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Sustainable planning in Wuhan 
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The outbreak of novel coronavirus pneumonia (COVID-19) is closely related to the 
intra-urban environment. It is important to understand the influence mechanism 
and risk characteristics of urban environment on infectious diseases from the 
perspective of urban environment composition. In this study, we used python 
to collect Sina Weibo help data as well as urban multivariate big data, and The 
random forest model was used to measure the contribution of each influential 
factor within to the COVID-19 outbreak. A comprehensive risk evaluation system 
from the perspective of urban environment was constructed, and the entropy 
weighting method was used to produce the weights of various types of risks, 
generate the specific values of the four types of risks, and obtain the four levels 
of comprehensive risk zones through the K-MEANS clustering of Wuhan’s central 
urban area for zoning planning. Based on the results, we found: ①the five most 
significant indicators contributing to the risk of the Wuhan COVID-19 outbreak 
were Road Network Density, Shopping Mall Density, Public Transport Density, 
Educational Facility Density, Bank Density. Floor Area Ration, Poi Functional Mix 
②After streamlining five indicators such as Proportion of Aged Population, Tertiary 
Hospital Density, Open Space Density, Night-time Light Intensity, Number of Beds 
Available in Designated Hospitals, the prediction accuracy of the random forest 
model was the highest. ③The spatial characteristics of the four categories of new 
crown epidemic risk, namely transmission risk, exposure risk, susceptibility risk 
and Risk of Scarcity of Medical Resources, were highly differentiated, and a four-
level integrated risk zone was obtained by K-MEANS clustering. Its distribution 
pattern was in the form of “multicenter-periphery” gradient diffusion. For the 
risk composition of the four-level comprehensive zones combined with the 
internal characteristics of the urban environment in specific zones to develop 
differentiated control strategies. Targeted policies were then devised for each 
partition, offering a practical advantage over singular COVID-19 impact factor 
analyses. This methodology, beneficial for future public health crises, enables the 
swift identification of unique risk profiles in different partitions, streamlining the 
formulation of precise policies. The overarching goal is to maintain regular social 
development, harmonizing preventive measures and economic efforts.
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1 Introduction

Since its discovery in Wuhan in December 2019, the COVID-19 
has caused 400 million infections and 5.76 million deaths worldwide, 
with 140,000 infections and 5,700 deaths in China as of February 9, 
2022. The disease is mainly transmitted from patients and 
asymptomatic infected persons to susceptible people by droplet or 
contact transmission and can cause damage to the human lungs and 
sequelae (1). Both developed countries and developing countries have 
been severely affected (2). Even in developed countries, the epidemic 
control has experienced multiple outbreaks to varying degrees. 
Balancing the relationship between the economy and epidemic 
prevention is the focus of epidemic prevention work. When 
formulating epidemic prevention policies (3). Governments of various 
countries have formulated various protection policies for different 
industries, especially the consumer industry (4). People in developing 
countries are more seriously affected by the epidemic. The epidemic 
prevention and control in developing countries is even more severe, 
medical resources are scarce, and supporting public services are not 
perfect. In the context of the global epidemic, import and export trade 
has been seriously affected (5). Many developing countries severely 
impacted (6). Due to institutional policy reasons, some socialist 
developing countries have concentrated and dispatched resources 
quickly, which is relatively timely for epidemic prevention and control 
(7). However, the balance between urban regional economy and 
epidemic prevention is still worth exploring.

Epidemic prevention and control have been liberalized, and the 
epidemic is spreading rapidly in densely populated urban areas with 
a trend toward multiple waves of mass infection, causing varying 
degrees of impact on healthcare systems around the country (8). 
Studying the risk of this virus in various regions of cities is crucial for 
urban outbreak prediction and the timely deployment of medical 
resources (9). It helps formulate targeted policies for different regions 
and provides scientific basis for how to balance economy and 
prevention and control.

Current COVID-19 urban risk studies primarily focus on macro-
scale assessment, measuring transmission risk at national, regional, or 
provincial scales from a city perspective, using population migration and 
intercity infection cases as main risk quantifiers (10).Global research 
often approaches from the perspectives of population characteristics and 
urban environments (11). For instance, there are studies involving 
multivariate regression analysis of full-scale population characteristics 
and COVID-19 cases in the United States (12), multivariate Pearson 
correlation analysis and inverse distance weighted regression of 
COVID-19 cases in Colorado (13), and cluster analysis of factors 
affecting the COVID-19 epidemic in New York (14). In Italy, multivariate 
analyses have been conducted on sociodemographic, healthcare, and 
transmission factors within a certain range (15). Through spatial 
correlation analysis, it has been found that the incidence of COVID-19 in 
Germany is related to socio-economic factors, population characteristics, 
and environmental composition (17).

Research related to China often operates on a smaller scale, as the 
formulation of prevention and control policies is typically done at the 
provincial level. Therefore, the research perspective tends to focus more 
on the state of the epidemic at the provincial level (18). Epidemic-
related research found that cases in Hubei Province were concentrated 
in central areas such as Wuhan, Ezhou, and Xiaogan (19). In other 
provinces, such as Jiangxi Province, the spatial spread of the epidemic 
is in the form of a “far Hubei single-core” structure form (20). In the 

microscopic space inside the city, the spread and risk of the COVID-19 
epidemic is still the most important part of public safety and health, so 
it is indispensable to study the microscopic risk of COVID-19 (21). 
Focusing on the spread of COVID-19 in Wuhan, it was found that the 
density of tertiary hospitals, commercial density, subway station 
density, construction scale, aging population, and mixed land use had 
a significant impact on the epidemic (22). Relevant studies have found 
that the older adult population accounts for more than half of the total 
number of Weibo help seekers. Moreover, a close correlation between 
the two was also found in the spatial distribution characteristics, 
confirming that the older adult population is a high-risk and high-
prevalence population for group COVID-19 outbreaks (23).

