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Background: The urinary system serves as a crucial pathway for eliminating 
metallic substances from the body, making it susceptible to the effects of metal 
exposure. However, limited research has explored the association between metal 
mixtures and bladder function. This study aims to investigate the relationship 
between urinary metal mixtures (specifically barium, cadmium, cobalt, cesium, 
molybdenum, lead, antimony, thallium, and tungsten) and urine flow rate (UFR) in 
the general population, utilizing multiple mixture analysis models.

Methods: This study utilizes data obtained from the National Health and Nutrition 
Examination Survey. After adjusting for relevant covariates, we  assessed the 
correlations between metal mixtures and UFR using three distinct analysis models: 
weighted quantile sum (WQS), quantile g-computation (qgcomp), and Bayesian 
kernel machine regression (BKMR). Additionally, a gender-stratified analysis was 
conducted. Finally, we also performed sensitivity analyses.

Results: A total of 7,733 subjects were included in this study, with 49% being male. 
The WQS regression model, when fitted in the positive direction, did not yield 
any significant correlations in the overall population or in the male and female 
subgroups. However, when analyzed in the negative direction, the WQS index 
exhibited a negative correlation with UFR in the overall group (β  =  −0.078; 95% CI: 
−0.111, −0.045). Additionally, a significant negative correlation between the WQS 
index and UFR was observed in the female group (β  =  −0.108; 95% CI: −0.158, 
−0.059), while no significant correlation was found in the male group. The 
results obtained from the qgcomp regression model were consistent with those 
of the WQS regression model. Similarly, the BKMR regression model revealed 
a significant negative correlation trend between metal mixtures and UFR, with 
cadmium and antimony potentially playing key roles.

Conclusion: Our study revealed a significant negative correlation between 
urinary metal mixture exposure and mean UFR in US adults, with notable gender 
differences. Specifically, higher urinary levels of cadmium and antimony were 
identified as potential key factors contributing to the decrease in mean UFR. 
These findings significantly contribute to the existing knowledge on the impact of 
metal mixtures on bladder function and provide valuable insights for safeguarding 
bladder health and preventing impaired bladder function.
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1. Introduction

Heavy metals pose significant environmental and occupational 
hazards, being widely prevalent in the environment and capable of 
entering the human body through various routes and forms (1, 2). 
These non-essential metal elements are often resistant to degradation, 
and some of them can undergo redox reactions, leading to the 
formation of biologically active substances that exhibit metallotoxicity 
even at low doses. Consequently, they are implicated in the 
pathogenesis of various diseases, including cancer, cardiovascular 
diseases, neurological disorders (such as Alzheimer’s and Parkinson’s 
diseases), and chronic inflammatory diseases (3).

Urine production and excretion play a crucial role in human 
metabolism, serving as a primary route for eliminating most metals 
from the body. Consequently, the urinary system is inevitably 
influenced by the presence of metal metabolites. Previous research has 
demonstrated the nephrotoxic effects of several metal elements, 
including barium, chromium, cadmium, cobalt, copper, lead, mercury, 
platinum, and uranium (4–6). These metals can induce cellular 
oxidative stress, resulting in cell swelling and apoptosis (7, 8). However, 
studies investigating the impact of metallic elements in urine on 
human bladder function, particularly at low exposure levels, are limited 
and primarily confined to animal experimentation (9, 10). Additionally, 
gender-based disparities in the effects of metal exposure have been 
observed in some studies (11, 12). Nevertheless, it remains unknown 
whether such differences extend to bladder function. Furthermore, the 
analysis of metal mixtures in urine and their influence on bladder 
function is understudied, hindered by methodological limitations.

Urine biomonitoring is a preferred method for assessing chemical 
elements, metabolite exposures, and nutritional status due to its 
non-invasive nature and compatibility with modern analytical 
techniques. It is equally valuable for detecting metal elements. 
However, urine analyte concentrations are influenced by various 
factors beyond exposure, including sampling time, variations in 
toxicant metabolism kinetics, and physiological characteristics such 
as dilution changes (13). Therefore, when utilizing field urine samples 
for research purposes, additional data on urine flow rate (UFR) should 
be collected to ensure accurate interpretation of urine data (14). Since 
2009, the National Health and Nutrition Examination Survey 
(NHANES) has been assessing the mean UFR of participants aged 
6 years and older. The UFR is mainly regulated by the strength of 
contraction of the detrusor muscle and bladder outlet resistance 
(15–20), indirectly reflecting bladder function and state.

