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Introduction: Fluoride is considered an environmental pollutant that seriously 
affects organisms and ecosystems, and its harmfulness is a perpetual public health 
concern. The toxic effects of fluoride include organelle damage, oxidative stress, 
cell cycle destruction, inflammatory factor secretion, apoptosis induction, and 
synaptic nerve transmission destruction. To reveal the mechanism of fluorosis-
induced brain damage, we analyzed the molecular mechanism and learning and 
memory function of the SIRT1-mediated BDNF–TrkB signaling pathway cascade 
reaction in fluorosis-induced brain damage through in vivo experiments.

Methods: This study constructed rat models of drinking water fluorosis using 
50 mg/L, 100 mg/L, and 150 mg/L fluoride, and observed the occurrence of 
dental fluorosis in the rats. Subsequently, we measured the fluoride content 
in rat blood, urine, and bones, and measured the rat learning and memory 
abilities. Furthermore, oxidative stress products, inflammatory factor levels, 
and acetylcholinesterase (AchE) and choline acetyltransferase (ChAT) activity 
were detected. The pathological structural changes to the rat bones and brain 
tissue were observed. The SIRT1, BDNF, TrkB, and apoptotic protein levels were 
determined using western blotting.

Results: All rats in the fluoride exposure groups exhibited dental fluorosis; decreased 
learning and memory abilities; and higher urinary fluoride, bone fluoride, blood 
fluoride, oxidative stress product, and inflammatory factor levels compared to 
the control group. The fluoride-exposed rat brain tissue had abnormal AchE and 
ChAT activity, sparsely arranged hippocampal neurons, blurred cell boundaries, 
significantly fewer astrocytes, and swollen cells. Furthermore, the nucleoli were 
absent from the fluoride-exposed rat brain tissue, which also contained folded 
neuron membranes, deformed mitochondria, absent cristae, vacuole formation, 
and pyknotic and hyperchromatic chromatin. The fluoride exposure groups had 
lower SIRT1, BDNF, and TrkB protein levels and higher apoptotic protein levels 
than the control group, which were closely related to the fluoride dose. The 
findings demonstrated that excessive fluoride caused brain damage and affected 
learning and memory abilities.
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Discussion: Currently, there is no effective treatment method for the tissue 
damage caused by fluorosis. Therefore, the effective method for preventing and 
treating fluorosis damage is to control fluoride intake.
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1. Introduction

Fluorosis is a systemic disease caused by long-term intake of 
excessive amounts of fluoride. Fluorosis occurs in more than 50 
countries and regions worldwide, which include China, India, 
Bangladesh, Algeria, Thailand, Iran, Argentina, the United  States, 
Canada, Vietnam, Mexico, Sri  Lanka, Morocco, Egypt, and 
South Africa (1). Fluorosis is a global public health problem, as >260 
million people worldwide obtain drinking water from sources with 
high fluoride concentrations (2). China is severely affected by 
fluorosis, where varying degrees of fluorosis occur in almost all 
provinces and autonomous regions, and the population under threat 
numbers 110 million (3, 4). Consequently, fluorosis is currently an 
important health issue in China.

Fluorosis not only significantly damages bone and teeth, but also 
causes varying degrees of damage to non-bone tissues such as the liver, 
kidneys, gastrointestinal tract, nervous system, cardiovascular system, 
endocrine system, and reproductive system (5–7). Due to the lack of 
effective treatment drugs for fluorosis, people in fluorosis areas remain 
vulnerable to fluorosis. Therefore, medical research is currently 
focused on fluorosis pathogenesis and prevention measures.

Fluorine is an element with extremely active chemical properties. 
Excessive fluoride intake might directly attack oxygen, interfere with 
oxygen metabolism, and lead to increased oxygen free radicals (8, 9). 
Simultaneously, fluoride can also decrease antioxidant enzyme activity 
and non-enzymatic antioxidant substance content, all of which lead 
to excessive oxygen free radical generation (10, 11). Fluoride free 
radicals can attack the covalent bond of unsaturated fat acids, which 
causes lipid peroxidation and increases the free radicals in the body 
(12). The free radical metabolism imbalance caused by fluorosis and 
the accumulation of numerous oxidative stress products leading to 
organ dysfunction are a perpetual hot research topic. Oxidative stress 
damage also promotes inflammatory factor production in the body 
(13, 14). Currently, oxidative stress inflammatory factor levels have 
been identified as biological markers of fluorosis damage in the 
body (15).