Regarding the research methods for urban risk, current studies 
mostly use geo-graphically weighted regression (24), spatial heterogeneity 
analysis (25), spatiotemporal aggregation analysis, and factor analysis 
(26, 27). This study employs innovative techniques for gathering 
COVID-19 patient locations and demographic/economic data in Wuhan 
City. It evaluates transmission, exposure, susceptibility, and healthcare 
resource scarcity risks using empirical Bayesian kriging interpolation, the 
Huff gravity model, and K-means clustering. It establishes a microscale 
epidemic risk assessment index system, aiming to comprehensively 
analyze early-stage epidemic risks in Wuhan, including transmission, 
exposure, population susceptibility, and medical resource scarcity, from 
an intracity population-economic perspective. The findings offer insights 
to assist the government in adopting rational prevention and control 
methods, mitigating epidemic impact, and formulating targeted, science-
based prevention and control strategies, thereby balancing epidemic 
prevention and economic development.

2 Materials and methods

2.1 Study area

This study selects the planned central urban area of Wuhan as the 
research object (Figure  1). The area covers 609 km2 and seven 
administrative jurisdictions, including Hankou District, Jiang’an District, 
and Qingshan District, which are distributed on both sides of the Yangtze 
River and differ in regional patterns, spatial forms, and socioeconomic 
levels (28). Wuhan has many lakes, among which Wuchang District, 
Hongshan District, and Qingshan District have a large area of water. 
Wuchang District is an old urban area with a long history in Wuhan. 
Hongshan District is part of the Wuchang District that is developed to the 
east, and the main part of Qingshan District is developed by the Wuhan 
Iron and Steel Group and its affiliated residential areas. Hanyang District 
is located at the confluence of the Yangtze River and Hanshui River, with 
undulating terrain and a large lake area. It was originally an industrial base 
of Wuhan, where the economic development level is general (29).

2.2 Data sources

Wuhan, as the initial epicenter of the COVID-19 pandemic, was 
the first city worldwide to grapple with the outbreak. The high 
mortality rate associated with the virus, coupled with a dearth of 
medical resources, necessitated the enforcement of stringent lockdown 
measures. Infected individuals were confronted with a myriad of 
unanticipated issues, and the pursuit of offline assistance was 
obstructed, if not entirely precluded, due to resource deficiencies 
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among other impediments. As a result, a significant proportion of 
patients requiring assistance resorted to social media platforms. Sina 
Weibo, with its extensive user base exceeding 516 million active users 
monthly, emerged as the predominant platform for soliciting help. 
Throughout the lockdown period, there was a substantial influx of 
help-seeking posts originating from Wuhan on Weibo, thereby 
providing data that is somewhat representative of infection cases (30). 
The location data for these cases were extracted from Sina Weibo’s 
help-seeking data using a Python software crawler for each district. 
Public photographs of infection cases across various regions were 
authenticated, followed by an exhaustive analysis of over 600 
timestamped images from each district. The spatial data pertaining to 
infection cases were rendered accessible and precise through the 
verification and modification of official announcement data, Sina 
Weibo help data, and public photo data from each district. The specific 
data sources are shown in Table 1. In this study, the main urban area 
of Wuhan was taken as the study area and gridded, and data on the 
population, GDP, POI, and COVID-19 cases in the area were collected. 
Kernel density analysis and empirical Bayesian kriging interpolation 

were used to derive the transmission, exposure, susceptibility, and 
medical resource scarcity risks in the study area. To develop better 
epidemic prevention and control strategies, we used the random forest 
algorithm to explore the contribution of influencing factors, and used 
the K-means algorithm to divide the study area into four zones with 
different risk characteristics and developed respective epidemic 
prevention strategies.

2.3 Research methodology

2.3.1 Risk assessment index system construction
First, the study area was cut into 1 km × 1 km grids and 437 spatial 

grids were obtained by sieving parts of the Yangtze River, East Lake, 
and other water bodies with large areas. Subsequently, various types 
of raw Wuhan data were processed and connected to 437 grids using 
raster turning points and spatial connections to form the spatial data. 
The risk types, risk meanings, assessment parameters, and operation 
methods of each risk were summarized through relevant literature 

FIGURE 1

Overview of the study area.

TABLE 1 Data source.

Data Source

Population data, gross domestic product (GDP), and nighttime lighting data Resources, Environment and Resources Science Data Center (https://www.resdc.cn)

House prices in residential areas of various POI points of interest (subway stations, 

shopping malls, tertiary hospitals, hospitals, etc.)

Baidu map (https://map.baidu.com)

Wuhan designated hospital data and community publicity photos during the epidemic Wuhan Health Commission website (http://wjw.wuhan.gov.cn).

