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Introduction: This study aimed to develop and assess a deep-learning model

based on CT images for distinguishing infectivity in patients with pulmonary

tuberculosis (PTB).

Methods: We labeled all 925 patients from four centers with weak and strong

infectivity based on multiple sputum smears within a month for our deep-learning

model named TBINet’s training. We compared TBINet’s performance in identifying

infectious patients to that of the conventional 3D ResNet model. For model

explainability, we used gradient-weighted class activation mapping (Grad-CAM)

technology to identify the site of lesion activation in the CT images.

Results: The TBINet model demonstrated superior performance with an area

under the curve (AUC) of 0.819 and 0.753 on the validation and external test sets,

respectively, compared to existing deep learning methods. Furthermore, using

Grad-CAM, we observed that CT images with higher levels of consolidation, voids,

upper lobe involvement, and enlarged lymph nodesweremore likely to come from

patients with highly infectious forms of PTB.

Conclusion: Our study proves the feasibility of using CT images to identify the

infectivity of PTB patients based on the deep learning method.

KEYWORDS

pulmonary tuberculosis, deep learning, disease control and prevention, infectivity

identification, CT

Introduction

Tuberculosis (TB) is a chronic infectious disease primarily caused by Mycobacterium

tuberculosis (Mtb) (1) and remains the leading infectious reason of death worldwide.

Since Mtb is primarily transmitted through respiratory droplets [e.g., coughing, sneezing,

speaking, singing (2, 3), and even deep exhalations (4)], pulmonary tuberculosis (PTB) is the

most common form of TB. However, despite the crucial importance of rapidly identifying

the infectivity of PTB patients for the prevention and control of TB, it remains a task to date.
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Etiological examinations are commonly employed to determine

the infectivity of tuberculosis patients, yet in China, only 37% of

PTB patients receive bacteriological evidence (5). Clinical routine

sputum acid-fast bacilli smear (we refer to it as “sputum smear”

in the following text) is relatively quick but has poor repeatability

and a low single detection rate, often necessitating repeat testing

for PTB patients. Sputum culture examination takes 2–6 weeks,

and polymerase chain reaction (PCR) tests for Mtb may yield

false positives and are costly (6). Moreover, traditional methods

for assessing the infectivity of PTB patients rely on the quality of

sputum samples, which can be influenced by the operator’s skill

and the patient’s condition. Therefore, there is an urgent need for a

rapid, reliable, and objective method to determine the infectivity of

PTB patients. CT imaging plays an essential role in analyzing and

diagnosing PTB patients (7). Research has also shown that imaging

findings are often associated with positive sputum smear results in

PTB patients (8–10).

Deep learning is a highly versatile tool widely employed

for diagnosing and predicting a wide range of diseases. In the

field of PTB analysis, Li et al. (11) combined autoencoder and

convolutional neural network (CNN) to proposed a new model

called AECNN for abnormal classification of TB. Tian et al.

(12) proposes a lightweight classification network based on a

combination of transformer and CNN for the classification of TB

cases from lung CT. Besides, some studies have used deep learning

models for identification of drug-resistant and non-drug-resistant

Mtb (13), detection of Mtb and Nontuberculous Mycobacterium

infections (14), and rapid screening of patients with active PTB (15–

17). However, few studies focused on the detection of the infectivity

of PTB patients, which is crucial for PTB prevention and control.

In this study, we present a PTB infectivity identification model,

named TBINet, which utilizes a 2D projection-based CNN to detect

individuals with contagious PTB.