The objective of our study was to investigate the association 
between low-dose metal mixtures, specifically barium (Ba), cadmium 
(Cd), cobalt (Co), cesium (Cs), molybdenum (Mo), lead (Pb), 
antimony (Sb), thallium (Tl), and tungsten (W), and UFR in the 
general adult population. We conducted this analysis utilizing the 
NHANES dataset from 2009 to 2018, aiming to identify the metal 
elements within the mixture that may have the greatest impact on UFR.

2. Materials and methods

2.1. Design and participants

NHANES, organized by the National Center for Health Statistics 
(NCHS), is a cross-sectional survey research program aimed at 

evaluating the health and nutritional status of individuals in the 
United  States, including both adults and children. Since 1999, 
NHANES has been conducted biennially using a complex multistage 
probability sampling design. The survey results are instrumental in 
determining the prevalence of major diseases and identifying 
associated risk factors (21). For this study, we utilized NHANES data 
from five cycles spanning 2009–2010, 2011–2012, 2013–2014, 2015–
2016, and 2017–2018. The NHANES study was conducted under the 
authorization of the National Center for Health Statistics (NCHS) 
Ethics Review Committee, and all participants provided 
informed consent.

All data utilized in this study are publicly available on the official 
NHANES website: https://www.cdc.gov/nchs/nhanes/index.htm (Last 
accessed on March 20, 2023). The initial enrollment consisted of 
49,693 participants across the five cycles. After screening the data, 
individuals under the age of 20 were excluded (N = 20,858). 
Furthermore, participants with missing key data were excluded 
(missing urine metal data: N = 19,802; missing UFR data: N = 490), 
along with those with missing covariate data (N = 810). Ultimately, a 
total of 7,733 adult participants were included in this study.

2.2. Measurement of urine metals

Urine specimens were collected within mobile exam centers 
(MEC) and subsequently processed, stored, and transported to the 
Laboratory Sciences Department of the National Center for 
Environmental Health for analysis. The levels of metals in urine 
samples were directly measured using inductively coupled plasma 
mass spectrometry (ICP-MS), with a comprehensive description of the 
laboratory method provided in the NHANES official instruction 
document (22). To address values falling below the lower limit of 
detection (LLOD), the NHANES guidelines recommended replacing 
them with the LLOD divided by the arithmetic square root of 2 (22). 
The detection rates for all metal elements exceeded 75%, and a detailed 
breakdown of the detection rates for each specific metal element can 
be found in Supplementary Table S1.

2.3. Measurement of UFR

NHANES initiated the collection of UFR data in 2009. Participants 
were instructed to note the time of their last urination prior to visiting 
the MEC. Within the MEC, participants provided urine samples and 
documented the collection time and volume for UFR calculation. The 
composite urine sample’s UFR was determined using the equation: 
UFR = (total urine volume)/(total duration) (23). To ensure an 
adequate urine volume for various analyses, each participant was 
permitted to provide up to three urine samples. Comprehensive 
guidelines for urine collection and handling can be  found in the 
NHANES Laboratory Procedures Manual (LPM).

2.4. Assessment of covariates

To control for the effect of confounding factors on the study 
results, covariate adjustment was performed in the data analysis. The 
following covariates were included: sex, age (continuous), race, 

https://doi.org/10.3389/fpubh.2023.1241971
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.cdc.gov/nchs/nhanes/index.htm


Zhang et al. 10.3389/fpubh.2023.1241971

Frontiers in Public Health 03 frontiersin.org

educational attainment, BMI (categorical), smoking status 
(categorical), cardiac history (categorical), systolic blood pressure 
(continuous), urinary creatinine (continuous), serum glucose 
(continuous), aspartate aminotransferase (AST, continuous), and 
estimated glomerular filtration rate (eGFR, continuous). Race 
categories were Mexican American, non-Hispanic White, 
non-Hispanic Black, other Hispanic, and other races. Educational 
attainment categories were less than 9th grade, 9–11th grade, high 
school graduate/GED or equivalent, some college or AA degree, and 
college graduate or above. BMI categories were underweight (<18.5 kg/
m2), normal (18.5 to <25 kg/m2), overweight (25 to <30 kg/m2), and 
obese (30 kg/m2 or greater). Smoking status was defined as never 
smoker, former smoker, and current smoker based on self-reported 
information. A history of cardiac disease was defined as a history of 
one or more of congestive heart failure, coronary artery disease, 
angina pectoris, and heart attack. Serum glucose levels were measured 
using the DxC800 modular chemistry system with a Beckman Oxygen 
electrode, while AST levels were measured using the DxC800 
enzymatic rate method. eGFR was calculated using the modified 
4-variable Modification of Diet in Renal Disease (MDRD) 
formula: eGFR (mL/min/m2) = 175 × (Scr)−1.154 × (age)−0.203 × 0.742 (if 
female) × 1.212 (if black), where Scr is the serum creatinine level (mg/
dL) and age is expressed in years (24). Creatinine levels were measured 
using the Roche/Hitachi Modular P Chemistry Analyzer from serum 
and urine samples.

