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Background: The COVID-19 pandemic has witnessed widespread infections and 
variants. Particularly, Tokyo faced the challenge of seven waves of COVID-19, 
during which government interventions played a pivotal role. Therefore, gaining a 
comprehensive understanding of government control measures is of paramount 
importance, which is beneficial for health authorities in the policy development 
process.

Method: Our study analysis the daily change data of the daily COVID-19 
infection count in Tokyo from January 16, 2020 to September 30, 2022. 
We utilized adaptive Fourier decomposition (AFD) for analyzing the temporal 
trends within COVID-19 data. It extends the conventional AFD approach by 
constructing new components base on multiple individual components at 
various time-frequency scales. Furthermore, we conducted Pearson correlation 
assessments of the first to third-order synthesis results, along with comparative 
analyses against other signal analysis techniques. Ultimately, these new 
components are integrated with policy data spanning different time periods for 
a comprehensive analysis.

Result: The analysis of daily COVID-19 data in Tokyo using AFD reveals how 
various government policies impacted infection rates across seven distinct 
fluctuation periods. In the decomposition results, the reduction of business hours 
policy correlated with high-frequency components in the first four waves, while 
the low-frequency components for the sixth wave suggested a decline in its 
relevance. The vaccination policy initially displayed a mid-frequency correlation 
with the fifth wave and continued with a low-frequency correlation in the last 
wave. Moreover, our statistical analysis (value of p  <  0.05) demonstrated that 75% 
of the third-order AFD components exhibited significant positive correlations with 
the original infections, while the correlation coefficients of most components in 
EMD and VMD did not attain significance.

OPEN ACCESS

EDITED BY

Ayse Humeyra Bilge,  
Kadir Has University, Türkiye

REVIEWED BY

Rene Markovič,  
University of Maribor, Slovenia  
Arif Selcuk Ogrenci,  
Kadir Has University, Türkiye

*CORRESPONDENCE

Chitin Hon  
 cthon@must.edu.mo

RECEIVED 23 June 2023
ACCEPTED 20 November 2023
PUBLISHED 14 December 2023

CITATION

Lu G, Yang Z, Qu W, Qian T, Liu Z, He W, 
Lin Z and Hon C (2023) Daily fluctuations in 
COVID-19 infection rates under Tokyo’s 
epidemic prevention measures – new evidence 
from adaptive Fourier decomposition.
Front. Public Health 11:1245572.
doi: 10.3389/fpubh.2023.1245572

COPYRIGHT

© 2023 Lu, Yang, Qu, Qian, Liu, He, Lin and 
Hon. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 14 December 2023
DOI 10.3389/fpubh.2023.1245572

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1245572&domain=pdf&date_stamp=2023-12-14
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1245572/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1245572/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1245572/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1245572/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1245572/full
mailto:cthon@must.edu.mo
https://doi.org/10.3389/fpubh.2023.1245572
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1245572


Lu et al. 10.3389/fpubh.2023.1245572

Frontiers in Public Health 02 frontiersin.org

Conclusion: In the time-frequency domain, AFD demonstrates superior 
performance compared to EMD and VMD in capturing crucial data related to 
epidemic control measures. The variations in daily COVID-19 infection counts 
during these seven periods under various policies are evident in distinct third-
order AFD components. These findings guide the formulation of future public 
health policies and social measures.

KEYWORDS

adaptive Fourier decomposition, COVID-19, daily fluctuation, epidemic prevention 
policies, Tokyo pandemic

Introduction

The World Health Organization (WHO) officially recognized the 
Coronavirus Disease 2019 (COVID-19) as a public health emergency 
of international concern, reflecting the global gravity of the pandemic. 
This declaration was made on January 30, 2020, in response to the 
escalating threat posed by this novel coronavirus outbreak (1, 2). On 
January 22, 2023, the reported global infection cases had exceeded 
hundreds of millions due to cumulative mutations, which notable 
variants include Alpha (B.1.1.7), Delta (B.1.617), and Omicron 
(B.1.1.529) (3, 4, 5, 6).

As of October 2022, Japan’s COVID-19 epidemiological landscape 
had seen seven distinct waves. Each was mitigated through a 
combination of public health measures, social interventions, and 
vaccination campaigns. Nevertheless, the recurrence of social activities 
and the emergence of new viral variants frequently precipitated fresh 
outbreaks. In Tokyo, Japan’s capital, the daily count of COVID-19 
cases significantly informs the development of preventative policies 
and profoundly affects the country’s disease control efforts. 
Consequently, higher daily infection counts often precipitate more 
stringent prevention measures. Thus, analyzing daily infection trends 
can not only enhance residents’ pandemic preparedness but also offer 
valuable insights for policymakers striving to optimize disease 
prevention and control strategies.