Fluoride can enter the brain through the blood–brain barrier, and 
long-term intake of excessive fluoride can lead to fluoride 
accumulation in the brain, which affects the normal physiological 
function of brain cells (16). Fluoride accumulation can damage the 
nervous system, which includes neuropathological changes, 
cholinergic nervous system abnormalities, nerve cell membrane 
structure changes, neurotransmitter receptor changes, neurocyte 
apoptosis, and decreased intelligence (17). The change in the 
intelligence of children in endemic fluorosis areas was confirmed in 
several countries (18). Excess fluoride can elicit damaging effects in 
humans of any age, where the toxic damage is irreversible, especially 
neurotoxicity in developing children (19).

Fluoride is also an important substance in the signal transduction 
pathway (20). Brain cell apoptosis can be induced by reducing the 
expression of silent information regulator 1 (SIRT1) and brain-derived 
neurotrophic factor (BDNF), where SIRT1 regulates the downstream 
BDNF (21). SIRT1 participates in oxidative stress, the inflammatory 
response, neuroprotection, and other effects through deacetylation 
(22). BDNF is mainly distributed in the central nervous system and 
participates in neural survival and protection, where elevated BDNF 
levels improve learning and memory dysfunction (23). Upon binding 
with receptor tyrosine protein kinase B (TrkB) as a ligand, BDNF 
activates the intracellular TrkB and its downstream signaling protein 
phosphatidylinositol 3-kinase–protein kinase B (PI3K–Akt) pathway 
(24). The PI3K–Akt pathway activation activates mitogen-activated 
protein kinase–nuclear factor kappa B (MAPK–NF-κB) multiple 
cascade reactions. These pathways control nerve cell survival, growth, 
and differentiation (25). BDNF–TrkB protect brain histiocytes from 
damage and participate in learning and memory formation. Currently, 
there is little research on the mechanisms related to fluorosis and brain 
injury. Therefore, we analyzed the relationship between the SIRT1-
mediated BDNF–TrkB signaling pathway and fluorosis brain injury, 
learning and memory, and provide new ideas and a theoretical basis 
for preventing and treating fluorosis brain injury. A flowchart of this 
study is shown as Figure 1.

2. Methods and materials

2.1. Construction of the animal model

We used specific pathogen-free male Sprague–Dawley rats 
(100–120 g, two weeks after weaning) provided by the Animal 
Experiment Center of Guizhou Medical University [certificate number 
SCXK (Qian) 2021–0001], Guiyang, China. The rats were housed in a 
room with 20–25°C ambient temperature and 60% ± 20% humidity, 
and exposed to a 12-h light–dark cycle.

The fluoride exposure dose design referred to sub-chronic toxicity 
experiment requirements, where the highest dose was typically 5–20% 
of the median lethal dose (LD50) of the test substance. The LD50 
concentration of fluoride was 1,500 mg/L. Based on previous 
experimental results and the literature, the sodium fluoride exposure 
doses in this study were 50 mg/L, 100 mg/L, and 150 mg/L (Zhanwang 
Chemical Reagents, Wuxi, China). The rats were fed adaptively for 
1 week and divided randomly into four groups (80 rats in total, 20 in 
each group): control (purified water), low fluoride (50 mg/L sodium 
fluoride water), medium fluoride (100 mg/L sodium fluoride water), 
and high fluoride (150 mg/L sodium fluoride water). The rat growth 
and development were documented over 90 days of fluoride exposure. 
Then, the rats were killed after anesthesia induction, and the blood 
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FIGURE 1

Flowchart of brain injury in fluorosis.
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and brain tissue were harvested rapidly and stored at −80°C. All 
animal experiments were approved by the First Affiliated Hospital of 
Guizhou University of Traditional Chinese Animal Ethics Committee 
(approval number: AHQU20210515A).

2.2. Test indicators

2.2.1. Body weight
Before the rats were killed, they were weighed using an electronic 

balance (Huazhi Scientific Instruments, Beijing, China) for 10 
consecutive days and their body weights were recorded.

2.2.2. Dental fluorosis
Changes in the rat teeth were observed every week to determine 

the degree of damage, where the teeth were photographed before they 
were killed. According to the Diagnostic Standard for Dental Fluorosis 
(WS-T208-2011) in China, dental fluorosis is classified into four 
grades: normal (translucent and milky white enamel, and smooth and 
shiny surface), mild (small, chalky opaque areas on the tooth surface, 
some parts of the tooth surface are worn, and the maxillary anterior 
teeth are occasionally blurred and colored), moderate (a chalky 
opaque area covers the entire tooth surface, independent honeycomb-
like defects can be seen, and teeth have obvious wear), and severe 
[enamel surface is seriously affected, obviously underdeveloped, 
enamel defect is fused (in bands or sheets), tooth surface is widely 
colored, the color can vary from brown to nearly black, and the tooth 
often presents an erosion-like appearance].

