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Introduction: The continued emergence of human infections of H9N2 avian 
influenza virus (AIV) poses a serious threat to public health. The prevalent Y280/
G9 lineage of H9N2 AIV in Chinese poultry can directly bind to human receptors, 
increasing the risk of spillover infections to humans. Since 2013, the number of 
human cases of H9N2 avian influenza has been increasing continuously, and in 
2021, China reported the highest number of human cases, at 25.

Methods: In this study, we analyzed the age, geographic, temporal, and sex 
distributions of humans with H9N2 avian influenza in 2021 using data from the 
National Influenza Center (Beijing, China). We also conducted evolutionary, gene 
homology, and molecular characterization analyses of the H9N2 AIVs infecting 
humans.

Results: Our findings show that children under the age of 12 accounted for 80% 
of human cases in 2021, and females were more frequently affected than males. 
More cases occurred in winter than in summer, and most cases were concentrated 
in southern China. Human-infecting H9N2 viruses showed a high level of genetic 
homology and belonged to the prevalent G57 genotype. Several additional α2,6-
SA-binding sites and sites of mammalian adaptation were also identified in the 
genomes of human-infecting H9N2 viruses.

Discussion: Therefore, continuous monitoring of H9N2 AIV and the 
implementation of further measures to control the H9N2 virus in poultry are 
essential to reduce the interspecies transmission of the virus.
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Introduction

Since the 1990s, the H9N2 avian influenza virus (AIV) has been detected in poultry and 
mammalian species, including chickens, ducks, smaller poultry, and pigs, in China (1–3). The 
virus has continuously evolved, resulting in multiple lineages, of which the G1, G9/Y280, and 
Y439 lineages continue to circulate in poultry (4, 5). The G9/Y280 lineage of H9N2 AIV has 
predominated in China in recent years. Since the emergence of the G57 genotype, which is better 
adapted to chickens, it has become predominant and has caused widespread outbreaks (1, 6).

Ongoing epidemics of H9N2 AIV in poultry increase the risk of spillover infections in 
humans. The first case of human H9N2 AIV infection was detected in Hong Kong SAR, China, 
in 1998. Since 2013, there have been increasing reports of human infections of H9N2 AIV (7). 
Several studies have shown that the majority of recent avian-origin H9N2 AIVs have a strong 
binding affinity for a human respiratory receptor (7, 8), and serological surveys have shown 
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higher positivity among poultry-associated workers (9, 10). Therefore, 
assessing the pandemic risk of current H9N2 AIV genotypes is 
important and urgent.

In this study, we collected and analyzed data on human H9N2 
AIV infections in China in 2021. We examined the epidemiological 
and genetic characteristics of the virus to extend our understanding 
of human infections and the risks they pose.

Methods

Research background

In China, all laboratory-diagnosed cases of H9N2 influenza in 
2021 were reported through the national surveillance system. Patients 
whose respiratory specimens tested positive for H9 and N2 with real-
time reverse transcription (RT)–PCR were confirmed as infected with 
H9N2. Demographic and epidemiological data on these cases of 
H9N2 influenza were collected with standard forms, including 
information on age, sex, and place of residence.

Ethical considerations

The National Health Commission of the People’s Republic of 
China has deemed that collecting data on each H9N2-infected patient 
is part of ongoing public health investigations into emerging infectious 
diseases. Therefore, our Institutional Review Board waived the 
requirement for formal ethical approval.

Virus isolation and sequencing

Original samples from human patients were collected for an 
H9N2 subtype analysis with real-time RT–PCR by the local CDCs (Ct 
less than 38 were considered positive, while those with Ct values 
between 38 and 40 were subjected to repeat experiments due to the 
requirement for confirmation. Samples with Ct values greater than 40 
were regarded as negative). The H9N2 virus was isolated from positive 
samples in a biosafety level 2 laboratory. Nine-day-old specific-
pathogen-free embryonated chicken eggs were inoculated with an 
aliquot (0.2 mL) of the original sample. After incubation at 37°C for 
48 h, we harvested the egg allantoic fluid, extracted the RNA from it, 
and sequenced the genome original samples from human patients and 
viral samples (11).

Virus sequencing

We used the Illumina next-generation sequencing (NGS) 
technology on the MiSeq platform (Illumina, Inc., San Diego, CA, 
United  States) to sequence the human H9N2 influenza virus. 
Following the acquisition of the viral sequences, we conducted a 
series of analysis steps. First, we checked the quality of the sequences, 
excluding any potential sequencing errors or contamination. We 
then assembled high-quality reads using bioinformatic tools like 
Velvet (version 1.2.10) and Newbler (version 2.5) to align the viral 
sequences with known reference sequences of H9N2 viruses in the 

Global Initiative on Sharing All Influenza Data (GISAID).1 This 
involved detecting single-nucleotide variations (SNVs), insertion/
deletion of variants, and identifying variable sites that could 
potentially lead to changes in protein sequences. Bowtie 2 (version 
2.1.0) was used to map the reads using sequences with the 
maximum similarity.