Water system, building data, and road network data Open street map (https://www.openstreetmap.org/)

COVID-19 epidemic case help-seeking data Sina Weibo (https://www.weibo.com/)
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(31). Four types of epidemic risks were constructed by combining 
various types of Wuhan spatial data, and the risk assessment index 
system was tabulated and established (Table  2). Figure  2 shows a 
visualization of the 15 types of assessment parameters (32). In this 
study, all evaluation parameters transformed from raw data were 
normalized, that is, each value was subtracted from the minimum of 
all values and divided by the difference between the maximum and 
minimum values. Thus, the largest value was assigned 1 and the 
smallest value was assigned 0 to avoid mutual interference between 
different parameters in the calculation of risk.

2.3.2 Technical methods for indicator processing

2.3.2.1 Kernel density analysis
For the acquired POI point raw data, first, classification is 

performed to obtain the subway station POI, shopping mall POI, and 
tertiary hospital POI (16) and so on. Density raster data are derived 
by the kernel density analysis method, and then raster transfer point 
and spatial connection tools are used to obtain the density value of 
each grid. The purpose of kernel density analysis is to obtain an 
estimate of each point of the density function that can approximate 
the distribution of the data so that the distribution of the data can 
be represented more accurately (33).

2.3.2.2 Empirical Bayesian kriging interpolation
For incomplete data, the complete data needs to be predicted by 

interpolation, for example, older adult population proportion data 

obtained by empirical Bayesian kriging (EBK) technique 
interpolation (34). Unlike other kriging methods in ArcGIS that 
require manual adjustment of parameters to obtain accurate results, 
it automatically calculates the interpolation parameters through a 
subset and simulation process. The advantage of the EBK method is 
that the standard prediction error is more accurate than that of other 
kriging methods (35). The advantage of the EBK method is that the 
standard error of prediction is more accurate than that of other 
kriging methods. In addition, it provides a relatively more 
accurate prediction for common, non-smooth data, and smaller 
datasets (36).

2.3.2.3 Huff gravity model
We estimated the accessibility of healthcare facilities using a 

gravity model that uses the number of beds available as a measure of 
attractiveness. The gravity model approximates the abundance of 
healthcare resources around the grid based on the distance between 
the grid centroid and destination (designated hospitals). The gravity 
model we used was a transformed form of the Huff gravity model (37) 
as follows:

 
P w

D
j

i

n
i

ij
a=

=
∑

1  
(1)

Among them,
Pj = j Abundance of medical resources in the district.

TABLE 2 Risk assessment index system.

Risk type Risk implications Evaluation parameters Operation method

Transmission risk (TR)

The chance that the virus will spread from 

an infected individual to a susceptible 

individual

Poi Functional Mix (POI FM)
Raster turning points, spatial 

connections

Open Space Density (OSD)
Kernel density analysis, spatial 

connectivity

Tertiary Hospital Density (THD)
Kernel density analysis, raster turning 

points, and spatial connectivity

Shopping Mall Density (SMD)
Kernel density analysis, spatial 

connectivity
Road Network Density (RND)

Educational Facility Density (EFD)

Bank density (BD)

Public Transport Density (PTD)
Kernel density analysis, spatial 

connectivity

Average Housing Price (AHP)
Kerriging interpolation, spatial 

connectivity

Exposure risk (ER)
Risk of potentially coming into contact with 

the virus and becoming infected

Night-time Light Intensity (NLI) Space connection

Floor Area Ration (FAR) Create buffers, spatial connections

Susceptibility risk (SR)
An individual’s risk of contracting the 

COVID-19 virus

Poverty Level (PL)
Raster turning points, spatial 

connections

Proportion of Aged Population (POAP)
Empirical Bayesian kriging 

interpolation

Risk of scarcity of 

medical resources 

(RSMR)

Availability and adequacy of medical 

resources

Designated Hospital Distance (DHD)

Huff gravity modelNumber of Beds Available in Designated Hospitals 

(NBADH)
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 wi  = attractiveness of each designated hospital i; in this case, the 
number of beds.
Dij  = distance from area j to designated hospital i.
 a  = Index applied to the distance, which was taken as 1  in 
this study.

2.3.3 Random forest model
The random forest model is an integrated learning model based 

on a combination of multiple decision trees. The method uses 
bootstrap resampling. It draws several samples with a consistent 
number of features from the original training set, performs decision 
tree modeling on each sample, and then combines the predictions of 
multiple decision trees to derive the final result by voting or taking the 
average (38).

Random forest can analyze the contribution value of the factors 
affecting the new coronavirus epidemic, and more intuitively display 
the impact on the distribution of cases. A total of 2,000 samples [1,000 

samples with confirmed cases and 1,000 samples without confirmed 
cases; based on these 2,000 sets of sample data, 70% of the sample 
points (i.e., 700 sample points with confirmed cases and 700 samples 
without confirmed cases)] were set to be selected as the training set, 
and the remaining 30% of sample points were used as the validation 
set. The remaining 30% of the sample points were used as validation 
sets. The main parameters of the model are set as follows: n 
estimators = 100, criterion = ‘Gini,’ max_depth = ‘None,’ min_samples_
split = 2, min_samples_leaf = 20, max_features = ‘sqrt,’ min_ impurity_
decrease = 0.0, bootstrap = True, oob_score = True, n_jobs = 1, 
random_state = None, and the random forest model was run using 
python software. The contribution ranking of each indicator factor 
was obtained (Figure 3).