2.2.3. Learning and memory ability evaluation
The Morris water maze (MWM) experiment was conducted 

7 days before the end of the experiment, and was divided into the 
directional navigation experiment and space exploration experiment. 
The water tank was 120 cm in diameter and 50 cm high, the water was 
30 cm deep, and the water temperature was maintained at 
26°C ± 1°C. Four equidistant points [north (N), east (E), south (S), 
west (W)] were marked on the pool wall as the experiment starting 
points. The pool was divided into four quadrants (NW, WS, SE, EN), 
with any one quadrant placed in the center of the platform (the 
platform was equidistant from the center of the pool wall). The 
platform was colorless and transparent (diameter: 12 cm, height: 
29 cm), and was submerged 1 cm underwater. Two bags of milk 
powder were dissolved in each experimental water to render the 
platform invisible. Rich reference clues were pasted around the pool 
(such as triangles, squares, circles, diamonds, and other geometric 
shapes in various quadrants) and remained unchanged for the rats to 
use to locate the platform. Silence and consistent lighting were 
maintained during the experiment.

For the navigation experiment, the rats were placed in the water 
from different quadrants facing the pool wall, and the time (escape 
latency) and navigation trajectory required for rats to find the platform 
from their entry point were observed. If the rat failed to find the 
platform within 60 s, it was artificially led to the platform and 
remained there for 15 s. At this time, the incubation period was 
calculated as 60 s, and the computer intelligently recorded the results 
for five consecutive detection days (MWM Image Automatic 
Acquisition and Processing System, Institute of Pharmacy, Chinese 
Academy of Sciences, Beijing, China).

On day 6 of the space exploration experiment (to test the rats’ 
memory regarding the original platform), the platform was removed, 
and the rats were placed in the water from the opposite quadrant of 
the platform. The number of times the rats crossed the platform 
within 60 s and the duration they remained in the quadrant where the 
platform was located were recorded.

2.2.4. Skeletal pathology
The right femoral head was harvested after the rats had been 

killed. The muscle tissue was removed carefully, then the femur was 
washed with phosphate-buffered saline and fixed in 4% 
paraformaldehyde solution for 24 h. Subsequently, the femur was 
removed from the paraformaldehyde solution, washed thrice with 
distilled water, transferred to EDTA-containing decalcification 
solution, and treated for 3–4 weeks. The bone tissue was removed from 
the decalcification solution after it had softened or there was no 
resistance to a needle. Then, the bone tissue was washed with distilled 
water for 3–4 min, dehydrated, embedded in paraffin, sectioned, and 
stained (hematoxylin–eosin, HE). Morphologic changes in the bone 
tissue were observed under a light microscope (Leica, Wetzlar, 
Germany) at ×200 magnification.

2.2.5. Urinary fluoride level
Before the rats were killed, the urine excreted over 24 h was 

collected while rats were in a metabolic cage. Then, 10 mL urine was 
placed in a urine sediment tube and centrifuged (1,500 × g, 5 min, 
room temperature). The supernatant was collected, and the fluoride 
content was measured using a fluoride ion-selective electrode 
(Precision Scientific Instruments, Shanghai, China).

2.2.6. Bone fluoride level
The right femur was removed after the rats had been killed, and 

the muscles and fat were removed. Then, the femur was dried in a 
105°C oven. After high-temperature ashing, the fluoride level in the 
femur was measured using a fluoride ion-selective electrode (Precision 
Scientific Instruments).

2.2.7. Serum fluoride level
Blood was collected from the rat femoral artery following 

anesthesia induction. The sample was placed on ice for 30 min, 
centrifuged (1,500 × g, 10 min, room temperature), and the serum was 
stored at low temperature. The fluoride level in the blood was 
determined using a fluoride ion-selective electrode (Precision 
Scientific Instruments).

