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Background: Low back pain (LBP) is a common condition and a leading cause of 
health function loss worldwide. This study assessed the impact of occupational 
factors on LBP using Mendelian Randomization (MR) method, controlling for 
confounding variables.

Methods: Based on publicly available genome-wide association studies (GWAS), 
two-sample univariate and multivariate MR analyses were performed to assess 
the causal effect of occupational factors on LBP. We used the inverse variance 
weighted (IVW) method and sensitivity analyses to generate the total results for 
the univariate MR analysis. Furthermore, we performed multivariate MR analysis 
to assess the direct causal association between occupational factors and LBP 
after accounting for potential confounding variables.

Results: The total causal effect of genetically predicted job involves heavy 
manual or physical work on LBP was found to be significant (IVW OR, 2.117; 95% 
CI, 1,288–3.479; p  =  0.003). Upon adjusting for potential confounding variables, 
the direct effect of job involves heavy manual or physical work on LBP remained 
statistically significant. Similarly, the total causal effect of genetically predicted 
job involves mainly walking or standing on LBP was also found to be significant 
(IVW OR, 1.429; 95% CI, 1,035–1.975; p  =  0.030). However, upon adjusting for 
potential confounding variables, the direct effect of job involves mainly walking 
or standing on LBP became insignificant. In contrast, the findings from the MR 
analysis indicated a lack of association between work/job satisfaction and LBP. 
Sensitivity analysis consistently supported these trends.

Conclusion: Our results supported a causal link between job involves heavy 
manual or physical work and increased risk of LBP, while finding no significant 
associations between prolonged walking/standing at work, job satisfaction, and 
LBP, providing valuable insights for the development of targeted prevention and 
intervention strategies for LBP.
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Introduction

Low back pain (LBP) is a prevalent condition frequently 
encountered in orthopedic clinics, and its origin is multifactorial. The 
onset of this condition can be  attributed to soft tissue injury or 
irritation, intervertebral disk damage, vertebral body trauma, articular 
process injury, and neurovascular structure damage. However, it can 
be further aggravated by a multitude of factors such as psychosocial 
issues, obesity, and trauma (1). As per a recent study on the global 
burden of disease, it has been found that LBP is the primary cause of 
loss of health function worldwide (2). The global incidence of LBP has 
been approximated to range from 1.4 to 20.0% (3). Given the 
significant incidence of LBP and its potential for causing disability, 
there is a pressing need to identify risk factors associated with this 
condition. Such identification could have far-reaching implications for 
public health and contribute to enhancing overall quality of life.

There exists a strong correlation between work and health, with 
excessive work being associated with an elevated likelihood of 
developing certain ailments, including depression (4) and 
cardiovascular disease (5). The issue of LBP that arises from work-
related activities is a matter of significant concern. Studies have 
indicated that this type of pain may be linked to physically demanding 
work (6, 7), prolonged periods of standing and walking while on the 
job (8), and job satisfaction (9). Despite the abundance of 
observational studies examining the correlation between work and 
LBP, the underlying causal relationship between occupational factors 
and the onset of LBP remains elusive due to residual confounding and 
reverse causation.

Mendelian randomization (MR) is a novel statistical approach that 
employs distinct single nucleotide polymorphisms (SNPs) as 
instrumental variables (IVs) to establish a credible causal relationship 
between phenotype (exposure) and disease (outcome). This method 
has the potential to mitigate the impact of confounding variables and 
reverse causality, as reported in the literature (10). The multivariate 
Mendelian randomization approach is a recent development in the 
field of MR. It involves an expansion of the univariate MR approach, 
which enables the investigation of the direct causal impact of a variable 
on an outcome while accounting for the influence of another variable. 
This approach is useful in mitigating the effects of genetic pleiotropy 
and in drawing impartial conclusions (11). Given the intricate nature 
of the etiological factors associated with LBP, which may encompass 
a multitude of variables such as socioeconomic status, psychological 
factors, unhealthy lifestyle practices, and medical conditions (12), 
these factors have the potential to obscure the causal link between 
occupational activities and LBP. The current study incorporated 
various factors that have been previously reported in the literature, 
including obesity (13), smoking (14), pathological psychology (15), 
physical activity (16), sedentary behavior (17), sleep (18), and 
education (19), for the purpose of adjustment in the model. These 
factors have been identified as potential confounders to the outcome 
of interest and were therefore deemed relevant for inclusion in 
the analysis.

The present study aimed to evaluate the causal impact of 
occupational factors on LBP through a two-sample univariate MR 
approach. Additionally, a multivariate MR approach was employed to 
identify and control for potential confounding effects, thus ensuring 
the reliability of the results. The disentanglement of intricate causal 
connections between occupational variables and LBP will bear 

significant implications for enhancing the safeguarding of workers 
from occupational injuries and mitigating health inequalities 
in society.