The random forest model has been applied in many previous 
studies to evaluate the importance of features, and important weights 
were derived based on the Gini index. The importance of a feature was 
determined by calculating the average change in the Gini index for 

FIGURE 2

Evaluation parameter visualization.
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each feature at each decision tree node segmentation and comparing 
the average change in the Gini index for different features as a 
percentage of the sum of the average change in the Gini index for all 
features (39).VIM  denotes the feature importance score andGI  
denotes the Gini index. Suppose there arem  features (X1, andX2, 
andX3,...,, andXm); first, calculate each featureX j of the Gini index 
score VIM j

Gini( )  which is the j  average of the amount of node split 
impurity change of the first feature in all decision trees. The calculation 
formula is as follows:

 
GI p p pm

k

k

k
mk mk

k

k

mk= = −
= ′

′
=

∑∑ ∑
1 1

2
1

 
(2)

 VIM GI GI GIjm
Gini

m l r
( ) = − −  (3)

where k  denotes the number of categories and pmk  denotes the 
category k in the node m and the proportion of the nodes.VIM jm

Gini( )

denotes the featureX j in the node m and the amount of change in the 
Gini index at the time of splitting,GIl andGIr denote the Gini indices 
of the two new nodes after branching.

If the feature X j in decision tree i , the nodes that appear in the 
decision tree are the set M , thenX j  in the first i  tree is the 
importance of

 
VIM VIMjm

Gini

m M
jm
Gini( )

∈

( )= ∑
 

(4)

If there is a total of n trees, then X j  the sum of the Gini index 
changes in all decision trees, is

 
VIM VIMj

Gini

i

n

ij
Gini( )

=

( )= ∑
1  

(5)

Finally, it is normalized to obtain the feature X j of importance.

 

VIM
VIM

VIM
j

j

i
c

i
=

=∑ 1  

(6)

Because random forest is an integrated algorithm, its accuracy is 
higher than that of a single algorithm. Bootstrap resampling involves 
put-back sampling, which significantly improves the randomness of 
the training set, making the model less prone to overfitting and more 
stable. This makes it one of the best machine learning models that is 
currently recognized (40).

2.3.4 Entropy power method
Entropy was originally a thermodynamic concept in physics and 

was later introduced into information theory by Shannon, who called 
it “information entropy.” The basic idea of the entropy method is to 
determine the weight of each index according to the variability of each 
variable and then obtain a relatively objective weight through 
correction. The entropy weight method is widely used in various 
fields, such as engineering and economics, owing to its broad 
applicability, high accuracy, and objectivity. Algorithm steps for 
determining weights using entropy weight method (41).

The entropy weight method sets the initial data matrix of object 
set X as X = (Xij) n × m, which includes n objects to be evaluated and 
m evaluation indices. The detailed steps for obtaining the weights of 
the evaluation indices using the entropy weight method are as follows:

FIGURE 3

Contribution rate of each indicator factor.
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Standardization of the initial index data: let the standardized value 
of each index datum be Yij; then, we have:

 
Y

X X
X Xij
ij i

i i
=

− ( )
( ) − ( )

min

max min  
(7)

Calculate the information entropy value of each indicator: the 
information entropy value of the data of the jth group of indicators is:

 
S n p p

i

n
ij ij= − ( )−

=
∑ln ln
1

1  
(8)

where p Y Yij ij iji
n= =∑/ 1

, if pij = 0, then define lim ln
p

ij

ij

p
→

=
0

0; 

the. Calculate the indicator weight vector. ω ={ }ω ω ω1, , , ,2  n  
whereω j j jj

mS S= − −( )=∑( /)1 1
1

, and 0 1 1
1

≤ ≤ ==∑ω ωj jj
m

, .  
After standardizing the data, we utilized the SPSS software to carry out 
step-by-step processing according to the entropy weight method 
formula. This resulted in the weights of the 15 indicators. Then, based 
on the risk composition shown in Table 2, we calculated the weighted 
values to obtain the specific values of the four types of risks for the 437 
1 km*1 km areas in the research region.

2.3.5 K-means algorithm
This study uses the K-means algorithm (42) for clustering to 

develop prophylactic measures in the analysis of risk. Utilizing the 
entropy power method, we calculated four distinct types of risk values 
for 437 grid, each measuring 1 km * 1 km. Subsequently, we employed 
the SPSS software to perform k-means clustering on these data. The 
four types of risks were treated as eigenvalues, and based on their 
compositions, we classified 437 grid into four different categories. This 
classification allowed us to effectively map out the risk landscape 
across the various areas.

The K-means algorithm is based on the principle of similarity, 
which classifies data objects with high similarity into clusters of the 
same class and those with high dissimilarity into clusters of different 
classes. The biggest difference between clustering and classification 
is that the clustering process is an unsupervised process, and the data 
objects to be  processed do not have any prior knowledge. The 
classification process is a supervised process, and there is a training 
data set with prior knowledge (43). K-means in the k-means 
algorithm represents the number of class clusters, and represents the 
mean value of the data objects within the class clusters (this mean 
value is a description of the center of the class clusters). 
Therefore, the K-means algorithm is a partition-based clustering 
algorithm that uses distance as a measure of similarity between data 
objects. The smaller the distance between data objects, the higher 
their similarity, and the more likely they are in the same cluster. 
There are many types of calculations for the distance between data 
objects (44). The k-means algorithm usually uses the Euclidean 
distance to calculate the distance between data objects. Its formula 
is as follows:
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(9)

Among them,
n = number of features,
ni = number of features in cluster i,
nci = number of clusters,
nv  = number of variables used for feature clustering,
vijk = kth variable of the jth feature in the ith cluster,
vk  = mean of the kth variable,
vtk  = mean of the kth variable in the ith variable.