2.2.8. Oxidation product level in blood
Blood was collected from the rat femoral artery after anesthesia 

induction, placed on ice for 30 min, centrifuged (1,500 × g, 10 min, 
room temperature), and the serum was stored at low temperature. The 
level of glutathione peroxidase (GSH-Px) was determined by the 
5,5′-dithiobis (2-nitrobenzoic acid) method. Total antioxidant 
capacity (T-AOC) was determined by the Fe3+ reduction method. 
Superoxide dismutase (SOD) activity was measured by the xanthine 
oxidase method. Malonaldehyde (MDA) content was determined by 
the thiobarbituric acid method. The assay kits were from Jiancheng 
Bioengineering Institute (Nanjing, China) and the specific 
experimental steps were conducted in strict accordance with the 
manufacturer’s instructions.
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2.2.9. Inflammatory factor levels in the brain
After the rats had been killed, the brain tissue was quickly 

removed. Physiological saline solution was added in a mass-to-volume 
ratio of 1:9 and whole brain tissue homogenized on ice cubes. The 
mixture was thoroughly mixed and centrifuged (1,500 × g, 10 min, 
room temperature), and the supernatant was aspirated. The 
interleukin-1β (IL-1β) and IL-6 levels were measured using a double 
antibody one-step sandwich enzyme-linked immunosorbent assay 
(ELISA). The assay kit was from Jiancheng Bioengineering Institute, 
and the specific experimental steps were carried out in strict 
accordance with the manufacturer’s instructions.

2.2.10. Acetylcholinesterase (AchE) and choline 
acetyltransferase (ChAT) activity in the brain

After the rats had been killed, the brain tissue was quickly 
removed. Physiological saline solution was added in a mass-to-volume 
ratio of 1:9 and hippocampal tissue homogenized on ice cubes. After 
centrifugation, 0.8 mL supernatant was removed, 1.4 mL purified 
water was added, and mixed well. Then, 0.2 mL physostigmine sulfate 
(1.54 mmol/L) was added, and 0.8 mL trichloroacetic acid (1.84 mol/L) 
was slowly added in drops. The mixture was thoroughly mixed and 
centrifuged (1,500 × g, 10 min, room temperature), and the absorbance 
of the supernatant was determined using a UV–visible 
spectrophotometer with 540 nm wavelength and 1-cm diameter, 
where purified water was used as the zero. AchE and ChAT in the 
brain tissue were detected using the colorimetric method in strict 
accordance with the requirements of the reagent manual for specific 
steps. The assay kits were from Jiancheng Bioengineering Institute.

2.2.11. Pathologic morphology of the brain
After the rats had been killed, the brain tissue was quickly removed 

and fixed in polyformaldehyde solution for 2 days. Subsequently, the 
tissue was dehydrated, embedded in paraffin, sectioned, and stained 
with HE. The morphologic changes in the brain tissue were observed 
under a light microscope (Leica) at ×200 magnification.

2.2.12. Brain ultrastructure
After the rats had been killed, the brain tissue containing the 

hippocampus was quickly removed and placed on ice. Then, ~1 mm 
brain tissue was excised with a sharp blade and immersed immediately 
in fixation solution (3% glutaraldehyde, 1.5% polyformaldehyde, 0.1 M 
phosphate-buffered saline, pH 7.2) at 4°C for several days or ≥ 2 h. 
Ultrathin (70–80 nm) sections were prepared after immersion and 
embedding with resin (Epon 812; Solarbio, Beijing, China). The 
sections were stained with uranium dioxide acetate and lead citrate, 
and photographed under a transmission electron microscope (H-600; 
Hitachi, Tokyo, Japan).

2.2.13. Western blotting
After the rats had been killed, the brain tissue containing the 

hippocampus was quickly removed. Total protein was extracted 
from the hippocampus using protease inhibitors, phosphatase 
inhibitors, phenylmethylsulfonyl fluoride (Solarbio), and 
radioimmunoprecipitation assay lysis buffer. Equal amounts of 
protein were separated by sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis using a Solarbio system on 6–12% gels. Then, the 
proteins were transferred onto polyvinylidene fluoride (PVDF) 
membranes (0.45 μM; Millipore, Bedford, MA, USA), which were 

