neurotechniques comparison

Functional neuroimaging technologies are pivotal tools in 
cognitive research, and within this realm, Functional Magnetic 
Resonance Imaging (fMRI), Electroencephalography (EEG), 

Electrocardiography (ECG), and Functional Near-Infrared 
Spectroscopy (fNIRS) are prominent methods (97–99). These 
technologies possess unique characteristics that make them suitable 
for cognitive research and application.

For example, fMRI is widely used to capture brain activity by 
monitoring changes in blood flow and oxygenation levels in specific 
brain regions (100). Its high spatial resolution allows for precise 
localization of brain activity, a valuable asset in cognitive research. 
However, fMRI has limitations, including the large, expensive 
equipment and the requirement for subjects to remain immobile 
within a narrow MRI machine, which can be restrictive in cognitive 
research related to construction worker safety (101).

On the other hand, EEG offers a different perspective on cognitive 
research (102). It reflects the macroscopic activity of the brain cortex 
and shares common attributes with fNIRS, such as wearability, 
wireless functionality, miniaturization, and lightweight design (103, 
104). EEG records electrical activity on the scalp, providing insights 
into brain function in cognitive research. EEG devices are portable, 
lightweight, and relatively cost-effective compared to fMRI, making 
them well-suited for monitoring brain activity during various tasks, 
including cognitive assessments relevant to construction worker safety 
(105). However, EEG comes with certain limitations. For instance, in 
construction safety research, participants are required to apply a 
conductive paste to their scalp. This ensures a stable connection with 
the EEG electrodes, but it also adds to the overall cost of the 
experiments (106). Moreover, the nature of a construction worker’s 
job, which involves large-scale movements and vigorous physical 
activities, can introduce significant measurement noise into the EEG 
recordings. This not only impacts the detection precision but also 
increases the complexity of data processing and interpretation (18).

ECG, another technique in cognitive research, measures the 
electrical activity of the heart, offering insights into physiological 
responses during cognitive tasks of workers (107). ECG monitoring is 
relatively non-invasive, involving the placement of electrodes on the 
skin, and is well-suited for studying physiological responses in 
contexts related to construction worker safety. While ECG provides 
valuable data on cardiovascular responses, it is not a direct measure of 
brain activity like EEG or fNIRS in construction safety research.

In contrast, fNIRS emerges as a favorable option for investigating 
construction worker safety. fNIRS technology, due to its wearability, 
light weight, and tolerance for subject movement, proves ideal for 
assessing cognitive and physiological responses in dynamic work 
environments. Unlike EEG and ECG, fNIRS does not require 
conductive gel, thus eliminating discomfort and simplifying setup 
procedures (108). Moreover, fNIRS provides a more direct measure of 
localized changes in brain oxygenation, offering more profound 
insights into cognitive processes relevant to construction safety tasks. 
Furthermore, fNIRS exhibits a higher degree of movement tolerance, 
particularly in operational studies, as participants can wear the fNIRS 
equipment directly on their heads, providing more comfort compared 
to fMRI and EEG in construction safety research (109). This 
heightened tolerance reduces the likelihood of sweat-induced errors 
in device detection, minimizes exercise-related or physiological 
artifacts, and decreases the subsequent data processing workload, 
which is more common in EEG and ECG (18). Consequently, fNIRS 
demonstrates considerable potential for applications involving 
collecting long-time series data, specifically in the context of 
construction worker safety.
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Given the dynamic, complex, and cognitively demanding nature of 
construction work, fNIRS emerges as the more suitable neuroscientific 
research tool for investigating construction safety. Its portability, 
comfort, and movement tolerance make it a practical choice for 
studying the cognitive and physiological responses of construction 
workers, ultimately contributing to the enhancement of safety measures 
and training protocols within the construction industry.

5.2. Implications

To achieve effective safety management in construction, it is 
essential to understand the cognitive processes of construction 
workers. As their work is performed in a complex and hazardous 
environment, it demands enormous cognitive effort. Therefore, 
accurate measurement and evaluation approaches are crucial for 
cognition research in construction safety. Traditional subjective 
questionnaire methodology is inadequate to capture the dynamic and 
complex nature of this research. The development of consumer-grade 
wearable fNIRS devices provides a more objective and accurate 
method to monitor brain activity in construction workers. In this 
review research, we have demonstrated the capability of fNIRS to 
measure cognitive processes and its future potential for multimodal 
studies. These findings suggest that fNIRS is a valuable tool for 
measuring the cognitive processes of construction workers on site, 
ultimately improving safety management in the industry.