Sequence alignment and phylogenetic 
analysis

We obtained sequences from 16 human isolates and downloaded 
H9N2 AIV reference sequences from GISAID: 37 sequences of 
polymerase basic protein 1 (PB1), 34 of polymerase basic protein 2 
(PB2), 34 of neuraminidase (NA), 55 of hemagglutinin (HA), 35 of 
matrix protein (M), 37 of nucleoprotein (NP), 38 of non-structural 
protein (NS), and 35 of polymerase (PA). We constructed maximum 
likelihood phylogenetic trees for each gene segment of the selected 
influenza viruses with the GTR model in MEGA 7.0, with 1,000 
bootstrap replicates.

Results

Epidemiological characteristics of H9N2 
AIV infections in humans

The first reported case of human infection with H9N2 AIV was in 
China in 1998 (12), and since then, continuously increasing numbers 
of human infections have been recorded. In 2021, China reported a 
record number of 25 cases of human H9N2 AIV infection. All 
reported patients presented with flu-like symptoms, except patients 
who died, in whom the infection was associated with underlying 
health conditions. A seasonal pattern was observed, with more cases 
occurring in winter than in summer. Specifically, 16 of 25 cases (64%) 
occurred in January, February, November, and December 2021 
(Figure 1A).

The 25 infections were predominantly in children. The median 
patient age was 5 years (interquartile range: 2.5–9.5). The subdivided 
age groups showed that among the infected individuals, six (24%) 
were infants aged 1–2 years, eight (32%) were children aged 
3–6 years, six (24%) were children aged 7–12 years, one (4%) was a 
teenager aged 13–18 years, three (12%) were adults, and one (4%) 
was an older adult (Figure 1B). These data indicate that the majority 
of H9N2 AIV infections occurred in children under 12 years old, 
who accounted for 80% (20/25) of cases. Of all the patients, 8 were 
male and 17 female subjects, resulting in a male-to-female ratio of 
1:2.125.

These patients came from 11 provinces, municipalities, or 
autonomous regions (Guangdong, Hubei, Jiangsu, Guangxi, Guizhou, 
Fujian, Sichuan, Anhui, Jiangxi, Hunan, and Shanxi), and most were 
from Southern China (96%, 24/25 patients). Guangdong Province had 
the highest number of cases, with six patients (Figure 1C).

1 http://www.gisaid.org
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Genetic characteristics of H9N2 AIV 
isolated from humans

A total of 16 viruses were isolated from 25 patients. Phylogenetic 
analysis of the HA gene showed that they all belonged to the G9/Y280 
lineage. The NA and internal genes of the human isolates were 
located in the same clades as those of the representative strain of 
the G57 genotype, A/chicken/Zhejiang/HJ/2007 (Figure  2; 
Supplementary Figures S1–S6). These human isolates showed high 
genetic diversity and shared 91.8–99.2% nucleotide homology in HA, 
92.8–99.8% in NA, 93.4–99.7% in PB2, 92.1–99.8% in PB1, 93.9–99.5% 
in PA, 94.8–99.5% in NP, 95.1–99.8% in MP, and 93.9–99.5% in 

NS. We also categorized the 16 human H9N2 strains sequences into six 
subgenotypes (Figure 3). The eight gene segments of the H9N2 viruses, 
represented by horizontal bars are, from top to bottom, PB2, PB1, PA, 
HA, NP, NA, M, and NS. Each color represents a distinct origin.

All 16 human viruses had leucine at position 226 (H3 numbering) 
of HA, which may increase the virus’s binding affinity for α-2,6 sialic 
acid (α2,6-SA), the human AIV receptor. Other mutations, such as 
155 T and 190 T/V (13), which may also increase viral binding to the 
human receptor, were also found in some of the isolates (Table 1; 
Supplementary Figures S7, S8).

Residues previously identified as enhancing the polymerase 
activity, virulence, and transmission of AIVs were examined. One 

FIGURE 1

Distribution of cumulative reported cases of human H9N2 avian influenza virus infection in China from January to December 2021 (A). Age and sex 
distributions of cases of human H9N2 avian influenza in 2021. Black, female; Red, male (B). Regional distribution of human cases of H9N2 avian 
influenza virus in China in 2021. The darker the color, the greater the number of infections (C).

FIGURE 2

Maximum likelihood phylogenetic tree of the HA gene (A) and NA gene (B). The H9N2 virus infections in Chinese people in 2021 analyzed in this study 
are marked in red.
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virus had PB2 627 K/E, whereas five had 627 V, which may confer a 
virulent phenotype on H9N2 AIV in mice (36). Eleven viruses had 
PB2 292 V and all 16 had PB2 588 V, which are markers of mammalian 
adaptation and enhance the viral polymerase activity, replication, and 
virulence in mammals (14, 15). Nine viruses in this study had PB2 
702R, which is a species-specific residue of human influenza 
viruses (37).