blocked with 5% skimmed milk for 1 h at room temperature. The 
PVDF membranes were then probed with primary antibodies 
(1:1000 dilution, all from Beyotime Biotechnology, Shanghai, 
China) against the following proteins: BDNF, TrkB, SIRT1, BAX, 
B-cell lymphoma (Bcl)-2, caspase-3, forkhead box protein O1 
(FOXO1A), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
NF-κB, PI3K, Akt, and MAPK. Then, the membranes were probed 
with goat anti-rabbit and goat anti-mouse horseradish peroxidase-
coupled secondary antibodies (1,5,000 dilution; Boster 
Biotechnology, Wuhan, China) and incubated overnight at 4°C. The 
next day, the PVDF membranes were rinsed thrice with Tris-
buffered saline–Tween 20 (Solarbio) and incubated with goat anti-
rabbit or goat anti-mouse horseradish peroxidase-conjugated 
secondary antibodies for 2 h at room temperature. Finally, an ultra-
sensitive electrochemiluminescence reagent was used with 
substrates (Boster Biotechnology) on the immune-responsive 
protein bands. The protein bands were quantified using ImageJ 
(National Institutes of Health, Bethesda, MD, USA) according to 
gray values normalized to the GAPDH level.

2.3. Statistical analyses

Statistical evaluations were conducted using Prism 8.3.1 
(GraphPad, San Diego, CA, USA). Data are the mean ± SD. One-way 
ANOVA was used for inter-group comparisons, and further multiple 
comparisons were conducted. LSD-t test was used for those with 
uniform variance, and Dunnett T3 analysis was used for those with 
uneven variance. p < 0.05 was considered significant.

3. Results

3.1. Establishment of a rat model of 
fluorosis

The fluoride-exposed rats had greater body weights than the 
control rats, but these differences were not significant (p > 0.05) 
(Figure 2A). The control rats did not have dental fluorosis, while all 
fluoride-exposed rats did. The dental fluorosis was mainly moderate to 
severe as the fluoride exposure dose increased. The proportion of light, 
medium, and severe dental fluorosis in the fluoride-exposed groups 
(50 mg/L, 100 mg/L, 150 mg/L) was 5, 70, 25% (n = 1, 14, 5), 0, 35, 65% 
(n = 0, 7, 13), and 0, 10, 90% (n = 0, 2, 18), respectively (Figures 2B,C). 
Light microscopy revealed that the control rat femoral trabecular bone 
was arranged in an orderly manner, well connected, moderate in 
number, and had uniform thickness. Compared with the controls, the 
femoral trabecular bone of the fluoride-exposed rats was disordered, 
thickened, with smaller spacing. Furthermore, the bone damage 
gradually became severe as the fluoride dose increased (Figure 2D).

3.2. Fluoride level

Compared with the control group, the fluoride-exposed groups 
had significantly higher fluoride levels in the urine, bone, and serum 
(p < 0.05). Furthermore, the fluoride levels in the urine, bone, and 
blood of the exposed rats gradually increased as the fluoride intake 
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increased, and the differences were statistically significant (p < 0.05) 
(Figure 3).

3.3. Learning and memory abilities

The learning and memory abilities of brain-injured rats were 
examined with the MWM experiment. The positioning navigation test 

demonstrated that the fluoride-exposed rats had significantly 
prolonged escape latency as compared with the control rats (p < 0.05) 
(Figure 4A). The space exploration experiment demonstrated that the 
fluoride-exposed rats required a significantly longer time to cross the 
platform for the first time, crossed the platform significantly fewer 
times, and required a significantly shorter time to cross the platform 
area as compared with the control rats (p < 0.05) (Figures  4B,C). 
Among the fluoride-exposed rats, the initial platform crossing was 

FIGURE 2

Establishment of an animal model of fluorosis. (A) Rat body weights (n  =  10). (B) Number of rats with dental fluorosis (n  =  20). (C) Degree of dental 
fluorosis in the rats. (D) HE-stained pathologic section of rat femur (Scale bar  =  100  μm, ×40, n  =  10).
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gradually prolonged, and the number of times the platform was 
crossed and the quadrant residence time at the original platform area 
gradually decreased as the fluoride exposure dose increased. The 
differences between the medium-, high-, and low-fluoride groups 
were statistically significant (p < 0.05), which demonstrated a dose–
effect relationship (Figure 4).

3.4. Oxidation factors in the serum

Compared with the control group, the serum in the fluoride-
exposed groups had significantly decreased GSH-Px, T-AOC, and 
SOD activity (p < 0.05) (Figures 5A–C). The fluoride-exposed rats had 
significantly higher serum MDA content than the control rats 

FIGURE 3

Fluoride content in the body. (A) Urinary fluoride level. (B) Fluoride level in bone. (C) Fluoride level in Serum. **p  <  0.05 vs. control group, *p  <  0.05 vs. 
fluoride group, n  =  10.