Degrees of brain activity is closely related to the vibration of 
oxyhemoglobin concentration, which can intuitively reflect human 
cognitive and psychological status more intuitively and provide more 
accurate data to support experimental studies through fNIRS 
measurements (23). The success of fNIRS-based experiments requires 
a sufficient number of participants who receive appropriate pre-task 
guidance and are adequately representative of the target population. 
Meanwhile, the experiment design of construction safety research 
should thoroughly consider the authenticity of the operational 
environment and the possibility of influence on the measurement 
data, for which virtual reality has been applied in fNIRS-based studies 
(46). The fNIRS data can be evaluated to measure the correlation with 
mental representation, physiological indices, and external factors in 
workplaces (30). In cognition monitoring, fNIRS measurements 
produce fewer data noise and motion artifacts, resulting in less error 
in experimental results and higher data quality. After pre-processing 
(e.g., low-pass filtering), statistical analysis of fNIRS data can 
be calculated by the software, in which machine learning demonstrates 
higher computational power and accuracy in cognition status 
classification and computation.

According to previous research, fNIRS has demonstrated several 
advantages in the cognition research of construction workers 
compared to other measuring methods. Firstly, the portable and 
wearable nature of fNIRS devices allows for high motion tolerance and 
use in diverse research environments (104). Meanwhile, fNIRS also 
has good subject comfort. Secondly, fNIRS is a neuroscience technique 
that directly detects blood oxygen concentration variables in the 
cerebral cortex using near-infrared light, allowing for the most direct 
indication of cognitive activities through calculated [HbO2] and [HbR
] vibration values. This generated data enables thorough research into 
the phenomenon of brain blood flow to explore the mechanisms of 
related cognitive processes. Lastly, fNIRS measurement is time 

dynamic, recording the [HbO2] and [HbR] changes owing to blood 
flow with the high temporal and spatial resolution, which is compatible 
with the rapid change and small-time scale of cognitive activity.

The use of fNIRS-based research in construction safety has filled 
a gap in the neuroscience field and provided a new technical tool for 
studying human cognitive conditions, which can improve our 
understanding of hazard recognition and decision-making processes 
(29). The fNIRS method facilitates an objective assessment of workers’ 
hazard recognition and decision-making abilities, which can help 
managers to improve safety training strategies and measure training 
effectiveness. With the aid of fNIRS-based measurement metrics, 
managers can provide individualized, customized training programs 
for construction workers, and future intelligent risk identification 
capability assessment training systems can be developed. Furthermore, 
a better understanding of decision-making mechanisms through 
fNIRS-based research provides an objective basis for improving 
management methods and identifying the key factors affecting 
management effectiveness.

5.3. Limitation

The fNIRS-based research in construction safety is still in its 
infancy, and the lack of sufficient study cases limits this present review. 
Although applying neuroscience techniques in the computation of the 
cognition process is an emerging research direction, the fNIRS-based 
study provides a broad view of construction workers’ neuroscience 
exploration. However, several limitations of fNIRS-based construction 
safety research expected to be addressed are discussed below:

 1. Although researchers have tried to simulate the working 
environment of construction in a lab with appropriate space 
and set up risk points based on the actual situation (52), it is 
still challenging to fully represent the complex environment of 
actual construction sites (29). The dynamic changes of the 
construction workplace and the interferences between workers 
have not been discussed enough and are reflected in the 
existing research experiments. Moreover, the hazard search 
tasks designed for fNIRS-based research are of limited difficulty 
and may not be  representative of actual construction 
workplaces. Furthermore, the sample subjects selected for 
simulation experiments are mainly young, college-educated 
males, which differ significantly from the educational profile of 
construction workers and may introduce bias into the fNIRS-
based experiment results (110). Additionally, the ratio of 
female and older workers among construction workers is 
constantly vibrating, and these situations have not received 
sufficient attention in the existing fNIRS-based experimental 
designs (111). Furthermore, the fNIRS-based literature selected 
for this review suffers from a small sample size, which may 
limit the generalizability of the findings.