3 Results

3.1 Index contribution rate analysis based 
on random forest model

3.1.1 Ranking and analysis of contribution rate of 
random forest model results

 1. Indicators in descending order of contribution: Road Network 
Density (RND), Shopping Mall Density (SMD), Public 
Transport Density (PTD), Educational Facility Density (EFD), 
Bank Density (BD), Floor Area Ration (FAR), Poi Functional 
Mix (POI FM), Designated Hospital Distance (DHD), Poverty 
Level (PL), Average housing price (AHP), Proportion of Aged 
Population (POAP), Tertiary Hospital Density (THD), Open 
Space Density (OSD), Night-time Light Intensity (NLI), and 
Number of Beds Available in Designated Hospitals (NBADH).

 2. Among these indicators, the three with contribution rates over 
0.1 are Road Network Density (RND), Shopping Mall Density 
(SMD), Public Transport Density (PTD), indicating that 
infection risk is most closely associated with these three 
indications. There were seven indicators with contribution 
rates between 0.04 and 0.1, including Educational Facility 
Density (EFD), Bank Density (BD), Floor Area Ration (FAR), 
Poi Functional Mix (POI FM), Designated Hospital Distance 
(DHD), Poverty Level (PL), Average housing price (AHP). The 
Road Network Density (RND), Shopping Mall Density (SMD), 
and Public Transport Density (PTD), these three indicators are 
the first, second, and third contributions, respectively, fully 
reflects the spatial coupling of urban population distribution 
and activities with public health outbreaks.

 3. There are five indicators with contribution rates lower than 
0.04, including Proportion of Aged Population (POAP), 
Tertiary Hospital Density (THD), Open Space Density (OSD), 
Night-time Light Intensity (NLI), and Number of Beds 
Available in Designated Hospitals (NBADH). This indicates a 
weak correlation between these indicator factors and the 
occurrence of COVID-19 public health emergency infections 
in the main urban area of Wuhan City.

3.1.2 Optimized selection of evaluation indicators

3.1.2.1 AUC and ACC-related concepts
The Area Under Curve (AUC) (45) is usually used to represent the 

area under the Receiver Operating Characteristic (ROC) curve and 
the coordinate axis, and its value is usually in the range of 0.5–1. ACC 
(Accuracy), which is the proportion of “correct” samples to all 
predicted samples, is usually used to judge the classification results of 
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a classifier. The combination of AUC and ACC is a measure of the 
stability and accuracy of the prediction model, which can effectively 
avoid errors caused by skewed data in actual data samples.

3.1.2.2 Optimized selection of evaluation indexes
For the ranking results of the contribution rate of each indicator, 

the factors were gradually streamlined, starting from the lowest 
contributing indicator, and each streamlined indicator was 
constructed into a new prediction model. The training set, validation 
set, and model parameters were kept unchanged. Each random forest 
model was run in turn using Python software, and the AUC and ACC 
values of each model were recorded and compared to explore the 
optimal model structure based on the above 2000 samples starting 
with the indicator with the lowest contribution rate, the indicators 
were deleted, and the accuracy and stability of the model were judged 
by comparing the AUC and ACC values of the random forest model 
to determine the optimal model, as shown in Table 3.

As evidenced by Table  1, the random forest model, which 
incorporates 15 indicators, demonstrates high precision with AUC 
and ACC values exceeding 0.9. Based on the evaluation metrics, 
Experiment 5, which eliminated five indicators, achieved the highest 
level of accuracy. The five indicators that were removed are: Proportion 
of Aged Population (POAP), Tertiary Hospital Density (THD), Open 
Space Density (OSD), Night-time Light Intensity (NLI), Number of 
Beds Available in Designated Hospitals (NBADH). The five most 
prominent indicators contributing to the risk of COVID-19 epidemic 
in Wuhan were the Road Network Density (RND), Shopping Mall 
Density (SMD), Public Transport Density (PTD), Educational Facility 
Density (EFD), Bank Density (BD). Floor Area Ration (FAR), Poi 
Functional Mix (POI FM), Designated Hospital Distance (DHD), 
Poverty Level (PL), and Average housing price (AHP) also contributed 
significantly to the risk assessment of the epidemic.

3.2 Four types of risk composition and 
result analysis

3.2.1 Determining the weight of each index using 
the entropy weighting method

Utilizing the entropy weight method, 15 evaluation indicators 
were employed as secondary indicators, and four types of risks were 
designated as primary indicators. The weights of each indicator, which 

constitute the four types of risks, were calculated to construct a risk 
assessment model for the COVID-19 public health emergency in 
Wuhan. To overcome the errors caused by human subjectivity and 
differences in data attributes on the prediction results. An entropy 
weighting method was introduced for index weighting. The model is 
constructed iteratively to maximize its prediction accuracy and 
calculate weights of each evaluation index relative to the final risk 
based on prediction errors in each round. The entropy weighting 
method was executed using Python software to obtain the 
consequences of each evaluation index (Table 4).

The standardized data from the 15 categories of indicators were 
utilized as secondary indicators. Each of these was multiplied by its 
respective weight, and then combined with the composition of the 
four types of risks as outlined in Table 2. The sum of these calculations 
yielded four primary indicators, which represent the specific values of 
the four types of risks.

TABLE 4 Entropy weighting method to determine the weights of each 
index.