The existing body of literature largely resorts to econometric 
approaches, such as SI, SIR, SIRS, and SEIR models, to scrutinize 
the day-to-day fluctuations in COVID-19 cases (7–13). Most of 
these studies primarily focus on the time-domain attributes and 
the linear modeling of daily infection tallies. Nonetheless, the 
daily COVID-19 case count encapsulates intricate non-linear data, 
bearing frequency-domain properties. Many previous studies have 
used EMD to conduct analysis related to the spread of COVID-19, 
among which there is a non-linear data analysis study on the 
number of daily infections with the implementation of public 
health measures (14–20). EMD is a class due to the consideration 
of frequency domain information, but the EMD-based model can 
only extract the time-frequency information of the time series, 
and there are still shortcomings such as scale aliasing (21). Since 
EMD is based on local features of the data, its decomposition 
components can be  derived adaptively (22). However, this 
approach has no clear mathematical explanation, making its 
decomposition results difficult to understand and interpret. 
Furthermore, the analytic phase function of IMF is not monotonic 
in some cases (23). In other words, a physically meaningful 

instantaneous frequency for IMF analysis cannot be defined in 
general, which will affect the time-frequency analysis of IMF (22, 
24–26). To address these limitations, the adaptive Fourier 
decomposition (AFD) method was introduced by Qian et al. (25, 
27, 28). Providing a rigorous mathematical foundation that EMD 
lacks (25, 28), AFD proves to be  more apt for analyzing daily 
fluctuations in the number of COVID-19 infections.

In this study, we explore the oscillations of daily COVID-19 
infection counts in Tokyo using a novel AFD time-frequency 
model. The AFD model effectively avoids the scale aliasing 
phenomenon and employs transient time-frequency distribution 
to identify periods of significant fluctuation. Building upon the 
model’s original transient time-frequency distribution, 
we innovatively reconstruct the time series of daily infections by 
extracting components across different time-frequency scales. 
Moreover, we contrast the AFD’s decomposition method with two 
renowned time-frequency analysis techniques, EMD and VMD.

Methods

Adaptive Fourier decomposition

Adaptive Fourier decomposition (AFD) is an algorithm used 
to process discrete time signals by dynamically adjusting the 
frequency resolution to enhance signal processing efficiency. In 
contrast, Empirical Mode Decomposition (EMD), another signal 
processing technique, can yield decomposition results with 
negative phase derivatives in practical applications, lacking a 
clear mathematical explanation and making it challenging to 
interpret (29). AFD, on the other hand, surpasses other 
decomposition methods by adaptively generating an input-
dependent basis, thereby achieving efficient decomposition. It 
separates the signal into multiple individual components, each 
consisting solely of non-negative analytic phase derivatives, 
ranging from high-energy modes to low-energy modes, with a 
rigorous mathematical foundation (28). From the overall data 
curve of daily COVID-19 infection, it can be seen that the spread 
of COVID-19 is nonlinear, and AFD can decompose the 
nonlinear composite signals collected in the real world, so AFD 
can be used to analyze the daily COVID-19 infection count under 
the policy (28, 29).

The Takenaka-Malmquist system, Bn n{ } =
∞

1, is used as the basis 
elements of the AFD where:
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an ∈ D, D ⊆ C, n = 1,2,…, with C representing the complex plane 
(29). Due to the fact that the characteristics of B en

jt( ) are related to 
an, the main task of AFD is to find such arrays a a a1 2, , , n{ }, so that 
all decomposition components only contain phase derivatives with 
high decomposition efficiency and physical significance.

In the AFD algorithm, all single components are sequentially 
extracted from high-energy mode to low-energy mode. In order to 
easily find the energy relationship, reduce the remainder G sn�  and 
define R sn−1

�  with their corresponding standard remainder (21):
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So G t( ) can be represented by the simplified remainder G sn� :
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n{ } ( )  is called the evaluator at an which constitute a 
dictionary of the complex Hardy space H D2 ( ) (30).
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The complex Hardy space in the unit circle D is defined as follows:
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According to (3), the energy of G t( ) can be calculated by (21).
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In order to minimize the energy of the standard remainder 
 G eN

jt
+ ( )1

2 , the maximum projection principle shown in (6) is 

used to find an that can generate the maximum 〈 〉{ }G en an,
2

 for each 
step n (21).
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From this algorithm, there are significant differences between the 
AFD method and traditional decomposition methods. AFD 
decomposes signals based on their energy distribution, making it 
suitable for separating signals with overlapping frequencies.