FIGURE 4

Effect of fluorosis on rat learning and memory abilities. (A) Escape latency. (B) Times platform was crossed. (C) Dwell time. **p  <  0.05 vs. control group, 
*p  <  0.05 vs. fluoride group, n  =  10.
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(p < 0.05) (Figure 5D). Among the fluoride-exposed groups, the serum 
GSH-Px, T-AOC, and SOD levels gradually decreased as the fluoride 
dose increased, while the MDA levels gradually increased, with 
statistically significant differences (Figure 5).

3.5. Inflammatory factor levels in brain 
tissue

Compared with the control rats, the brain tissue of fluoride-
exposed rats had significantly increased IL-1β and IL-6 levels (p < 0.05) 
(Figures 6A,B). Among the fluoride-exposed groups, IL-1β and IL-6 
gradually increased as the fluoride exposure dose increased, with 
statistical significance (p < 0.05). The results demonstrated that the 
gradual increase of IL-1β and IL-6 positively correlated with the 
fluoride exposure dose (Figure 6).

3.6. AchE and ChAT activity in brain tissue

Compared with the control group, the fluoride-exposed rat brain 
tissue had significantly increased AchE activity and significantly 

reduced ChAT activity (p < 0.05). Among the fluoride-exposed groups, 
the brain tissue AchE and ChAT activity was closely related to the 
fluoride exposure dose (Figure 7).

3.7. Brain tissue structure

The HE staining revealed that the control rat hippocampal 
neurons were arranged in a dense and ordered manner, with 
regular morphology, clear cell boundaries, rich cytoplasm, 
regular astrocytes, and clear nucleoli. Contrastingly, the 
hippocampal neurons of the fluoride-exposed rats were arranged 
sparsely, the cell boundary was not clear, the number of astrocytes 
was reduced significantly, cells were swollen, and the nucleoli had 
disappeared (Figure  8A). Transmission electron microscopy 
revealed that the control group had regularly shaped neuron 
nuclei, clear double-layer structure of the cellular nuclear 
membrane, evenly distributed nuclear chromatin, and normal 
distribution of several organelles. However, the fluoride-treated 
groups had folded neuron membranes, deformed mitochondria, 
absent cristae, vacuole formation, and pyknotic and 
hyperchromatic chromatin (Figure 8B).

FIGURE 5

Effect of fluorosis on rat serum oxidation levels. (A) GSH-Px level. (B) T-AOC level. (C) SOD level. (D) MDA level. **p  <  0.05 vs. control group, *p  <  0.05 
vs. fluoride group, n  =  10.
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3.8. Neurotrophin signaling pathway 
expression

We analyzed the SIRT1-mediated BDNF–TrkB pathway in the 
fluorosis rat brain tissue. Western blotting demonstrated that the 
fluorosis rat brain tissue had significantly decreased SIRT1, BDNF, 
TrkB, PI3K, Akt, MAPK, and NF-κB, protein expression (Figure 9) 
and significantly increased expression of apoptotic proteins (Bcl-2, 
BAX, Caspase-3, P53, FOXO1A) (Figure 10). The results indicated 
that SIRT1 mediated the BDNF–TrkB signaling pathway and 
participated in the mechanism of brain damage caused by fluorosis, 
and was closely related to the fluoride exposure dose.

4. Discussion

The mechanism of multiple organ and system damage caused by 
fluorosis is very complex and has always been a key public health issue 
of research concern. There are various sources of fluoride exposure in 

nature, such as food, water, air, and toothpaste, among which drinking 
water is the most important source (26). The fluoride from food and 
drinking water is absorbed by the gastrointestinal tract and 
transported to various tissues of the body through the systemic 
circulation. Most of ingested fluoride is deposited in calcified tissues 
such as the teeth and bones, and the remainder is distributed in 
vascular-rich soft tissues and blood (27). The kidneys are the main 
fluoride excretion pathway, and can eliminate 50–70% of fluoride via 
urine excretion (28). Therefore, dental fluorosis and urinary and bone 
fluoride concentrations are important indicators of fluorosis. Our 
results demonstrated no dental fluorosis in the control group, mild to 
moderate dental fluorosis in the low-fluoride group, and severe dental 
fluorosis the medium– and high-fluoride groups. Furthermore, the 
fluoride-exposed groups had significantly higher urinary and bone 
fluoride levels than the control group. The urinary and bone fluoride 
levels increased as the fluoride dose increased. The results indicated 
that the degree of dental fluorosis damage and urine and bone fluoride 
content are closely related to the fluoride exposure dose. Moreover, the 
HE staining of the bone tissue proved that the degree of bone damage 

FIGURE 6

Effect of fluorosis on inflammatory factors in rat brain tissue. (A) IL-1β level. (B) IL-6 level. **p  <  0.05 vs. control group, *p  <  0.05 vs. fluoride group, 
n  =  10.