2.5. Statistical analysis

Since the elemental metal, UFR, and urinary creatinine data were 
seriously right-skewed, a natural logarithm (ln) transformation was 
applied to these variables in order to improve their distribution 
characteristics and minimize the effect of outliers (25). Quantitative 
data are presented as the Median (interquartile range, IQR), while 
qualitative data are reported as percentages. Spearman’s correlation 
test was employed to examine the associations between 
ln-transformed metals.

To assess the relationship between metal mixtures and UFR, 
we employed three advanced mixture analysis methods: Weighted 
quantile sum (WQS), Quantile g-computation (qgcomp), and 
Bayesian kernel machine regression (BKMR).

2.5.1. WQS model
We used a WQS regression model (26, 27) to assess the effect of 

metal mixtures. This method realizes dimension reduction and solves 
the collinearity problem by constructing the WQS index, and further 
tests the association between the WQS index and outcome. The model 
assigned weights to each exposure variable to determine their relative 
importance in influencing the outcome and identify potential high-
risk factors. The WQS regression assumes by default that all exposed 
variables are correlated with the outcome in the same direction 
(positive or negative). Therefore, in the actual number analysis, two 
runs are required to test for positive and negative correlations. During 
the model fitting process, the dataset was divided into a 40% training 
set and a 60% validation set. The training set was utilized for weight 
estimation, while the validation set was used to test the significance of 
the WQS index. The final WQS index of this study was averaged from 
the weights in the 500 bootstrap samples.

2.5.2. Qgcomp model
The qgcomp model is a newly developed approach that integrates 

WQS regression with basic g calculation (28). By employing quantile 
g calculation, we can assess the overall effect on the results when all 
exposures are simultaneously increased by one quartile, irrespective 
of the direction of correlation between exposures and results. In cases 
where different metal elements exert distinct directional influences, 
qgcomp assigns positive or negative weight values to each metal 
element, which sum up to 1 or − 1.

2.5.3. BKMR model
The BKMR model (29) was employed to investigate the potential 

nonlinear relationship between each metal element and UFR, as well 
as the combined impact of metal mixtures on UFR. This method has 
strong statistical power in the field of mixed contaminant analysis. By 
fixing all metals simultaneously at a specific percentile (ranging from 
the 25th to the 75th percentile) compared to when they are fixed at the 
median, we can obtain the overall effect of the metal mixture on UFR., 
we can obtain the overall effect of the metal mixture on UFR. By fixing 
other metal elements at their respective median levels, we examined 
the nonlinear correlation between exposure and outcome by looking 
at exposure-response cross-sections between specific metal elements 
and the outcome. When all other metals are fixed at the 25th 
percentile, 50th percentile, and 75th percentile, respectively, the 
individual effects of a single metal are shown by comparing the risk 
associated with the 75th percentile of a particular metal element to its 
25th percentile. Additionally, the model calculates the posterior 
inclusion probability (PIP) for each metal. In this study, the model was 
run with 50,000 iterations of the Markov chain Monte Carlo sampler.

Given NHANES’ utilization of a complex multistage probability 
sampling design, we performed multiple linear regression analyses in 
a weighted setting to check the robustness of the results. We examined 
the relationship between urinary metallic elements and UFR using 
both monometallic and polymetallic models.

To assess potential gender differences in the relationship between 
metallic elements in urine and UFR, we performed a gender-stratified 
analysis that covered all models.

All the aforementioned analyses incorporated all covariates, 
including sex, age, race, educational attainment, BMI, smoking status, 
cardiac history, systolic blood pressure, ln-urine creatinine, serum 
glucose, AST, and eGFR. For the gender-stratified study, all covariates 
other than gender were included.

All statistical analyses were performed using R version 4.2.2. The 
weighted analysis utilized the “survey” package (version 4.1-1). The 
WQS regression model employed the “gWQS” package (version 3.0.4), 
the qgcomp model utilized the “qgcomp” package (version 2.10.1), and 
the BKMR model employed the “bkmr” package (version 0.2.2). For 
statistical significance, p-values (two-sided) below 0.05 were 
considered significant.

3. Results

3.1. Participant baseline characteristics

Table  1 presents the essential characteristics of the study 
population under investigation. The median age of the participants 
was 47.0 years. Among the included participants, 49% (n = 3,812) were 
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TABLE 1 Basic characteristics of the population included in this study (N  =  7,733), NHANES, USA, 2009–2018.