New components construction based on 
adaptive Fourier decomposition results

AFD has different variants, including core AFD, unwinding AFD, 
cyclic AFD, and random AFD (30–34), and has been applied in 
various fields (35–37). When performing signal decomposition of 
large-scale data, in order to ensure sufficient decomposition, more 
layers of decomposition results are usually set. This inevitably leads to 
redundant data generated by signal decomposition. By merging partial 
decomposition results, the risk of data errors can be reduced and the 
reliability of the data can be improved. Therefore, we attempted to 
construct new components base on the decomposition results:
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The Pearson correlation coefficient

Correlation analysis is a statistical method used to evaluate the 
strength and direction of the linear relationship between two 
quantitative variables. The result of the analysis is expressed as a 
correlation coefficient, commonly denoted as ‘r’. This coefficient 
can range between −1 and 1, where −1 indicates a perfect negative 
linear relationship, 1 indicates a perfect positive linear relationship, 
and 0 indicates no linear relationship (38). In correlation analysis, 
the value of p assesses the probability of observing a particular 
correlation coefficient, r, assuming no true correlation exists in the 
population. A low value of p suggests the correlation is statistically 
significant (39).

The Pearson correlation coefficient r between two variables x and 
y is defined as:
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where xi and yi are the ith  data points, x and y are the means of 
X and Y respectively, and n is the number of data points.

Sample and data

Our empirical examination is grounded in the fluctuation of the 
daily COVID-19 infection count in the Tokyo epidemic prevention 
and control policy from January 16, 2020 to September 30, 2022. 
Fraser et al. (40) scrutinized the spread of COVID-19 across Japan’s 
47 prefectures, discovering significant variation attributable to 
different social ties. Consequently, the propagation of COVID-19 
diverges across regions under varying circumstances.

Parallelly, Watanabe et  al. (41) suggested that during Japan’s 
COVID-19 outbreak, the government-implemented public health 
measures exerted an interventionist effect, while the social measures 
catalyzed an informational effect that altered people’s behavior. Tokyo, 
being Japan’s nexus of politics, economy, culture, and transportation—
housing the largest population among all prefectures and boasting the 
country’s highest population density—is particularly representative. 
Moreover, Tokyo is widely recognized for possessing the most 
comprehensive medical resources, spanning high-end medical 
equipment, advanced technology, and quality medical services (37).

Figure 1 illustrates the daily COVID-19 infection count in Tokyo 
during our sampling period, marked by seven distinct transmission 
waves. Furthermore, the spread of COVID-19 demonstrates 
non-linearity due to external factors, such as the implementation of 
public health and social measures recommended by the World Health 
Organization to curb the disease’s proliferation. Table 1 records seven 
waves of preventative measures issued by the Japanese government 
during our analyzed period. Evidently, these emergency measures 
effectively suppressed the transmission of COVID-19, as indicated by 
the successive decline of all waves during this period.

Specifically, these seven waves of preventative measures included:
The first wave (January 2020–June 2020) saw a sudden spike in 

positive cases and close contact cases with unknown transmission 
routes. Urgent governmental measures included held the Tokyo 

Metropolitan Crisis Management Council, a temporary suspension of 
all schools, curtailment of unnecessary and non-emergency outings 
for urban residents, enterprise facility closures and shortened 
restaurant operating hours (5:00 am–8:00 pm), and the cancelation of 
events. These measures reduced interpersonal contact by 80% and 
significantly controlled the outbreak.

The second wave (July 2020–October 2020) recorded a case surge 
primarily linked to restaurants and entertainment venues in the city 
center’s “nightlife areas,” leading to a rise in infections among young 
people. In response, the government mandated request for reduce 
businesses hours, shortened operating hours for restaurants and karaoke 
venues that serve alcoholic beverages (5 am–10 pm), reducing nightlife 
activity and thus new cases without a state of emergency declaration.