 2. Scholars have focused on time and peak features of HbO2� � and 
HbR� � concentration data to evaluate the impact of designed 

variables on hazard recognition and decision-making through 
the fNIRS-based experiment with construction workers (24). 
However, statistical analysis of more fNIRS data features has 
not been involved in exploring the cognitions status of 
construction workers, such as skewness, variance, slope, root 

https://doi.org/10.3389/fpubh.2023.1256895
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Han et al. 10.3389/fpubh.2023.1256895

Frontiers in Public Health 10 frontiersin.org

means square, and median (88). Additionally, the analysis of 
designed impact variables to hazard recognition and decision-
making only considers relevance in the fNIRS-based 
experiment, and further inquiry into the mechanisms of 
influence is needed.

 3. Scholars have primarily focused on a limited number of 
indicators to evaluate the cognitive processes of construction 
workers in hazard recognition and decision-making. However, 
the cognitive process of construction workers is influenced by 
various internal and external factors, which are currently 
underrepresented in experimental analysis. For example, the 
hazard searching task in fNIRS-based experiments analyzing 
the implications of risk type on workers’ hazard recognition 
only considers four main risk events of workplaces, which 
differs significantly from the actual situation (59). While 
fNIRS-based experiments have been widely used in various 
industries to detect workers’ cognitive states, such as mental 
load, fatigue, and emotional state, the factors that affect 
workers’ cognition and may lead to unsafe behavior or 
ignorance of risk are complex (89, 112, 113). However, in the 
context of construction safety, the current application of this 
neuroscience technology has mainly focused on the importance 
of hazard identification and decision-making without exploring 
the potential impact of other cognitive factors on worker safety. 
In addition, the statistical analysis stage does not sufficiently 
consider the joint influence of multiple designed variables on 
the hazard recognition process for construction workers. 
Further experimental exploration is needed to investigate the 
mechanisms of interaction within the influencing factors, the 
synergistic impact mechanisms on hazard recognition, and the 
mechanisms of cognitive state formation under the influence 
in fNIRS-based research.

 4. Researchers have primarily focused on exploring the role of 
different prefrontal cortex (PFC) areas in hazard identification 
and decision-making in fNIRS-based studies of construction 
workers (51). However, different brain regions typically work 
together to perform a specific recognition task, and it is, 
therefore, worth exploring whether other brain areas of 
construction workers are involved in the hazard recognition 
task, as well as their mechanism of action and degree of 
activation (114). Additionally, due to inadequate spatial 
resolution, fNIRS is insufficient for exploring cognitive 
functions in deep brain regions, and multimodal neuro-
technique solutions are expected in the future. Furthermore, 
machine learning algorithms are well-suited for processing 
large amounts of data and have promising applications in the 
intelligent analysis of fNIRS data, particularly for feature 
learning and deep learning for classification. However, there is 
a lack of participation in machine learning methodology in 
fNIRS-based cognitive process computation of construction 
workers, and further research in this area is warranted.

5.4. Future direction

To demonstrate the potential of the fNIRS-based study in 
construction safety, the following recommendations for future 
research should be considered:

 1. To demonstrate the potential of fNIRS-based studies in 
construction safety, it is recommended to improve the 
experimental design by simulating the working conditions of 
construction workers more comprehensively, including the full 
range of potential hazards. Researchers should select 
representative subjects with adequate sample sizes and 
properties compositions of gender and age that reflect the 
actual situation of construction workers in fNIRS-based 
cognitive experiments. Simplified experimental designs should 
be avoided, and tasks should correspond to the actual working 
conditions of construction workers, evaluating the influences 
of collaborative working among workers. In addition, 
incorporating immersive and realistic experimental 
environments through VR technology can enhance the fNIRS-
based experiment design in the laboratory.

 2. Scholars should consider incorporating additional data features 
into their statistical analysis. In addition to the time and peak 
features currently being used, other features such as skewness, 
variance, slope, root means square, and median should also 
be  explored. This will allow for a more comprehensive 
understanding of the patterns and trends within the fNIRS 
data, which can provide valuable insights into the cognitive 
processes of construction workers. To support this effort, 
researchers should draw upon theoretical and experimental 
studies in neuroscience to identify relevant data features and 
develop appropriate statistical models.