Methods

Patients and dataset

We retrospectively collected data from patients diagnosed with

PTB who were admitted to four hospitals from January 2010

to December 2021. As sputum smear result is associated with

the infectivity of PTB (18), we used sputum smear result to

assess infectivity. According to the sputum tuberculosis smear

interpretation criteria in the WS 288-2017 (19), the sputum smear

result was categorized into six grades from low to high: negative (–),

weakly positive (±), positive (+), positive (2+), positive (3+), and

positive (4+). A negative result (–) indicates the absence of acid-

fast bacilli in 50 consecutive microscopic fields. A weakly positive

result (±) indicates the presence of 1–9 acid-fast bacilli in 50

microscopic fields. The positive (+) category refers to 10–49 acid-

fast bacilli found in 50 microscopic fields. positive (2+) indicates

1–9 acid-fast bacilli found in each microscopic field, and positive

(3+) indicates 10–99 acid-fast bacilli found in each microscopic

field. The positive (4+) indicates more than 100 acid-fast bacilli

found in eachmicroscopic field. The report for positive (2+) should

be based on the observation of a minimum of 50 fields, while for

positive (3+) and higher positive results, a minimum of 20 fields

should be observed.

We defined the negative group as having three or more negative

sputum smear results within a month, and no positive results

within the next 3 months, and this indicates weak infectivity.

The positive group was defined as having at least one-time

positive sputum smear results within a month, indicating relatively

strong infectivity. We selected the highest number of multiple

sputum smear results for each person in the positive group as the

grading criterion. The National Health Commission of the People’s

Republic of China’s diagnostic standards for PTB served as the

foundation for the diagnosis of PTB (WS 288-2017) (19). After the

patients were grouped according to the sputum smear results, chest

CT images of the patients in DICOM format were collected and

matched. The interval between sputum smear tests and CT image

acquisition was <30 days, and patients with unclear PTB diagnoses

or poor-quality lung CT images were excluded.

Figure 1 displays a detailed flowchart of the procedure for

gathering data. We included one CT scan image from each patient,

totalling 925 CT scan images. Of these, 591 images were split

for training, with 118 images set aside as a validation set for

model parameter selection. The remaining 334 images were used

for testing. Hospital 1 provided the images for the training and

validation sets. Hospitals 2, 3, and 4 provided the images for the

external test set.

Data collection

The patients were positioned prone and instructed to inhale

and hold their breath as much as possible during the lung field

scan. The visual field was adjusted to fit the size of each patient.

All patients were scanned using spiral CT scanners following the

same protocol. The CT images have an in-plane pixel spacing of

5mm, an in-plane resolution of 512× 512, and the number of slices

ranges from 47 to 70. All CT data were converted from the original

DICOM format to the NIFTI format to ensure data desensitization.

Lung segmentation

Figure 2 shows the overview of our PTB infectious distinguish

method. The first step is lung segmentation. Considering that

contagious PTB occurs in the lung parenchyma, lung region

segmentation can make the model focus on the lung without

interference from other areas, thus reducing the difficulty of the

analysis. Lungmask (20) is an open-source lung segmentation

model based on deep learning, which is used to perform automatic

segmentation of lungs on 3D CT images.

2D projection

Based on the segmented lung mask, a CT image is divided

into left and right lung images. Then the left and right lung

images are projected from three sides, that is, the mean and

standard deviation of pixels in three directions are calculated.
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FIGURE 1

Clinical data screening process and composition.

FIGURE 2

Overview of our proposed infectious PTB infectious scoring method.

Finally, the images of all planes are scaled to a uniform size, as

shown in Figure 3. The advantage of projecting 3D images to

2D images is that the 2D CNN can be used to analyze these

data. Compared with 3D CNN, 2D CNN is lighter and easier to

train. Besides, 2D projection increases the number of samples,

because a 3D CT image is converted into three 2D projection
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FIGURE 3

2D projection results generated from 3D masked CT.

FIGURE 4

Framework of our proposed TBINet.
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samples in different directions, which can alleviate the over-fitting

of our model.

Network construction

In this study, we proposed a PTB infectious convolutional

neural network (CNN) which can be called TBINet for rapid

identification of contagious people with PTB. As shown in Figure 4,

the TBINet contains two ResNet (21) backbones used to extract

the features of left and right lung projection images, respectively.