FIGURE 7

Effect of fluorosis on AchE and ChAT activity in rat brain tissue. (A) AchE level. (B) ChAT level. **p  <  0.05 vs. control group, *p  <  0.05 vs. fluoride group, 
n  =  10.
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was also related to the fluoride exposure dose. Therefore, the most 
effective means of preventing and treating fluorosis in the future is to 
reduce fluoride intake.

The MWM was invented by British psychologist Morris in 1981 
and is used to study learning and memory in animals (29). The MWM 
has become a standard model for studying spatial learning and 

FIGURE 8

Effects of fluorosis on rat brain tissue structure. (A) HE staining of brain tissue exhibiting pathologic morphology (Scale bar  =  20  μm, ×200, Scale 
bar  =  100  μm, ×40, n  =  10). (B) Brain tissue ultrastructure (Scale bar  =  2  μm, ×6,000, n  =  10).

FIGURE 9

SIRT1 mediates protein expression of the BDNF–TrkB signaling pathway (n  =  10).

https://doi.org/10.3389/fpubh.2023.1247294
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2023.1247294

Frontiers in Public Health 11 frontiersin.org

memory, and has been used in various studies, specifically for 
measuring rodent spatial memory and working memory (30). In 1937, 
first reported the manifestation of nervous system dysfunction in 
patients with endemic fluorosis. Since then, other studies have found 
that long-term excessive intake of fluoride can cause demyelinating 
changes in the cerebral cortex and subcortical areas and lead to 
hypothyroidism; this may explain the decline in the intelligence level 
of children in high fluoride areas. In this study, we constructed animal 
models of fluorosis, where the rats’ learning and memory abilities 
decreased as the fluoride dose increased, and were closely related to 
the fluoride dose. Long-term intake of excessive fluoride can directly 
affect the learning and memory abilities of the brain, which seriously 
affects the health of people in fluorosis areas. Most studies have 
reported that the IQ of children with long-term high fluoride intake 
was significantly lower than that of children with normal fluoride 
intake (31).

Protective mechanisms against reactive oxygen species toxicity 
form within cells during biological systems evolution. Among them, 
SOD widely exists in organisms, is important, and has obvious 
antioxidant effects (32). The oxidative stress theory systematically 

explains the pathogenesis of systemic damage caused by fluorosis, 
which many scholars at home and abroad have acknowledged and is 
a current hot research topic in medicine (33). Brain tissue is highly 
dependent on oxygen and rich in polyunsaturated fatty acids that are 
easily attacked by free radicals, which cause lipid peroxidation and 
oxidative stress damage (34, 35). Fluorosis increased oxidative stress 
levels, which led to apoptosis, and the decreased learning and memory 
abilities of fluorosis rats were related to the increased oxidative stress 
levels (36, 37). Therefore, the brain is the organ that receives the most 
obvious damage from free radicals during fluorosis. In this study, the 
fluorosis rats had significantly reduced antioxidant levels and 
significantly increased peroxide levels, which correlated with the 
fluoride exposure dose. The formation mechanism of oxidative stress, 
inflammation, and brain damage is mutually causal (38). Due to the 
disorder of its oxidative and antioxidant capacity levels, the body 
undergoes a receptor-mediated aseptic inflammatory response and 
large release of proinflammatory factors, which results in a sustained 
state of excessive inflammation (39, 40). Here, the body is in the 
oxidative stress inflammatory microenvironment, and 
proinflammatory cytokines accelerate the brain injury process (41). 

FIGURE 10

Expression of apoptotic proteins in rat brain injury caused by fluorosis exposure (n  =  10).
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We detected the levels of inflammatory factors in rats, and observed a 
significant increase in the levels of inflammatory factors in the 
fluoride-exposed groups, which indicated a mutual relationship 
between oxidative stress, inflammation, and brain damage caused by 
excessive fluoride intake.