Overall Sex group

Characteristic Overall, N  =  7,733 
(100%)a

Female, N  =  3,921 
(51%)b

Male, N  =  3,812 
(49%)a

p-valueb

Cycle (n%) >0.9

2009–2010 1,745 (19%) 886 (19%) 859 (19%)

2011–2012 1,449 (20%) 714 (20%) 735 (19%)

2013–2014 1,579 (20%) 808 (20%) 771 (20%)

2015–2016 1,541 (20%) 787 (21%) 754 (20%)

2017–2018 1,419 (21%) 726 (20%) 693 (21%)

Age (years) 47.0 (33.0, 61.0) 48.0 (34.0, 61.0) 46.0 (33.0, 60.0) 0.024

Sex [n (%)]

Female 3,921 (51%)

Male 3,812 (49%)

Race [n (%)] 0.074

Non-Hispanic White 3,100 (66%) 1,559 (66%) 1,541 (67%)

Non-Hispanic Black 1,595 (11%) 781 (12%) 814 (9.8%)

Mexican American 1,150 (8.6%) 598 (8.2%) 552 (9.1%)

Other/multiracial 1,071 (8.3%) 539 (8.5%) 532 (8.1%)

Other Hispanic 817 (6.1%) 444 (6.1%) 373 (6.1%)

BMI [n (%)] <0.001

Underweight (<18.5) 119 (1.5%) 75 (2.0%) 44 (0.9%)

Normal (18.5 to <25) 2,100 (27%) 1,090 (31%) 1,010 (24%)

Overweight (25 to <30) 2,521 (33%) 1,098 (28%) 1,423 (37%)

Obese (30 or greater) 2,993 (39%) 1,658 (39%) 1,335 (38%)

Smoking status [n (%)] <0.001

Never smoker 4,355 (56%) 2,572 (63%) 1,783 (48%)

Former smoker 1,884 (26%) 707 (20%) 1,177 (32%)

Current smoker 1,494 (18%) 642 (17%) 852 (20%)

Education attainment [n (%)] 0.034

Less than 9th grade 773 (5.2%) 380 (4.9%) 393 (5.6%)

9–11th grade 998 (9.5%) 483 (9.1%) 515 (10.0%)

High school grad/GED 1,756 (23%) 834 (22%) 922 (24%)

Some college or AA degree 2,345 (32%) 1,298 (34%) 1,047 (30%)

College graduate or above 1,861 (31%) 926 (31%) 935 (31%)

Cardiac history [n (%)] <0.001

Heart attack 588 (6.4%) 225 (5.1%) 363 (7.7%)

Non heart attack 7,145 (94%) 3,696 (95%) 3,449 (92%)

Systolic blood pressure (mmHg) 120 (111, 131) 117 (107, 131) 122 (114, 132) <0.001

Serum glucose (mg/dL) 93 (85, 103) 92 (85, 101) 94 (86, 104) <0.001

Urine creatinine (mg/dL) 99 (55, 158) 79 (43, 131) 123 (72, 179) <0.001

Aspartate aminotransferase (U/L) 22 (19, 27) 21 (18, 25) 24 (20, 29) <0.001

eGFR (mL/min/m2) 87.48 (74.00, 102.65) 87.42 (73.34, 103.73) 87.49 (74.87, 101.67) >0.9

Urine flow rate (mL/min) 0.87 (0.55, 1.42) 0.83 (0.51, 1.43) 0.90 (0.59, 1.42) 0.001

an (unweighted) (%); Median (IQR).
bChi-squared test with Rao and Scott’s second-order correction; Wilcoxon rank-sum test for complex survey samples. 
BMI, body mass index; eGFR, estimated glomerular filtration rate.
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male, with a median age of 46 years. Baseline comparisons revealed 
that male participants exhibited higher levels of systolic blood 
pressure, glucose, AST, urinary creatinine, and mean 
UFR. Additionally, more of the male participants had a cardiac history 
and smoking.

3.2. Metal correlation study

The Spearman correlation coefficients (rs) between the 
ln-transformed metals ranged from 0.21 to 0.77 (see Figure 1), with 
the strongest correlations being Cs with Tl (r = 0.77), and Cs with Mo 
(r = 0.61), Mo with W (r = 0.6), and Cs with Co (r = 0.59), respectively, 
with significant correlations for all metals (p < 0.001).

3.3. Differences in the distribution of metal 
elements in different groups

Supplementary Table S2 shows the distribution of metallic 
elements in urine in general and among different sexes. We revealed 
significant differences between males and females in the 
concentrations of several metal elements. Specifically, males exhibited 

notably higher levels of Ba, Cs, Mo, Pb, Sb, Tl, and W compared to 
females. Conversely, females displayed higher levels of Cd exposure.