The third wave (October 2020–February 2021) noted a substantial 
increase in infections compared to the first two waves. Unlike the 
second wave, infections at home were more prevalent. Consequently, 
the government declared a second state of emergency, necessitating 
restaurants and similar venues to reduce their operating hours 
(11 am–7 pm for alcohol service), limit unnecessary outings, curtail 
activities, and expedite vaccination efforts for the older adults and 
general public.

The fourth wave (March 2021–June 2021) was largely attributed 
to a more infectious Alpha variant, predominantly affecting younger 
generations. The government initiated a “stay-at-home week,” 
restricting inter-county travel for non-essential purposes, enforcing 
operational cessation or shortened operating hours for large facilities, 
mandating spectator-less activities, and limiting restaurant hours 
(5 am–8 pm).

The fifth wave (July 2021–October 2021), fueled by the highly 
virulent Delta variant, showed a rapid progression with a notable 
increase in new positive cases, particularly among those aged 40–60. 
A state of emergency was declared, implementing measures such as 
limiting non-essential travel, reducing footfall in crowded areas by 
50%, ceasing operations for restaurants serving alcoholic beverages, 
shortening operating hours for other restaurants (5 am–8 pm), 
encouraging a 70% reduction in office workers via WFH, and promote 
the 2nd shot vaccination process of COVID-19.
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FIGURE 1

Daily COVID-19 infections count in Tokyo, Japan, from January 16, 2020, to September 30, 2022.
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The sixth wave (January 2022–May 2022), driven by the most 
infectious COVID-19 strain (Omicron variant), resulted in a surge in 
new cases, notably among children and the older adults. In response, 
the government issued a quasi-emergency state, called for businesses 
to reduce operating hours, limiting restaurant patrons to four per table 
(eight after April 25th), and restricting dining time to 2 h (non-certified 
restaurants were only allowed to serve drinks before 9 pm).

The seventh wave (June 2022–October 2022), characterized by a 
more infectious BA.5 strain replacing the Omicron variant BA.2, 
registered a surge in new positive cases. Rather than enforcing 
restrictive measures, in addition to promoting the process of receiving 
the 3rd shot vaccine of COVID-19, the government decided to 
enhance infection prevention and strike a balance with socio-
economic activities, advocating for coexistence with COVID-19.

Results

New components construction based on 
adaptive Fourier decomposition results

This section discusses the change process of the daily COVID-19 
infection count under epidemic prevention policies in Tokyo by 
obtaining components at different time-frequency scales through 
adaptive Fourier decomposition (see Figure 2). The first to eighth 
vertical lines of a in the figure represent the frequency components 
from the lowest to the highest, reflecting changes in the number of 
infections at different scales, that is, changes from long-term to short-
term. Similarly, b and c are in the vertical line also uses the (6) like a. 
The horizontal lines a to c in Figure 2 are the construction methods 
from the first to the third order when q = 1, 2 and 3 in (7), which reflect 
the changes in daily COVID-19 infection counts under the epidemic 
prevention policy under different AFD construction stages.

Specifically, as shown in Figure 3, in the first-order decomposition, 
the original data is decomposed into 8 original components by AFD, 
which are then constructed into 8 new components based on the 
scenario where q = 1  in formula (7). As depicted in column a of 
Figure 2, Comp1 represents the component where p = 1 and q = 1, 
Comp2 represents the component where p = 2 and q = 1, and so on 
until Comp8 represents the component where p = 8 and q = 1. When 
these 8 new constructed components are superimposed using formula 
(8), the original signal is obtained.

In the second-order decomposition, the original data is first 
decomposed into 16 original components by AFD and then constructed 
into 8 new components according to q = 2 in formula (7). As shown in 
column b of Figure 2, Comp1 represents the component where p = 1 and 
q = 2, Comp2 represents the component where p = 2 and q = 2, and so on 
until Comp8 represents the component where p = 8 and q = 2. Similarly, 
when these 8 new constructed components are superimposed using 
formula (8), the original signal can be obtained.

For the third-order decomposition, the original data is 
decomposed into 24 original components by AFD. The 24 original 
components is then constructed by the scenario where q = 3 in formula 
(7), yielding 8 new constructed components. As illustrated in column 
c of Figure 2, Comp1 represents the component where p = 1 and q = 3, 
Comp2 represents the component where p = 2 and q = 3, and so forth 
until Comp8 represents the component where p = 8 and q = 3. Once 
again, when these 8 new constructed components are superimposed 
using formula (8), the original signal is recovered.