The details of the ResNet backbone are also shown in Figure 4,

which consists of convolution (Conv) layers, batch normalization

(BN) layers, rectified linear units (ReLU), residual blocks, max

pool layer, and adaptive avgpool layer. Then the extracted left and

right lung features are fused by maximum operation. Finally, the

fused features pass through a full connection layer to get the final

infectious prediction score. The prediction score is a value between

0 and 1. All the prediction scores can be divided into two groups

by setting the cut-off value, with those above the cut-off value being

positive and those below being negative.

Network optimization

A loss function is typically necessary for CNN optimization.

For TBINet optimization, we employ a binary cross-entropy loss

function, which is specified as follows:

L =
1

N

∑

i

−[yi · log
(

pi
)

+ (1− yi) · log
(

1− pi
)

]

Where N is the number of samples, yi is the label of the sample i,

and pi is the score of the sample i predicted by our TBINet.

The following describes a few implementation specifics. Our

model was trained for 300 epochs using the Adam (22) optimizer

and a step-decay learning rate. The learning rate was 0.0001 at

the beginning. Some straightforward online data augmentation

techniques were applied to the training set to reduce overfitting,

such as random flipping, rotating, and zooming.

Model evaluation

The dataset was split into three sets: a training set, which was

used to train the TBINet; a validation set, which was used for model

parameter selection; and an external test set, which was used to

evaluate the generalization ability of our model. We contrast our

TBINet with the existing deep learning-based PTB classification

methods, including 3D ResNet (14), AECNN (11), and LightCN

(12), to demonstrate the advantages of our approach. The area

under the receiver-operating-characteristic curve (AUC), accuracy,

sensitivity, specificity, precision, and F1 score were calculated for

these models to be evaluated and compared in the validation and

external test set. The confusion matrices were also computed to

display the prediction results of all compared methods.

Statistical analysis

The age difference was compared using the t-test, and

gender was evaluated using the Chi-square test. The 95%

confidence interval (CI) of the AUC metric was calculated for

model evaluation.

SPSS statistical software version 26.0 (IBMCorp., Armonk, NY)

and Python software version 3.6.6 (Python Software Foundation,

Wilmington, DE, USA) were used for all analyses and model

construction. All statistical tests were 2-sided, and P < 0.05 were

considered to be statistically significant.

Results

Patients characteristics

This study included images from 925 in-patients. Both the

training and validation sets were obtained from Hospital 1

(Table 1), whereas the external testing dataset was collected from

Hospitals 2–4. There were 721 (77.9%) males and 204 (22.1%)

females with amean age of 50.6± 17.3 years. The ratio of positive to

negative was 1.92, and training, validation, and testing sets were set

at 51.1, 12.8, and 36.1% of the full set, respectively. There were no

significant differences in the sex ratio between positive and negative

groups (P = 0.432) and age (P = 0.192; see Table 2).

Performance of the TBINet

Figure 5 shows the receiver-operating-characteristic curves

(ROCs) of all compared methods. The 3D ResNet achieves the

highest AUC (0.928) on the training set, but a lower AUC

on the validation (0.796) and external test set (0.714), which

indicates that it has serious over-fitting. Our TBINet achieves the

best performance on the validation and external test sets with

AUC of 0.817 and 0.754, respectively, which shows the superior

generalization ability of our model. The detailed comparisons of

AUC, accuracy, sensitivity, specificity, precision, and F1 score

on the validation and external test sets are listed in Tables 3, 4,

respectively. The results show that the proposed TBINet achieves

the best performance with all metrics on the validation and external

test set. As shown in Figure 6, the confusion matrices also show

the predictions of the TBINet have fewer false positives and false

negatives.