We examined mutation sites associated with reduced drug 
susceptibility and identified M2-S31N in 16 viral strains, which 
confers resistance to adamantanes (38). No drug resistance mutations 
were found for NA inhibitors or PA inhibitors, such as NA-136 K, 
NA-292 K, PA-38 M/T, or PA-37 T.

Discussion

In this study, we analyzed the human H9N2 AIV infections 
reported in China in 2021, the year in which the highest number 
of H9N2 cases was recorded to date. We  examined the 
epidemiological and genetic characteristics of the patients and 
isolates. H9N2 infections occurred most frequently in winter in 
Southern China and mainly occurred in children under 12 years 
old, who accounted for 80% of all cases. More female subjects 
were infected than male subjects. Therefore, the prevalence of 
H9N2 AIVs must be  closely monitored to prevent cross-
species transmission.

Host barriers largely restrict the cross-species transmission of 
AIVs. In recent years, the α2,6-SA-binding ability of H9N2 has 
increased continuously, and the predominant strains that have 
emerged show dual receptor binding or preferentially bind α2,6-SA 
(8, 39). HA Q226 L plays a critical role in receptor binding and was 

detected in all 16 viruses in this study. Moreover, increased α2,6-SA-
binding sites, such as 155 T, 183 N, and 190 V, were also found in the 
H9N2 viruses that infected humans. Although most H9N2 viruses do 
not have well-known mammalian adaptation markers, such as PB2 
627 K and 701 N, several amino acid residues that facilitate 
mammalian adaptation were detected, including PB2-588 V, 
PB1-368 V, PA-356R, and PA-409 N.

Throughout its evolution, the genetic diversity of H9N2 AIV has 
increased, with mutations that adapt the virus to mammalian hosts 
and may increase the risk of human infection. High levels of H9N2 
AIV among birds, especially poultry, may also increase the 
opportunities for virus spillover and human infections. Serious efforts 
are required to constrain the virus in poultry. Continued monitoring 
of H9N2 AIV, including its close genetic surveillance and phenotypic 
characterization in animal models, should be incorporated into risk 
assessment strategies.

Conclusion

Since 2013, the number of human cases of H9N2 avian influenza 
has been steadily increasing, and in 2021, China reported the highest 
number of human cases, at 25. Children under the age of 12 accounted 
for 80% of human cases in 2021, and female subjects were more 
frequently affected than male subjects. More cases occurred in winter 
than in summer, and most cases were concentrated in Southern 
China. Human-infecting H9N2 viruses showed a high level of genetic 
homology and belonged to the prevalent G57 genotype. Continuous 
monitoring of H9N2 avian influenza viruses and further measures to 
control the H9N2 virus in poultry are essential to reduce the 
interspecies transmission of the virus.

FIGURE 3

The 16 human H9N2 viruses. The eight gene segments of the H9N2 viruses, represented by horizontal bars are, from top to bottom, PB2, PB1, PA, HA, 
NP, NA, M, and NS. Each different color represents a distinct branch.
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TABLE 1 Inventory of major molecular markers affecting biological characteristics of avian influenza A viruses.

Protein Function Mutations Amino acids Human viruses References

PB2 Increased polymerase activity, increased viral replication, 

and virulence in mice

I292V I 5 (14)

V 11

A588V V 16 (15)

E627K E 10 (16)

K/E 1

V 5

D701N D 16 (17)

Increased human infection K702R K 7 (18)

R 9

Increased mammalian adaptation A558V T 16 (15)

D253N D 16

K340R R 6 (15)

K 10

K526R D 16 (19)

Increased replication in mammalian cell line, increased 

virulence in mice

Q591K Q 16 (20)

PB1 Increased ferret infection I368V V 15 (21)

I 1

Increased mammalian adaptation D120T D 16 (22)

D439Y D 16 (23)

S261Y R 1 (24)

S 15

PA Increased mammalian replication and pathogenicity 356R R 16 (25)

Increased human infection 409 N N 15 (26)

S 1

Increased replication and higher morbidity and mortality 

rates along with extended tissue tropism seen in chickens.

K26E E 16 (27)

HA* Increased virus binding to α2’6-SA 155 T T 2 (28)

N 13

Y 1

183 N N 16 (28)

226 L L 16 (29–31)

Enhanced virus binding to α2’6-SA and increased replication 

and virulence in mice

190 T/V V 10 (13)

T 6

HA2 Increase airborne transmission G192R R 16 (32–34)

M2 Increased resistance to amantadine and rimantadine S31N/G N 15 (35)

*H3 numbering system was used.
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