The components derived using AFD

As shown in Figure  2 (longitudinal), by comparing the first 
component with the original number of daily infections (Figure 1), it 
can be found that the first component generally presents a trend of the 

TABLE 1 The identified periods with significant fluctuation.

Wave Start 
time

End 
time

Main issues Government measures

1st Jan 2020 Jun 2020 The rapid increase in positive cases and close contact 

cases with unknown infection routes

Held the Tokyo Metropolitan Crisis Management Council, citizens reduce 

going out, close facilities and restaurants, and shorten operating hours

2nd Jul 2020 Oct 2020 The number of cases in restaurants and other 

entertainment venues in the “nightlife area” of the 

city center has surged

Request for reduce businesses hours, shorten the operating hours of liquor 

restaurants and karaoke venues

3rd Oct 2020 Feb 2021 Increased risk of severe illness in the older adults and 

increased percentage of infections at year-end family 

gatherings

Declaration of a state of emergency by the government, residents who do not 

need to leave their homes and restaurants to shorten business hours

4th Mar 2021 Jun 2021 An increase in the number of young people infected 

with the more infectious Alpha variant of the virus

Called for businesses to close temporarily or reduce operating hours, 

restaurants where residents are not required to leave their homes and 

provide alcoholic beverages are closed

5th Jul 2021 Oct 2021 More middle-aged and young people are infected 

with Delta variant strains that can cause severe 

illness

Vaccination rate (ages 12 and over, 1st shot: 47.36%, 2nd shot: 36.66%), 

reduce 50% of employees going out and entering the office by 70%

6th Jan 2022 May 

2022

Increased infection with Omicron variant and severe 

illness in children and older adults households

Called for businesses to reduce operating hours, the number of table mates 

in the restaurant is limited to 4 and the stay time is limited to 2 h or less

7th Jun 2022 Oct 2022 Omicron BA. 5 variant is more infectious Vaccination rate (1st shot: 87.8%, 2nd shot: 87.3%, 3rd shot: 8.1%), 

coexistence policy with viruses, no new restrictions imposed on activities
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overall number of infections during the sample period, indicating that 
the Tokyo government has held the Tokyo Metropolitan Crisis 
Management Council, declared a state of emergency and measures to 
reduce human contact are effective control of the epidemic. From the 
second to the seventh component, the Delta strain will appear in 
Tokyo from mid-2021 and the new positive cases will rise sharply, 
corresponding to the impact of the fifth to seventh waves (Table 1), 
and the impact generally reflects in the relatively medium and long-
term number of infections. It can be understood that measures such 
as reducing the number of employees entering the office, shortening 
restaurant business hours, and promote the vaccination process of 
COVID-19 can effectively control human contact.

In contrast, the results of the eighth component show sharp 
fluctuations since 2020. These include spikes in the first to fourth waves, 
and the shocks of the fifth to seventh waves are absorbed at a relatively 
high frequency, that is in the medium and short term. It shows that early 
measures of held the Tokyo Metropolitan Crisis Management Council 
and its policies of declared a state of emergency and request for reduce 
businesses hours that let the COVID-19 has been very effectively 
controlled. For the eighth component with the highest frequency, severe 
fluctuations can be observed from the fifth wave to the seventh wave, 
reflecting the short-term local fluctuations during the shock. The reason 
why the spread of the COVID-19 has been slowed down is that control 
measures have been taken, such as promoting people of different ages to 
be vaccinated the 2nd shot and 3rd shot of COVID-19.

The new construction components base 
on AFD

As shown in Figure 2 (horizontal), by comparing the first-order, 
second-order and third-order new construction components result 

(Figures 2A–C). It can be observed that in the first component, the 
second-order and third-order AFD new construction components 
shows a better overall trend in the number of infected individuals 
compared to the first-order new construction components, and can 
initially reflect the daily number of infections under the entire 
epidemic prevention measures. From the second to seventh 
components, the third-order new construction components results 
better reflect the data situation of the daily COVID-19 infection count 
under epidemic prevention policies in the mid-term. Further discuss 
the correlation between the new construction components result and 
the daily COVID-19 infection count under epidemic prevention 
policies, as well as the relationship between different new construction 
components result.