3.4. WQS regression model and qgcomp 
model

The WQS regression model was utilized to investigate the 
correlation between urine metal and UFR in both positive and 
negative directions. After adjusting for all confounding factors, no 
significant correlation was observed between the WQS index and UFR 
in the positive direction. However, in the negative direction, a 
significant negative correlation was found between the WQS index 
and UFR in the overall (β = −0.078; 95% CI: −0.111, −0.045). 
Subsequent gender-stratified analysis revealed a significant negative 
correlation between the WQS index and UFR in females (β = −0.108; 
95% CI: −0.158, −0.059), while no significant correlation was 
observed in males (β = −0.014; 95% CI: −0.059, 0.032) (see Table 2). 
Additionally, Figure 2 shows the estimated weights for each WQS 
index, with Sb and Cd exhibiting the highest negative weights in the 
overall, and Cd, Co, and Sb showing the highest negative weights 
in females.

Similar to the results of the WQS model, the results of the qgcomp 
model showed a similar trend. In the overall, the qgcomp index 
exhibited a negative correlation with UFR (β = −0.061; 95% CI: 
−0.091, −0.031). Regarding single metal weights, urinary Tl (49%) 
had the highest positive contribution to the overall effect, followed by 
Ba (45.8%). Conversely, urinary Sb (30.8%) had the most negative 
weight, followed by Cd (25.1%). Similar to the findings from the WQS 
model, no significant association between the metal mixture and UFR 
was observed in males. However, in females, the qgcomp index 
showed a significant negative correlation with UFR (β = −0.096; 95% 
CI: −0.139, −0.053). In terms of single metal weights, urinary Tl 
(53%) made the largest positive contribution to the overall effect, 
followed by Ba (44.9%). Urinary Sb (30.8%) had the greatest negative 
weighting, followed by Cd (29.6%). For detailed results, refer to 
Table 2 and Figure 3.

3.5. BKMR model to assess the correlation 
between metal mixture and UFR

Overall association: Figure 4 demonstrates the overall association 
between the metal mixture and UFR. Upon adjusting for all 
confounding factors, a consistent decreasing trend was observed in 
the effect on UFR when the concentrations of all metals were 

FIGURE 1

Paired Spearman correlations for urinary concentrations of nine 
metals in the population (N  =  7,733), NHANES, USA, 2009–2018. The 
blue color represents the positive correlation, all correlations were 
statistically significant (p value  <  0.001).

TABLE 2 Association between urine metal WQS index and qgcomp index and UFR (N  =  7,733), NHANES, USA, 2009–2018.

Negative WQS Positive WQS qgcomp

Beta (95%CI) p-value Beta (95%CI) p-value Beta (95%CI) p-value

Overall −0.078 (−0.111, −0.045) <0.001 0.01 (−0.017, 0.036) 0.47 −0.061(−0.091, −0.031) <0.001

Male −0.014 (−0.059, 0.032) 0.563 −0.005 (−0.053, 0.042) 0.823 −0.011 (−0.054, 0.031) 0.601

Female −0.108 (−0.158, −0.059) <0.001 −0.023 (−0.061, 0.016) 0.245 −0.096 (−0.139, −0.053) <0.001

Data are expressed as WQS regression indices (95% confidence intervals) and qgcomp model indices (95% confidence intervals). The model was adjusted for sex, age, race, educational 
attainment, BMI, smoking status, cardiac history, systolic blood pressure, ln-urine creatinine, serum glucose, AST, and eGFR. In analyses stratified by sex, the full model was adjusted for 
confounders other than sex. WQS, weighted quantile sum; qgcomp, quantile g-computation; CI, confidence interval.
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simultaneously fixed at different percentiles (25th-75th percentiles) 
compared to when they were fixed at the median. Notably, the effect 
of the urinary metal mixture on UFR reached statistical significance 
only when all metals were simultaneously fixed at the 60th percentile 
and above among male participants. This finding indicates a significant 
negative correlation between urinary metal mixtures and UFR.

Nonlinear exposure-response relationships for single metals: 
Supplementary Figure S1 presents the nonlinear exposure-response 
relationships between single metals and UFR, with the concentrations 
of other metals held constant at their respective median 
concentrations. Ba exhibited a positive correlation with UFR in both 
the overall participants and among males. Conversely, Tl showed a 
positive correlation with UFR in females. Cd, Co, Cs, Sb, and W 

displayed negative correlations with UFR across all participants. 
Additionally, Pb demonstrated a negative correlation with UFR 
specifically among males.