 3. In the domain of future fNIRS-based research aimed at 
enhancing the safety of construction workers, several crucial 
avenues for investigation emerge. Firstly, researchers should 
endeavor to expand the scope of influencing factors integrated 
into their fNIRS-based experiments. These factors should 
encompass a comprehensive array of variables in construction 
safety, including environmental conditions, psychological 
states, individual variances, and related elements. Incorporating 
these multifaceted variables will facilitate the acquisition of a 
more comprehensive understanding of the cognitive processes 
involved in recognizing hazards and decision-making among 
construction workers. Such a broader perspective will yield 
more precise insights conducive to enhancing safety 
management. Furthermore, it is essential to prioritize the 
examination of the mechanisms that underlie the interaction 
among these influencing factors. Understanding how internal 
and external elements synergistically affect cognitive processes 
will effectively bridge the knowledge gap about forming 
cognitive states in construction workers. This, in turn, will lead 
to a better understanding of construction workers’ cognitive 
processes within safety environments and support the 
development of more effective safety strategies. In addition, 
fNIRS-based research can investigate the cognitive foundations 
of hazard recognition and decision-making. This entails an 
exploration of cognitive variations across diverse work 
environments, analyzing workers’ physiological responses to 
hazard cues, and investigating the neural substrates of decision-
making processes. These research endeavors will shed light on 
the cognitive challenges construction workers encounter in 
hazardous contexts, consequently informing the design of 
more effective safety training and management protocols. 
Ultimately, these research proposals have the potential to 
enhance the safety of construction workers significantly. 
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Through rigorous cognitive investigations, we  can attain a 
more profound comprehension of the pivotal factors 
influencing hazard recognition and decision-making, thereby 
enabling enhanced training and support, mitigating accident 
risks, and elevating overall safety standards at construction sites.

 4. To improve the effectiveness of fNIRS-based research in 
construction safety, it is necessary to increase the number of 
brain regions explored in experiments. Researchers should 
consider the mechanisms by which different brain regions 
function in cognitive processes. To address this issue, fNIRS 
can be integrated with other neuroscience techniques, such as 
EEG, eye tracking, and fMRI, to conduct multimodal studies 
in construction safety. Multimodal research can compensate 
for the lack of spatial measurements in fNIRS devices and 
provide more comprehensive data to support cognitive studies 
of construction workers. Furthermore, the generated large 
amount of data from multimodal research can be analyzed and 
processed by artificial intelligent algorithms such as machine 
learning. Meanwhile, a suite of intelligent data analysis systems 
consisting of deep learning methods can be  expected as a 
promising direction for future fNIRS-based research, such as: 
convolutional neural networks (CNN), recurrent neural 
networks (RNN) and graphical neural networks (GNN).

6. Conclusion

The fNIRS-based research provides a valuable methodology to 
enhance the understanding of the cognitive processes of workers in 
construction safety for both academics and managers. This review 
provided a systematic analysis of the fNIRS-based application in 
exploring construction workers’ cognitive process of hazard 
recognition and decision-making. Scholars have used fNIRS to study 
the influence of multiple variables on cognitive processes in hazard 
cognition and decision-making by computing concentration changes 
in [HbO2] and [HbR]. Moreover, the review outlined the basic theory 
and significant highlights and issues in fNIRS-based experimental 
design (detection area, participant selection, experimental device, and 
task design) and data analysis (data extraction, signal processing, 
computation method, and objective analysis).

This study identified gaps in the current fNIRS-based research and 
provided suggestions for future exploration. The design in the existing 
fNIRS-based experimental studies did not sufficiently simulate the 
realities of construction workers’ daily work, and researchers need to 
investigate the mechanisms of workers’ cognitive processes further. 
Multimodal approaches, such as integrating fNIRS with other 

neuroscience techniques, show promise for advancing the exploration 
of cognitive processes. Additionally, machine learning algorithms can 
be used to process and analyze large amounts of data generated by 
multimodal studies.

Therefore, future fNIRS-based exploration in construction safety 
should focus on theoretical development, experimental design, and 
algorithmic applications. This review provides guidance for new 
researchers in fNIRS-based safety research on the cognitive processes 
of construction workers, which would benefit construction 
management improvements.
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