As shown in Table 2, we conducted Pearson correlation analysis 
on the decomposition results and analyzed the correlation between 
the data results within a confidence interval of p < 0.05. The coefficients 
of the first component are much higher than those of the other 
components, and the coefficients of each component from low 
frequency to high frequency also decrease, which is basically 
consistent among the components of the new construction 
components result of each order, These correlations reflect the 
relationship between the information contained in the component and 
the daily COVID-19 infection count. The higher the correlation 
between a specific component and the original number of infections, 
to a certain extent, it means that the component can better explain the 
fluctuations in the daily COVID-19 infection count. According to 
statistics, except for the eighth component, the other components are 
positively correlated with the daily COVID-19 infection count under 
epidemic prevention policies at a significance level of 1%.

The results show that each order is significantly correlated at 1%, 
which means that the AFD decomposition and new construction 
components result are strongly correlated, and the coefficient of the 

FIGURE 2

Different kinds of construction of the adaptive Fourier decomposition.
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first component of the third-order is 0.955, which is much larger than 
the other seven components. The coefficient generally decreases with 
the increase of frequency. These results highlight the dominance of the 
lowest frequency component that reflects the trend, among which the 
low frequencies in the third-order new construction components 
result better reflect the fluctuations of the original data.

Comparison with other time-frequency 
methods

We then compare the results obtained from AFD with two 
commonly used time-frequency methods, including EMD and 
VMD. The decomposition results of the two methods are shown in 
Figures 4B,C, and the correlation between the components and the 
daily COVID-19 infection count under epidemic prevention policies 
is shown in Table 3. It can also be seen from Figure 4 that the first 
component obtained from VMD is similar to that obtained from AFD, 
and the coefficients are all much higher than the other components. 
Meanwhile, the fourth to sixth components obtained from EMD have 
similar peaks to those obtained from AFD. In addition, as the 
frequency increases, the coefficients of each component of VMD also 

decrease, which is consistent with the results obtained by 
AFD decompositions.

To further discuss the correlation between the decomposition results 
of AFD, EMD and VMD, we also estimated the Pearson correlation 
between the components obtained by these models. Interestingly, each 
component of AFD was positively correlated with EMD and VMD at the 
5% significance level for 75% of components, while the correlation 
coefficients among the remaining components were not significant. This 
indicates that AFD is highly correlated with most components of the 
other two methods. Most of the coefficients of the EMD and VMD 
components are insignificant, it means that the decompositions between 
EMD and VMD are weakly correlated. Therefore, AFD performed best 
in absorbing useful information about the effectiveness of epidemic 
prevention measures obtained from these methods.

Connection between AFD decompositions 
and government measures

We use the 3rd-order AFD new construction components result 
and the daily COVID-19 infection count under epidemic prevention 
policies to segmentation and combination. According to the time 

FIGURE 3

Construct new components flow chart of AFD decomposition.
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TABLE 2 The correlations between components of distinct new construction components and original infections.

Correlations between components and 
original infections

Correlations between components of distinct methods

AFD-based AFD-second AFD-third AFD-based&AFD-
second

AFD-based&AFD-
third

AFD-second&AFD-
third

Comp. 1
0 840.

∗∗∗
0 938.

∗∗∗
0 955.

∗∗∗
0 895.

∗∗∗
0 879.

∗∗∗
0 982.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 2
0 418.

∗∗∗
0 455.

∗∗∗
0 472.

∗∗∗
0 918.

∗∗∗
0 885.

∗∗∗
0 964.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 3
0 180.

∗∗∗
0 222.

∗∗∗
0 250.

∗∗∗
0 818.

∗∗∗
0 721.

∗∗∗
0 880.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 4
0 126.

∗∗∗
0 173.

∗∗∗
0 190.

∗∗∗
0 729.

∗∗∗
0 666.

∗∗∗
0 913.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 5
0 118.

∗∗∗
0 141.

∗∗∗
0 160.

∗∗∗
0 837.

∗∗∗
0 740.

∗∗∗
0 884.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 6
0 077.

∗∗∗
0 108.

∗∗∗
0 130.

∗∗∗
0 718.

∗∗∗
0 596.

∗∗∗
0 830.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 7
0 222.

∗∗∗
0 209.

∗∗∗
0 196.

∗∗∗
0 942.

∗∗∗
0 880.

∗∗∗
0 938.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 8 0 006. 0 006. 0 006.
1 000.

∗∗∗
1 000.

∗∗∗
1 000.