Learning and memory abilities are closely related to the central 
cholinergic system and are believed to be directly related to learning 
and memory through interactions with the brain (42). The stability of 
chemicals in brain tissue affects the thinking, learning, memory, and 
behavioral changes of normal individuals (43). An important central 
nervous system neurotransmitter, AchE is a hydrolase of the 
cholinergic neurotransmitter acetylcholine, and is directly involved in 
important functions such as neural function regulation, muscle 
movement, brain thinking, and memory (44). Fluorosis significantly 
affects α7 nicotinic acetylcholine receptors (n-AChR) and muscarinic 
acetylcholine receptor (m-AChR) expression in rat brain tissue, 
thereby affecting learning and memory abilities (45). Our data 
demonstrated that fluorosis significantly affected AchE and ChAT 
activity. Furthermore, our results indicated that the changes in 
learning, memory, and cognitive function of the fluorosis rats were 
related to AchE and ChAT activity and were influenced by the fluoride 
exposure dose.

The effect of fluorosis on intelligence may involve multiple 
different pathways, and the mechanisms of its effects are very complex. 
After it crosses the blood–brain barrier, fluoride can affect and change 
the cerebellum, hippocampus, and cerebral cortex to varying degrees, 
thereby affecting intellectual development (46, 47). The ultrastructural 
pathological results indicated that fluoride exerted a significant 
damaging effect on the blood–brain barrier, mainly manifested as 
astrocyte foot edema, mitochondrial degeneration, and poor function 
of microvascular endothelial cells. The damaging effect of fluoride on 
the blood–brain barrier might further increase its accumulation in 
brain tissue, thereby exacerbating fluoride damage to the brain. 
Chemical toxin damage to the central nervous system inhibits brain 
cell proliferation and differentiation, inhibits AchE activity in brain 
tissue, leads to decreased neurotransmitter synthesis, and thereby 
affects learning and memory abilities, which was consistent with 
our results.

SIRT1 is a histone deacetylase mainly expressed in the 
hippocampal neurons in brain tissue. SIRT1 participates in memory 
formation, neuroplasticity, and axonal and neuronal protection (48) 
and regulates inflammatory and oxidative stress responses in the 
brain, exerting neuroprotective effects (49). SIRT1 enhances BDNF 
transcriptional activation by regulating BDNF expression, which 
renders it important in learning, memory, and emotional regulation 
(50). Animal experiments demonstrated that SIRT1–BDNF signaling 
pathway activation improved the learning and memory function of 
vascular cognitive impairment rats (51). BDNF is a neurotrophin 
family member, a key factor in sympathetic nervous system 
development, and is known as the fertilizer of the brain (52). BDNF 
helps the brain generate new neural connections, repair damaged 
brain cells, and protect healthy brain cells (53). In the brain, BDNF is 
mainly present in the hippocampus, cerebral cortex and basal 
forebrain, which are related to learning, memory, recall, and deeper 
thinking. BDNF binding to its tyrosine kinase receptor TrkB activates 
PI3K, MAPK, and NF-κB (54, 55). The combination of BDNF and 
TrkB activates various intracellular signal cascade reactions, then 
regulates synaptic transmission, promotes cell survival and 

proliferation, and is neuroprotective (56, 57). This study clarified 
whether the brain damage and decreased learning and memory 
abilities caused by fluorosis are related to SIRT1-mediated BDNF–
TrkB induced intracellular signaling cascade reactions. The results 
demonstrated that the fluorosis rat hippocampus had significantly 
reduced SIRT1 and BDNF–TrkB protein levels, decreased PI3K–Akt 
and MAPK–NF-κB, and significantly increased apoptotic protein 
levels, which induced brain damage and affected the rats’ learning and 
memory abilities.

5. Conclusion

Fluoride can accumulate in the brain through the blood–brain 
barrier, and seriously affect brain memory function. This study 
provided a better understanding of the pathological mechanisms 
and learning and memory abilities of fluorosis on brain injury. 
Excessive fluoride intake in the rats led to peroxide accumulation, 
causing a receptor-mediated sterile inflammatory response and large 
release of proinflammatory factors, which directly damaged brain 
tissue and affected AchE and ChAT activity. Pathological changes in 
the tissue structure confirmed the progression of brain injury. 
Protein level validation determined that SIRT1 mediated the BDNF–
TrkB signaling pathway to cause a cascade reaction, which led to 
increased apoptotic protein levels in brain tissue. Further analysis 
revealed that the SIRT1-mediated decrease in BDNF–TrkB protein 
levels was involved in the brain damage and learning and memory 
abilities of the fluorosis rats and negatively correlated with the 
fluoride exposure dose. Currently, there is no effective treatment 
method for the tissue damage caused by fluorosis. Therefore, the 
effective method for preventing and treating fluorosis damage is to 
control fluoride intake.
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