Indicator name Weight of each indicator

Number of Beds Available in 

Designated Hospitals (NBADH)
0.061131789

Open Space Density (OSD) 0.061316449

Educational Facilities Density (EFD) 0.062547197

Bank Density (BD) 0.062568905

Poverty Level (PL) 0.062573166

Road Network Density (RND) 0.062589868

Shop Mall Density (SMD) 0.062590588

Tertiary Hospital Density (THD) 0.062597494

Number of Infected Cases (NIC) 0.06264185

Public Transport Density (PTD) 0.062656595

Floor Area Ration (FAR) 0.062734661

Average Housing Price (AHP) 0.062743014

Designated Hospital Distance (DHD) 0.062763455

Percentage of Aged Population (POAP) 0.062835191

Poi Functional Mix (POI FM) 0.062849327

Night-time Light Intensity (NLI) 0.062860452

TABLE 3 Experimental procedure record.

Experiment number Delete indicator AUC ACC

0 -- 0.913 0.924

1 NBADH 0.911 0.921

2 NBADH,NLI 0.908 0.909

3 NBADH,NLI,OSD 0.911 0.923

4 NBADH,NLI,OSD,THD 0.915 0.923

5 NBADH,NLI,OSD,THD,POAP 0.920 0.927

6 NBADH,NLI,OSD,THD,POAP,AHP 0.899 0.911

7 NBADH,NLI,OSD,THD,POAP,AHP,PL 0.899 0.906

8 NBADH,NLI,OSD,THD,POAP,AHP,PL,DHD 0.881 0.894

9 NBADH,NLI,OSD,THD,POAP,AHP,PL,DHD,POIFM 0.87 0.886
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3.2.2 Analysis of risk results
After determining the specific values of the four types of risks 

using the entropy weight method, we utilized ArcGIS software to 
associate these risk values with 437 grids, each measuring 1 km by 
1 km, within the study area. This procedure led to the generation of 
four distinct risk maps, as depicted in Figure 4. Each type of risk 
distribution presents unique characteristics, and the analysis was 
carried out in line with the specific conditions of the central urban 
area of Wuhan.

 1. Exposure risk refers to the likelihood of coming into contact 
with the virus and possibly becoming infected. It is determined 
by factors that affect the chances of transmission from an 
infected person to a susceptible person. Understanding the risk 
of exposure is essential for making informed decisions about 
activities, precautions, and public health measures to prevent 
the spread of the virus. A 1 km × 1 km buffer zone was created 
for the case points to estimate the exposure level of the virus. 
In addition, night-time light intensity data within the study 
area were used to estimate the urban compact spatial pattern 
and population aggregation intensity within the grid. Related 
studies have shown that the higher the night-time light 
intensity, the higher the risk of exposure in places with an 
urban compact spatial pattern or population aggregation 
intensity. This study combines these two parameters to assign 
weights for comprehensive analysis of exposure risk.

  As shown in Figure 4 (ER), four sites in the study area were at 
a high risk of exposure: Jianghan District East, Wuchang 
District South, Optical Valley, and Qingshan District East. 
Qiaokou District and Wuchang District are highly developed 

economically therefore movement of people is inevitable. As a 
result, these districts become high-exposure-risk areas. 
Qingshan District has a poor economy and the highest 
exposure risk. This is probably due to the large number of 
people leaving Wuhan at the beginning of the epidemic, which 
led to a surge in the flow of people at Wuhan Station in 
Qingshan District, accelerated the spread of the virus, and 
resulted in a sharp increase in the number of infections. 
Hankou and Wuchang Stations had a large number of cases, 
consistent with the prediction. Overall, with high levels of 
economic development and risk in regions with high human 
mobility. In contrast, viral exposure is a prerequisite for viral 
transmission, which is faster in places with high exposure risk.

 2. Transmission risk, denoting the likelihood of virus spread from 
an infected to a susceptible individual, holds critical 
significance for the implementation of effective public health 
measures aimed at controlling and preventing disease 
transmission. This research employed various factors, including 
open-space density, road network density, educational facility 
density, public transport density, and average housing prices, 
to assess transmission risk profiles. Open spaces, due to high 
population movement and crowding effects, were scrutinized. 
Additionally, spatial metrics such as road network density and 
public transport density were analyzed to gauge the 
compactness of transportation infrastructures and indirectly 
infer population migration intensity within the city. Weightage 
was assigned to each parameter, enabling a comprehensive 
analysis of propagation risk.

  Transmission risk, as illustrated in Figure  4 (TR), primarily 
signifies human contact and mobility intensity. The central region 

FIGURE 4

Schematic diagram of four types of risks.
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of Hankou, the most economically advanced area in Wuhan with 
extensive construction and comprehensive public amenities, 
exhibited the highest transmission risk. Wuchang District, the 
second-largest economic development zone in Wuhan, also 
displayed elevated transmission risk. Optical valleys, buoyed by 
government support and the influx of enterprises, presented 
heightened transmission risk compared to neighboring regions. 
Conversely, areas with lower transmission risk were typically 
situated at the periphery of the study area. These regions exhibited 
limited economic development and infrastructure, leading to 
reduced economic activities and human interactions.