∗∗∗

(0.417) (0.417) (0.417) (0.000) (0.000) (0.000)

***p < 0.01, **p < 0.05, *p < 0.1.
The correlation coefficients are all estimated by Pearson’s correlation method.

FIGURE 4

Decompositions based on AFD-third, EMD, and VMD.
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interval of the seven-wave epidemic in Tokyo, it can be divided into 
seven segmented graphs from Figures  5–11, which annotate the 
components that can be used to explain the prevention policies and 
new construction components associated with the daily COVID-19 
infection count in the segmented graphs. The components shown in 
the figure have correlation coefficients greater than 0.7 at a 5% 
confidence interval.

As shown in Figure 5, in the face of unprecedented crises and 
challenges under the epidemic and widespread attention to 
unknown viruses, the Tokyo Metropolitan Crisis Response 
Conference was held, and a formation and helpline policy was 
prepared at the City Hall. From the aspects of epidemic situation, 
epidemic spread, and epidemic prevention, it can be seen from the 
seventh component that this policy state has released the energy of 
this wave of epidemic in advance, effectively suppressing the spread 
of COVID-19, and thus reducing all waves during the first wave of 
the epidemic. Other policies, including partial cancelation and 
measures to prevent the spread of the disease, have also been used 
to gradually control the spread of COVID-19.

As the epidemic was brought under control, the first wave of the 
epidemic came to an end, policies were gradually relaxed, and people 
returned to normal lives. As shown in Figures 6–8, from June 2020, 
Tokyo experienced the second, third, and fourth waves of the 
epidemic, and policies calling for businesses to shorten their business 
hours were also implemented. From the seventh and eighth 
components of the AFD decomposition results during this period, this 

policy effectively releases the energy of the epidemic, and the daily 
COVID-19 infection count individuals quickly decreases. As shown 
in the figure, the policy is very effective, indicating that reducing 
people’s time spent in the same space is an effective measure. This is 
because the seventh and eighth components are high-frequency 
components, that means that the energy changes very quickly, so it can 
be inferred that the policies calling for businesses to shorten their 
business hours were effectiveness is high.

The above four waves of COVID-19 are all related to one 
component of AFD. In Figures 9, 10, we will see that the COVID-19 
policy is related to multiple components of AFD. This indicates that 
the energy of the fifth and sixth waves of COVID-19 is greater than 
the first three waves, and the daily peak number of infected individuals 
will be  higher. As shown in Figure  9, the fifth wave of epidemic 
policies is related to the frequency component of AFD decomposition 
results, which means that the effect of the two-dose vaccination policy 
on the epidemic is moderate and needs to be sustained for a long time. 
The sixth wave of the epidemic in Figure  10 once again calls for 
enterprises to reduce their business hours, which is related to the first 
and second components of the AFD decomposition results. This is 
because the long-term implementation of this policy has affected the 
normal operation of enterprises, so the policy effect is not as good as 
before. Therefore, the sixth wave is no longer related to the seventh 
and eighth components of the high frequency, but instead to the first 
and second components of the low frequency, indicating that the 
effects of the same policy are different in different periods.

TABLE 3 The correlations between components of different method and original infections.

Correlations between components and 
original infections

Correlations between components of distinct methods

AFD-third EMD-based VMD-based AFD-third&EMD-
based

AFD-third&VMD-
based

EMD-based&VMD-
based

Comp. 1
0 955.

∗∗∗
0 124.

∗∗∗
0 752.

∗∗∗
0 177.

∗∗∗
0 727.

∗∗∗
0 179.

∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Comp. 2
0 472.

∗∗∗
0 282.

∗∗∗
0 650.

∗∗∗ − ∗
0 014. 0 422.

∗∗∗
0 014.

∗∗

(0.000) (0.000) (0.000) (0.054) (0.000) (0.046)

Comp. 3
0 250.

∗∗∗ −0 023.
0 301.

∗∗∗
0 317.

∗∗∗
0 369.

∗∗∗
0 029.

∗∗∗

(0.000) (0.465) (0.000) (0.000) (0.000) (0.000)

Comp. 4
0 190.

∗∗∗
0 513.

∗∗∗
0 160.

∗∗∗ − ∗∗∗
0 028.

0 010. 0 001.

(0.000) (0.000) (0.000) (0.000) (0.160) (0.901)

Comp. 5
0 160.

∗∗∗
0 562.

∗∗∗
0 110.

∗∗∗
0 163.

∗∗∗
0 039.

∗∗∗ −0 001.