Single metal effect: Figure 5 presents a summary of the risk on 
UFR when a single metal was increased from the 25th to the 75th 
percentile, while other metals were fixed at different percentiles 
(25th, 50th, and 75th). Significant negative associations with UFR 
were observed for Cd (when other metals were fixed at the 25th, 
50th, and 75th percentiles) in all study groups, except for the male 
group. In the overall participants, a statistically significant negative 
correlation was found between Sb and UFR (when other metals were 
fixed at the 50th percentile). The posterior inclusion probability 
(PIP) analysis indicated that Cd (PIP = 1) and Cs (PIP = 0.9136) 

FIGURE 2

WQS regression weights of the urinary metals for UFR. (A) Negative WQS regression weights between urinary metals and UFR; (B) positive WQS 
regression weights between urinary metals and UFR. The model adjusted for sex, age, race, educational attainment, BMI, smoking status, cardiac 
history, systolic blood pressure, ln-urine creatinine, serum glucose, AST, and eGFR. Confounders other than sex were included in the gender-stratified 
analysis.

FIGURE 3

The qgcomp model weights of the urinary metal mixture for UFR. The model adjusted for sex, age, race, educational attainment, BMI, smoking status, 
cardiac history, systolic blood pressure, ln-urine creatinine, serum glucose, AST, and eGFR. Confounding factors other than sex were included in the 
gender-stratified analysis.
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contributed the most to the effect on UFR, followed by Sb 
(PIP = 0.1996). Among males, Ba showed a significant positive 
correlation with UFR, while Co exhibited a statistically significant 
negative correlation when other metals were fixed at the 75th 
percentile. Among females, a statistically significant negative 
correlation was observed between Sb and UFR when other metals 
were fixed at the 50th and 75th percentiles. The PIP analysis revealed 
that Cd (PIP = 0.9994) and Cs (PIP = 0.9663) had the highest 
contributions to the effect on UFR. Detailed PIP results can be found 
in Supplementary Table S2.

3.6. Sensitivity analysis

The results of the monometallic and polymetallic weighted 
linear regression analyses can be seen in Supplementary Figures S2, S3, 

respectively. After adjusting for all covariates, the monometallic 
model showed that urine Ba was significantly positively correlated 
with UFR in the overall participants (β = 0.023, 95% CI: 0.006, 
0.041). Conversely, Cd (β = −0.034, 95% CI: −0.056, −0.013), Sb 
(β = −0.039, 95% CI: −0.062, −0.015), and W (β = −0.019, 95% CI: 
−0.033, −0.005) were significantly and negatively correlated with 
UFR. Females exhibited greater sensitivity to the response of metals 
in urine compared to males, as indicated by the significant negative 
associations between Cd (β = −0.057, 95% CI: −0.088, −0.027) and 
Sb (β = −0.082, 95% CI: −0.112, −0.052) with UFR in the female 
monometallic model.

Similar to the monometallic model, the polymetallic linear 
regression model, which includes all metals in the regression 
simultaneously, yielded comparable results. In males, UFR showed no 
significant associations with any of the metals, while in females, Ba 
(β = 0.029, 95% CI: 0.005, 0.053) was significantly and positively 

FIGURE 4

Overall association between metal mixtures and UFR. The model adjusted for sex, age, race, educational attainment, BMI, smoking status, cardiac 
history, systolic blood pressure, ln-urine creatinine, serum glucose, AST, and eGFR. Confounders other than sex were included in the gender-stratified 
analysis.

FIGURE 5

Effect of single metal changes on UFR at the 25, 50, and 75% quartiles for single metals (estimates and 95% confidence intervals). The model adjusted 
for sex, age, race, educational attainment, BMI, smoking status, cardiac history, systolic blood pressure, ln-urine creatinine, serum glucose, AST, and 
eGFR. in the gender-stratified analysis, confounders other than sex were included. “est” was defined as the association between a single metal element 
and UFR. 95% confidence intervals excluding any percentile estimate of 0 were considered statistically significant.
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correlated with UFR, while Cd (β = −0.053, 95% CI: −0.084, −0.023) 
and Sb (β = −0.078, 95% CI: −0.111, −0.045) were significantly 
negatively correlated with UFR. Additionally, all variance inflation 
factors (VIF) in the polymetallic linear regression model were below 
10. A summary of the different models is shown in Table 3.

4. Discussion

To our knowledge, no previous studies have investigated the 
association between exposure to a mixture of metals and mean 
UFR. In this study, we examined the relationship between urinary 
metal elements and average UFR in various populations using 
multiple mixture analysis models. Overall, the findings from our 
study were consistent across all the analyzed models. The 
combined results revealed a significant negative correlation 
between urinary metal mixture exposure and UFR, with notable 
gender differences, particularly in females who showed higher 
sensitivity. It is noteworthy that Cd and Sb appear to be  the 
primary contributors to these results, with Cd exhibiting the 
highest negative weight. However, it is important to mention that 
while the BKMR model identified a significant positive correlation 
between Ba and UFR in males, as well as a significant negative 
correlation between Co and UFR, these findings were not 
consistently observed in other models.