Model explainability

Gradient weighted class activation mapping (Grad-CAM) is a

commonly used tool for CNN explainability. It uses gradients of

a specific target that flow through the convolutional network to

localize and highlight regions of the target in the image. Grad-CAM

can reveal the areas of the image that the model relies on to make

positive or negative predictions. Figure 7 presents some examples

of Grad-CAM in action on our TBINet model.

By observing and analyzing the image areas activated

by Grad-CAM, we discovered: in the negative group with
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TABLE 1 Characteristics of patients at each hospital.

Characteristics Number of cases

Overall Hospital 1 Hospital 2 Hospital 3 Hospital 4

Groups

Training set 473 473 0 0 0

Validation set 118 118 0 0 0

External test set 334 0 316 6 12

Sputum smear results

Positive group 609 462 147 0 0

Smear±∼+ 160 137 23 0 0

Smear 2+ 235 137 98 0 0

Smear 3+∼4+ 214 188 26 0 0

Negative group 316 129 169 6 12

Gender

Male 721 455 255 5 6

Female 204 136 61 1 6

Age, Means± SDs, years 50.6± 17.3 49.6± 16.8 52.3± 12.0 63.0± 12.0 40.6± 16.7

Hospital 1: Hainan General Hospital.

Hospital 2: Haikou People’s Hospital.

Hospital 3: The Second Affiliated Hospital of Hainan Medical University.

Hospital 4: The Fifth Affiliated Hospital of SunYat-sen University.

TABLE 2 Age and sex comparison between positive and negative groups.

Characteristics Positive group Negative group Total P-value

Male 460 261 721

Female 149 55 204 0.432

Total 609 316

Age, Means± SDs, years 48.4± 17.2 51.3± 18.3 0.192

FIGURE 5

Receiver-operating-characteristic curves on the training, validation, and external test.

weak infectivity, the lesions were characterized by fibrous

proliferation foci, bronchiectasis, pleural thickening, stretching,

and adhesion, with a few cases exhibiting cavities; in the

positive group with strong infectivity, the lesions were primarily

characterized by exudate, and some cases exhibited caseous

pneumonia, accompanied by cavity formation. These findings are

consistent with the pathological features of pulmonary tuberculosis

(PTB) (22).
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TABLE 3 Performance comparison of all methods on the validation set.

Performance TBINet 3D
ResNet

AECNN LightCN

AUC 0.817 0.796 0.801 0.768

(95% CI) (0.730,

0.885)

(0.680,

0.884)

(0.707,

0.873)

(0.658, 0.857)

Accuracy 0.747 0.722 0.747 0.705

Specificity 0.730 0.730 0.730 0.692

Sensitivity 0.741 0.709 0.741 0.698

Precision 0.920 0.916 0.920 0.902

F1 score 0.821 0.799 0.821 0.787

The bold values indicate the best results.

TABLE 4 Performance comparison of all methods on the external test set.

Performance TBINet 3D
ResNet

AECNN LightCN

AUC 0.754 0.714 0.719 0.654

(95% CI) (0.697,

0.805)

(0.657,

0.768)

(0.661,

0.773)

(0.592, 0.711)

Accuracy 0.710 0.660 0.679 0.598

Specificity 0.702 0.662 0.662 0.588

Sensitivity 0.712 0.650 0.691 0.602

Precision 0.670 0.620 0.635 0.553

F1 score 0.691 0.635 0.662 0.577

The bold values indicate the best results.

Discussion

This study aimed to develop a convenient tool for identifying

contagious PTB cases, to aid in the prevention and management

of tuberculosis. Deep learning methods have recently shown great

promise in disease diagnosis and prediction (23–26). Several CNN-

based deep learning models have been proposed for TB analysis

(17, 27–35). However, few studies have focused on the development

of an identification model for PTB infectivity. Furthermore,

previous studies have typically relied on etiological specimens to

determine the infectivity of PTB patients rather than imaging (36).

However, the collection of sputum is often not as convenient and

standardized. Therefore, we propose the TBINet, a deep-learning

model that utilizes CT images to identify contagious individuals

with PTB. Our study demonstrates that the infectivity of PTB

patients can be accurately reflected in chest CT images.