(0.000) (0.000) (0.001) (0.000) (0.000) (0.897)

Comp. 6
0 130.

∗∗∗
0 236.

∗∗∗
0 069.

∗∗
0 070.

∗∗∗
0 017.

∗∗
0 016.

∗∗

(0.000) (0.000) (0.03) (0.000) (0.013) (0.020)

Comp. 7
0 196.

∗∗∗
0 150.

∗∗∗
0 103.

∗∗∗
0 706.

∗∗∗
0 364.

∗∗∗
0 075.

∗∗∗

(0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

Comp. 8 0 006.
0 334.

∗∗∗
0 083.

∗∗∗ 0 004. 0 005.
0 353.

∗∗∗

(0.417) (0.000) (0.009) (0.588) (0.442) (0.000)

***p < 0.01, **p < 0.05, *p < 0.1.
The correlation coefficients are all estimated by Pearson’s correlation method.
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In Figure  11, the seventh wave of epidemic policies is 
associated with the first component of AFD decomposition 
results, which is the lowest frequency component. The three-shot 
vaccination policy is effective in this epidemic, but its 
effectiveness is very limited and cannot be seen in a short period 
of time. Therefore, the three-shot vaccination policy should 
be persisted in the long term.

Based on the above, among the various policies implemented 
by the government during several waves of epidemics, some 

policies are related to the high-frequency decomposition results of 
AFD, some are related to the low-frequency decomposition results, 
and some are not related, which is related to the effectiveness of 
specific policies. The policy of calling on enterprises to reduce 
business hours is a very effective policy that can quickly control the 
epidemic in a short period of time, as it is related to the seventh 
and eighth components of the high-frequency decomposition 
results of AFD in the first four waves of the epidemic; However, 
due to other factors in reality, the policy of the sixth and seventh 

FIGURE 6

AFD decomposition components in the 2nd wave.

FIGURE 5

AFD decomposition components in the 1st wave.
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wave of COVID-19 is related to the first and second components 
of the low-frequency decomposition results of AFD, and even the 
policy of the seventh wave of COVID-19 is no longer related to the 
decomposition results of AFD, indicating that the policy is 

gradually losing its effectiveness. The fifth wave of the epidemic is 
that the vaccination policy has played a good role, with two doses 
of vaccine reaching the third, fourth, and fifth components of the 
AFD decomposition results; By the seventh wave of the epidemic, 

FIGURE 8

AFD decomposition components in the 4th wave.

FIGURE 7

AFD decomposition components in the 3rd wave.
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the policy of receiving three doses of vaccine has also been reduced 
to be  related to the low-frequency first component of AFD 
decomposition results. This indicates that the vaccination policy 
can still effectively reduce the daily COVID-19 infection count 
caused by the epidemic, but the effectiveness of implementation 
will gradually weaken.

Discussion

In this article, we carefully studied the fluctuation of the daily 
COVID-19 infection counts in Tokyo and the various epidemic 
prevention measures implemented by the government, in order to 
find out which policies are most effective in influencing the 

FIGURE 9

AFD decomposition components in the 5th wave.

FIGURE 10

AFD decomposition components in the 6th wave.
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epidemic. Given the representativeness of Tokyo’s epidemic 
prevention measures, our empirical analysis mainly focuses on this 
city. We not only utilized AFD to decompose the daily COVID-19 
infection counts under epidemic prevention policies, but also 
constructed the multi-level composite components composed of 
the decomposition results, thus extracting elements of different 
combination scales. Our analysis of the daily number of infections 
showed that there were seven periods of significant fluctuations 
throughout the entire study period, mainly due to request for 
reduce businesses hours and implement vaccination policies. In 
addition, from the new construction components at different 
combination scales, we found that the higher the frequency of AFD 
component and the daily COVID-19 infection counts under 
policies, the greater the Pearson coefficient and stronger the 
correlation. With the continuous implementation of policies, the 
correlation between policies and high-frequency components of 
AFD decomposition results has gradually shifted to low-frequency 
components, indicating that the effectiveness of policies is 
decreasing. Comparing the decomposition results with the results 
of EMD and VMD shows that AFD is the most effective in 
absorbing valuable information on time-domain and frequency-
domain epidemic prevention measures obtained by the 
three methods.

In summary, using AFD method to analyze epidemic data may 
provide a meaningful reference point for future public health policy 
and social measure formulation.
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FIGURE 11

AFD decomposition components in the 7th wave.
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