Cd is a widely known toxic non-essential metal element that can 
cause significant effects on the body, even at low doses. It has a low 
excretion rate and an extended biological half-life, and long-term 
exposure can have harmful effects on the organs that store the metal. 
In the United States, the daily dietary intake of Cd primarily comes 
from cereals and bread (34%) and green leafy vegetables (20%) (30). 
Additionally, tobacco use is another major source of Cd exposure 
(31). Cd has been found to inhibit cellular antioxidant enzyme 
activity, promote lipid peroxidation, and induce oxidative stress 
responses (32, 33). Studies have demonstrated that even at low 
concentrations, Cd can bind to cell mitochondria, hindering 
oxidative phosphorylation and resulting in cell damage and apoptosis 
(34, 35). Furthermore, Cd exposure can adversely affect the human 
nervous system (36, 37). Cd can inhibit the release of acetylcholine, 
which may be  a biological effect by interfering with calcium 
metabolism (38).

Animal studies have demonstrated that exposure to Cd for 
3 months adversely affects the neurogenic and myogenic contractile 

activity of the rat detrusor (39). In a subacute toxicity study involving 
isolated rat detrusor muscle, Cd was found to decrease contractile 
activity mediated by electrical field stimulation, acetylcholine (ACh), 
and adenosine triphosphate (ATP) (10). ACh and ATP are the primary 
neurotransmitters involved in bladder smooth muscle contraction. 
The toxicological mechanisms and the results of animal experiments 
of Cd mentioned above align with our findings. We  observed a 
significant negative linear correlation between Cd and UFR, even at 
low doses. However, this correlation was not significant in male 
subjects. This suggests that daily Cd exposure at low doses can also 
cause abnormal bladder function and affect the contractile activity of 
the detrusor muscle of the bladder.

Sb is a heavy element widely present in the environment and 
extensively used in modern industry. Daily life sources of Sb 
exposure include diet, atmospheric pollution, drugs, and 
occupational settings (40). High levels of antimony are commonly 
found in proximity to smelters (41), with waste incineration and 
fossil fuel combustion also contributing to its presence (42). In 
addition, the use of plastic products makes food more susceptible 
to Sb contamination (43). Studies have demonstrated that the 
inorganic form of Sb exhibits a strong affinity for thiol groups, 
leading to intracellular glutathione depletion. Furthermore, Sb 
impairs glutathione peroxidase activity, reducing free glutathione 
levels and increasing cellular vulnerability to oxidative stress (44). 
Even at low doses, Sb significantly impacts mitochondrial 
function, decreasing mitochondrial membrane potential, 
respiratory enzyme complex activity (I/II/III/IV), ATP/ADP ratio, 
and ATP concentration (45). Sb exposure also inhibited 
intracellular pyruvate dehydrogenase activity, causing an increase 
in anaerobic glycolysis and resulting in a decrease in intracellular 
ATP levels. These findings suggest that antimony can cause 
damage to mitochondria. Typically, the respiratory and 
cardiovascular systems are mainly affected after Sb exposure (40). 
Experimental studies have revealed that the administration of 
antimony potassium tartrate induces cardiac fiber degeneration 
and connective tissue damage, even at low doses (46). In addition, 
it has been reported that Sb may be neurotoxic and can lead to 
neuronal apoptosis (47).

To our knowledge, no studies investigating the relationship 
between Sb and bladder function have been reported. In our study, 
we observed that the impact of Sb on mean UFR resembled that of 
Cd. This similarity suggests that Sb may reduce bladder detrusor 
muscle contractility through mechanisms involving cellular 

TABLE 3 Summary results from different models.

Overall Male Female

BKMR Cd (−), Sb (−) Ba (+), Co (−) Cd (−), Sb (−)

WQS negative maximum weight Sb (−), Cd (−), Cs (−), W (−) Sb (−), Cs (−), Pb (−), Cd (−) Cd (−), Co (−), Sb (−)

WQS positive maximum weight Ba (+), Tl (+), Pb (+) Tl (+), Co (+), Ba (+), W (+) Ba (+), Pb (+), W (+)

Qgcomp negative weight Sb (−), Cd (−), Co (−), Cs (−), W (−), Pb (−) Co (−), Sb (−), W (−), Cd (−), Cs (−) Sb (−), Cd (−), Co (−), Cs (−), W (−), Pb (−)

Qgcomp positive weight Tl (+), Ba (+), Mo (+) Ba (+), Tl (+), Mo (+) Tl (+), Ba (+), Mo (+)

Monometallic weighted linear 

regression analyses

Ba (+), Cd (−), Sb (−), W (−) - Cd (−), Sb (−)

Polymetallic weighted linear 

regression analyses

Ba (+), Cd (−), Sb (−), W (−) – Ba (+), Cd (−), Sb (−)

WQS, weighted quantile sum; qgcomp, quantile g-computation; BKMR: Bayesian kernel machine regression. * (+) means positive weight while (−) means negative weight.
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oxidative stress, inhibition of oxidative phosphorylation, apoptosis 
promotion, and damage to the nervous system. However, further 
research is required to fully elucidate the exact 
underlying mechanism.