 3. Risk of Scarcity of Medical Resources for the purpose of 
analyzing the abundance of medical resources in the study area. 
The lack of healthcare resources is a major public health 
problem, and it is believed that the COVID-19 outbreak will 
exacerbate the negative effects of the pandemic by straining 
healthcare resources. Not only will those infected by the 
COVID-19 be affected, but patients with other diseases will 
also be affected by the crowding of medical resources caused 
by the COVID-19, resulting in delayed treatment and possibly 
death. In this context, the risk of healthcare scarcity is a 
measure of the availability and adequacy of resources for the 
effective functioning of healthcare facilities. In this study, 
we  used the location and bed data of designated hospitals 
established by the Health Inspection Commission during the 
epidemic in Wuhan, and the huff gravity model to measure the 
risk of medical resource scarcity.

  The risk of medical resource scarcity was analyzed in terms of 
the abundance of medical resources in the study area. According 
to (RSMR) in Figure 4, it can be seen that the places with a high 
risk of medical resources are located in the periphery of the city, 
and such areas are far from the designated hospitals. Thus, the 
spread of the pandemic may have been exacerbated. However, in 
well-developed areas, there are often better medical resources 
closer to designated hospitals and a lower risk of scarcity of 
medical resources. If the new crown pandemic spreads again in 
Wuhan, medical resources in the peripheral areas of the city will 
be  rapidly depleted and medical functions will subsequently 
be  reduced. In such areas, complete medical resources and 
quarantine equipment, such as drugs, respirators, protective 
clothing, and masks, should be prioritized.

 4. Susceptibility risk refers to the likelihood of individuals 
contracting the COVID-19 virus, with the older adult being 
particularly vulnerable. Research indicates that while many 
COVID-19 cases result in mild symptoms and recovery, older 
adults are disproportionately affected, with a higher mortality 
rate. Data from the Centers for Disease Control and Prevention 
(CDC) in October 2021 revealed that 76% of COVID-19-
related deaths in the United States occurred in individuals over 
65 years old. Additionally, susceptibility risk is influenced by 
poverty levels, as impoverished areas often lack adequate 
medical and protective resources, amplifying the impact on 
vulnerable populations. This study assessed susceptibility risk 
using empirical Bayesian kriging interpolation for age 
demographics and GDP data from Wuhan City.

  Areas with high susceptibility risk have a greater likelihood of 
infection post-exposure, leading to severe illness or death. The 

old city of Wuhan exhibited the highest susceptibility risk 
(Figure  4; SR), attributed to its dense local and external 
population, with a significant older adult demographic. 
Qingshan District, a central industrial town, had elevated 
susceptibility due to its aging workforce and economic factors, 
notably the presence of major industrial enterprises. Given the 
current relatively relaxed epidemic prevention policies, it is 
crucial for society to focus on susceptibility risks, emphasizing 
the safety of older adult and young populations.

3.3 Cluster analysis and prevention 
strategies

To formulate targeted epidemic prevention strategies, a 
comprehensive analysis synthesizing various risk factors related to 
COVID-19 was conducted. This analysis encompassed transmission, 
exposure, susceptibility, and medical resource scarcity risks. Utilizing 
a multivariate clustering approach and the K-means algorithm, 
Wuhan’s main urban area was categorized into four distinct regions 
with similar risk profiles: red zone, yellow zone, green zone, and gray 
zone. The resulting risk groups are illustrated in Figure 5, depicting 
the risk distribution across the city’s main urban area. Additionally, 
Figure 6 provides specific values for the center points of each risk 
cluster in individual subdistricts. By scrutinizing the risk composition 
of these central points, representative characteristics of the combined 
risk types in each region were identified, enabling precise assessments 
for corresponding areas and facilitating the development of accurate 
preventive measures.

 1. The red zone, situated primarily within Wuhan’s core area and 
encompassing locations like Jiedaokou Street and Jianghan 
Street, faces the highest risks in exposure and transmission, 
ranking third in susceptibility risk while having the lowest risk 
of medical resource scarcity. This zone is characterized by high 
population density, extensive infrastructure, and a bustling 
economy. Its strategic location within the first ring road of 
Wuhan and the concentration of service centers make it a hub 
for numerous people and tourists. However, the red zone benefits 
from a surplus of medical resources, notably tertiary hospitals 
(as indicated by THD in Figure 2), which significantly reduces 
the risk of medical resource scarcity. Given the ample medical 
resources in this region, targeted strategies should leverage these 
facilities to control potential outbreaks effectively. Swiftly 
admitting positive patients upon outbreak detection can mitigate 
rapid spread, stemming from high exposure and transmission 
risks. This approach prevents the widespread dissemination of 
the outbreak across regions through human movement, 
capitalizing on the area’s robust healthcare infrastructure.

 2. In the yellow zone, exposure risk, transmission risk, and 
susceptibility risk all rank second, while the risk of medical 
resource scarcity is third. This area, mainly within Wuhan’s 
second ring road and the optical valley region, is characterized 
by a dense road network, a concentration of educational 
institutions and businesses, and high-density public 
transportation. It includes residential spaces for the city’s 
working population, major enterprises, and a relatively 
young demographic.
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  To address these specific risks, targeted strategies in the yellow 
zone should concentrate on managing high-density public 
transportation effectively. Implementing hierarchical 
management and control within enterprises, along with school-
based measures for students, can significantly reduce the risk 

of transmission and exposure during outbreaks. Precise 
prevention measures must focus on restricting crowd gathering 
activities and limiting the movement of infected individuals in 
and out of hospitals, schools, and other densely populated 
areas. Implementing precise regional closures and other 

FIGURE 5

Risk clustering diagram.