To minimize the errors in the label, we defined strict criteria for

the inclusion of positive and negative groups. Patients who were

included in the negative group need to have three or more records

of negative sputum smear results in a month. Previous studies have

suggested that having three or more negative smears is sufficient

to lift isolation (10). For all enrolled individuals, the time interval

between CT scanning and sputum smear testing should not exceed

1 month. To verify the generalization ability, we evaluated our

model on an independent external test set composed of data from

three hospitals.

Our TBINet uses 2D projection images of CT scans as inputs,

reducing the input data’s dimensionality. This allows for the use

of a lightweight model for image classification tasks, which has

better stability and requires fewer graphics processing units (GPUs)

(37). Also, this reduces the overfitting of our model compared to

3D ResNet, as shown in Figure 5. While AECNN and LightCN

employed 2D neural networks, they analyzed CT images on a

single slice, limiting their utilization of 3D spatial information. In

contrast, the projection image fed into our TBINet retained 3D

information to a degree, and we took into account projections from

three directions. During the testing phase, we utilized three TBINet

models with shared weights to predict three 2D projection samples

from different directions of a CT scan. We then used the mean of

their scores as the final result, ensuring that the prediction results

of our model were based on comprehensive analysis from multiple

angles. According to the 2014 WHO meeting report, a screening

test for PTB should have a specificity of over 70% (6, 38, 39). As the

output of our model is a score, we suggest setting the cut-off value

at 0.64 to maintain a sensitivity of 71.2%.

Previous studies often required each image’s region of interest

(ROI) for model prediction. However, this process is subjective

and requires more workforce (40). In contrast, our model does not

require manual ROI, making it convenient, objective, and cheap

in the modeling phase. Grad-CAM was used to show the focused

areas of our TBINet for explainability. By observing these areas, we

found that CT images with more consolidation, voids, upper lobe

involvement, and enlarged lymph nodes tended to be in the positive

group, which aligns with previous research (9, 10).

CT findings are correlated with the sputum smear results (41).

Caseous necrosis and airway lesions form the pathological basis

for sputum tuberculosis smear-positive (42). Caseous necrosis,

often presenting as consolidations and cavities, can occur when

there is an increased number of Mtb (43). Ground-glass opacities

and blurred margins are indicative of inflammatory and exudative

changes (44), suggesting that the lesions are in the progressive

stage, which is related to the host immune response triggered by

Mtb replication. Mtb tends to replicate more readily in oxygen-rich

areas (43), which can explain why upper lobe involvement is more

common in the positive group.

Our study has some limitations. First, our model is unable

to determine whether the bacteria discharged by PTB patients

were alive or dead, which may require further investigation.

Second, although our negative group was labeled based on

continuous multiple negative sputum smear results, there were

still false negative samples. A multidimensional comparison of

Mtb examination results from sputum smears, cultures, and

bronchoalveolar lavage fluids is needed to further distinguish PTB

infectivity. In the future, our research will focus on seeking a more

precise negative group. Third, TBINet cannot explain the process of

Mtb replication and release. This may require large cohort studies.

Conclusion

We developed a deep-learning model called TBINet that can

distinguish the infectivity of PTB patients rapidly and cheaply.
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FIGURE 6

TBINet and 3D ResNet confusion matrices.

FIGURE 7

Lesion sites that the models focus on shown by Grad-CAM.

Experimental results demonstrate that our approach outperforms

existingmethods. This is a new attempt to distinguish the infectivity

of PTB. In resource-constrained regions, it may serve as an

auxiliary tool for controlling PTB by aiding in the quick triage and

placement of outpatient PTB patients, facilitating secure referrals of

PTB patients between various clinical departments, evaluating the

condition of PTB patients, and offering personalized assessments of

the duration of home isolation for these patients.
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