Significant gender differences were observed in the effects of 
metal mixtures, as revealed by our study. Multiple mixture analysis 
models demonstrated a negative correlation between mean UFR and 
urinary metal mixtures in both males and females, with females 
displaying greater sensitivity. This finding aligns with previous studies, 
including research on the differential neurodevelopmental impact of 
prenatal and/or postnatal exposure to mercury, lead, manganese, 
cadmium, and arsenic in children (11). Furthermore, gender 
disparities were identified in the association between blood and urine 
metal mixtures and cancer mortality, with females exhibiting higher 
susceptibility to metal exposure (2). Notably, studies have reported a 
significant relationship between plasma Cu and glycosylated 
hemoglobin (HbA1c) exclusively in females, while no such association 
was observed in males (48).

Several potential mechanisms may account for this phenomenon. 
Firstly, differences in hormone levels between males and females can 
contribute to variations in metal metabolism (49). Secondly, gender 
differences in redox homeostasis, characterized by glutathione 
metabolism, may play a role (50). Additionally, genetic polymorphisms 
and differences in gene expression between sexes determine the 
differences in sensitivity to metals (51). Lastly, disparities in diet and 
behavioral habits between men and women can also have an impact 
(52). Notably, women’s unique physiological mechanisms, such as 
their propensity to experience greater iron loss, can result in increased 
metal absorption and subsequent enrichment and accumulation in 
their bodies (53).

This study possesses several advantages. First, the data were 
obtained from a large cross-sectional survey research program 
organized by the CDC, ensuring high data credibility, a large sample 
size, and generalizability of the findings to the overall population. 
Second, a range of mixture analysis models, including WQS 
regression, qgcomp, weighted multiple linear regression, and BKMR 
models, were utilized to comprehensively assess the relationship 
between metal mixtures and mean UFR. Traditional linear 
regression is inadequate for evaluating the combined effects of metal 
mixtures since their combined effect cannot be simply calculated as 
the sum of individual effects (54). The WQS model is able to explore 
the effect of mixed exposure burden on the results in one direction 
at a time, but since the WQS model takes quantile calculations for 
exposures, this may lose some of the information about the 
exposures. Additionally, the WQS regression model needs to satisfy 
the directional homogeneity assumption and also assumes that 
individual exposures have linear and additive effects. In contrast, 
qgcomp allows simultaneous validation of the correlation between 
exposure and outcome from both directions and calculation of 
weights for each of the two directions, while allowing for nonlinearity 
and nonadditivity of the effects of individual exposures and whole 
mixtures (28). BKMR models are valuable statistical tools for 
exploring combined mixture effects, offering linear or nonlinear 
response functions and visualizations for improved identification of 
key contaminants. However, the BKMR model is limited in assessing 
the impact of co-exposure patterns of high- and low-level metals. 
Therefore, these models can complement each other and undergo 
cross-validation to assess mixture exposure, and the subsequent 

joint interpretation will also facilitate the determination of specific 
exposure risks.

This study has a number of limitations. Firstly, it is important to 
note that it is a cross-sectional study, which means that it only 
represents the participants’ state at the time of testing. Consequently, 
no causal inferences can be  drawn from the analysis results, and 
further prospective studies are required to support the final 
conclusions. Secondly, the UFR data available in the NHANES 
database do not include peak UFR values or the systolic and diastolic 
values of the detrusor muscle, which directly reflect bladder contractile 
function. Nonetheless, the mean UFR data provided by NHANES can 
still serve as a valid reference indicator for assessing bladder function 
(16, 17, 55).

5. Conclusion

In conclusion, our study revealed significant negative correlations 
between urinary metal mixture exposure and mean UFR in US adults. 
Moreover, these associations exhibited notable gender specificity. 
Higher urinary levels of Cd and Sb were identified as potential key 
factors contributing to the decrease in mean UFR. These findings 
underscore the potential detrimental impact of environmental metal 
exposure on bladder function. Further prospective studies are 
warranted to elucidate the underlying mechanisms and confirm the 
observed gender difference.
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