FIGURE 6

Four clustering features.
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measures can protect vulnerable populations, especially those 
with underlying health conditions, from potential exposure. 
This tailored approach ensures that the unique characteristics 
of the yellow zone are considered in developing effective 
prevention and control measures.

 3. The exposure risk, transmission risk and susceptibility risk of 
the green zone are the third, and the risk of scarcity of medical 
resources is the second. The green zone is characterized by 
relatively low population density and scarcity of medical 
resources. The green zone is located in the peripheral area of 
the central risk area, which is closer to the urban center. Most 
of the area is within the third ring road. Whether to slow down 
the spread of the virus, will be the key to virus control. The 
targeted strategy for this region should be based on the scarcity 
of medical resources and the prevention and control units 
based on residential areas. Such areas should provide medical 
assistance through increased medical training of community 
personnel, if necessary. Social counseling measures are also 
critical to reducing the proportion of severe illness and risk of 
transmission in susceptible populations in this area.

 4. Exposure risk and transmission risk in the gray zone are the 
fourth, susceptibility risk, and the highest risk of scarcity of 
medical resources. This area is characterized by a small 
population, serious aging and far away from the main urban 
area, with few supporting services in the city. The focus of 
targeted strategies in this region should be  to protect 
susceptible groups and make medical emergency reserves. 
Such areas need to be isolated to the greatest extent possible; 
therefore, relevant settings, such as nursing homes and 
kindergartens, need to have strict isolation facilities to prevent 
imported cases. The rapid spread of the virus to the gray area 
indicates that the virus is expanding in an uncontrollable 
manner and is most likely spreading to other administrative 
regions and even neighboring cities around Wuhan.

4 Discussion

Due to data accuracy considerations, the primary research area in 
this study primarily consists of 1 km*1 km grids. However, at this 
scale, it is insufficient for a nuanced examination of epidemic risk at 
the micro-level. By adopting the block functional area as the 
fundamental unit of analysis and integrating its three-dimensional 
structure with demographic composition, a more precise analysis can 
be conducted. The inclusion of detailed urban block morphology in 
the study would contribute to a more comprehensive understanding 
of the interplay between urban form and epidemic risk.

Owing to data limitations, the formulation of targeted policies did 
not take into account grassroots public service points in each partition, 
despite their significant role during the epidemic. It is advisable to 
explore the full utilization of public service facilities in each region, 
thereby refining the granularity of targeted policies. Additionally, 
an investigation into the influencing factors of COVID-19 
cases is warranted. The incorporation of alternative model 
algorithms for comparative analysis would contribute to a more 
comprehensive assessment.

During the epidemic, the acquisition of location data for Weibo 
help-seeking cases allowed for the integration of urban environmental 

and economic data, enabling the analysis of various risk characteristics. 
As urban multi-dimensional data becomes increasingly abundant, 
corresponding risk indicators can be further enhanced in terms of 
completeness and accuracy. It is noteworthy that this study places a 
significant emphasis on exploring the delicate equilibrium between 
epidemic control and economic development. Using this as a point of 
departure, distinct strategies are proposed based on the disparities in 
risk composition across different partitions.

The study clustered four types of risks resulting in four partitions, 
and targeted policies were formulated based on the composition of 
these risk types within each partition. This approach, compared to 
singular analysis of COVID-19 impact factors, holds significant 
practical importance. Similar methodologies can be applied in future 
public health events to swiftly discern unique risk profiles across 
partitions, facilitating the rapid formulation of targeted policies. These 
policies aim to uphold normal social development while 
balancing prevention and control measures with economic 
development efforts.

5 Conclusion

To explore the influence of the urban environment on the spread 
of the epidemic during public health emergencies in Wuhan, 
we combined the random forest model and entropy power method to 
investigate the factors influencing public health emergencies and the 
risk assessment of epidemic spread. The main conclusions are 
as follows.

 1. The study identified the five most influential indicators 
contributing to the risk of the Wuhan COVID-19 outbreak, 
which include Road Network Density (RND), Shopping Mall 
Density (SMD), Public Transport Density (PTD), Educational 
Facility Density (EFD), and Bank Density (BD). Additionally, 
Floor Area Ratio (FAR) and Point of Interest Functional Mix 
(POI FM) were considered.

 2. By eliminating less influential indicators, including the 
Proportion of Aged Population (POAP), Tertiary Hospital 
Density (THD), Open Space Density (OSD), Night-time Light 
Intensity (NLI), and Number of Beds Available in Designated 
Hospitals (NBADH), the random forest model attained the 
highest level of predictive accuracy in assessing COVID-19 risk.

 3. The spatial characteristics of the four categories of COVID-19 
epidemic risk, namely transmission risk, exposure risk, 
susceptibility risk, and Risk of Scarcity of Medical Resources, 
exhibited significant differentiation. These characteristics were 
utilized to establish a four-level integrated risk zoning system 
through K-MEANS clustering. The distribution pattern of 
these zones adhered to a “multicenter-periphery” gradient 
diffusion. This zoning system, when integrated with the 
inherent characteristics of the urban environment within 
distinct zones, allows for the customization of control strategies 
tailored to the respective risk compositions.

This study findings not only highlight the key risk indicators 
associated with the Wuhan COVID-19 outbreak but also underscore 
the importance of refining modeling techniques for improved 
predictive accuracy. Furthermore, the spatial analysis of epidemic risk 
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categories and the subsequent development of differentiated control 
strategies hold practical implications for managing future public 
health crises.
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