Methods

Study design

The present study utilized summary-level data from published 
genome-wide association studies (GWASs), as well as data from the 
UK Biobank study and the FinnGen consortium, to conduct a 
two-sample MR analysis. The cohorts for both exposure and outcome 
were limited to individuals of European ancestry in order to mitigate 
the influence of population stratification bias. Initially, we employed 
univariate MR to estimate the causal effects of the three occupational 
factors and LBP for the genetic predictions. Subsequently, a 
multivariate MR framework was employed to evaluate the direct 
causal impact of the three aforementioned lifestyle factors on the 
likelihood of experiencing LBP. All studies that were incorporated in 
the analysis had obtained approval from the respective ethical review 
boards and the participants had provided their informed consent. 
Consequently, the present study did not necessitate any supplementary 
ethical approval. The flowchart of the study design is presented in 
Figure 1.

Data sources for exposures

The MRC-IEU GWAS pipeline was utilized to produce genetic 
statistics at a summary level pertaining to occupational factors. The 
study sample consisted of 263,615 individuals of European descent 
from the UK-Biobank cohort. The phenotypic characterization of 
occupational conditions in this study was derived from self-reported 
categorical variables that were ordered. The study’s participants were 
administered a touch screen-based questionnaire that inquired about 
their occupational involvement in physically demanding or labor-
intensive tasks. The specific question posed was, “Does your work 
entail heavy manual or physical labor?” The inquiry with IEU code 
ukb-b-2002 pertains to the extent of physical activity involved in one’s 
work, while the IEU code ukb-b-4461 represents whether the 
individual predominantly entails walking or standing. The IEU code 
ukb-b-2105 pertains to an inquiry regarding job satisfaction. The 
response scale utilized in the study consisted of six options, ranging 
from 1 to 6, which corresponded to the following categories: “Never/
rarely,” “Sometimes,” “Usually,” “Always,” “Do not know,” and “Prefer 
not to know.” Responses indicating “do not know” or “prefer not to 
answer” were treated as missing values. The UK Biobank conducted 
adjustments for age, sex, and a maximum of 20 principal components 
of ancestry in the association tests. Detailed information for exposures 
is available in Table 1.

Data sources for potential confounders

A total of 10 characteristics were considered as potential sources 
of confounding. We used the Lifetime Smoking Index (20) to measure 
the behavioral characteristics of smoking in individuals, which 
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combines smoking indicators with a simulated half-life constant into 
a formula in which indicators include smoking status (current, past, 
never), age at smoking initiation, number of cigarettes smoked per day 
and time to quit. This GWAS included 462,690 participants from the 
UK-Biobank cohort, and each standard deviation (SD) increase in the 
lifetime smoking index was equivalent to a person smoking 20 
cigarettes per day for 15 years and quitting 17 years ago, or a person 
smoking 60 cigarettes per day for 13 years and quitting 22 years ago. 
Obesity phenotypes were derived from the GWAS conducted by Puilt 
et al. and included body mass index (BMI, body weight [kg]/standing 
height squared [m2]), which describes general obesity, and waist-
to-hip ratio (WHR, waist circumference [cm]/hip circumference 
[cm]) and WHR adjusted for BMI (WHRadjBMI). We  used two 
phenotypes to measure participants’ pathological psychological status, 
major depression and mood swings. Regarding major depression, 
we  used GWAS summary data from the Psychiatric Genomics 
Consortium (PGC) for major depression, which comprises 130,664 
major depression cases and 330,470 controls of European ancestry by 
Howard et al. (21). Mood swings are used to define the tendency for 
frequent, sudden and unpredictable changes in mood states to assess 
an individual’s personality traits and anxious and stressful 
psychological states, and the phenotype is based on a questionnaire 
asking UK Biobank participants, “Do your moods fluctuate 
frequently?,” to which participants could answer “yes” or “no” (22). 
The phenotypes of sleep time, sedentary habits and total physical 

activity in daily life were objectively measured using a wearable 
accelerometer (23). Finally, educational attainment was obtained from 
the Social Science Genetic Association Consortium (SSGAC) GWAS 
meta-analysis of participants’ reported years in school at age 30, with 
different educational qualifications recalculated according to the 
International Standard Classification of Education to derive the 
corresponding years of education.

Data sources for LBP

To minimize the risk of type I error due to sample overlap between 
exposure, mediating factors and outcome, we used the genetic tools 
for LBP from the latest large sample GWAS meta-analysis (round 8) 
conducted by the FinnGen consortium, which included 273,994 
participants (25,163 events and 248,831 controls). The LBP cases were 
defined as based on codes M54.5 in the International Classification of 
Diseases, 10th Revision (ICD-10) and 724.2 in ICD-9. The FinnGen 
study excluded individuals with unclear sex, high genotype deletion 
rates (>5%), excessive heterozygosity (±4 SD) and non-Finnish 
ancestry to ensure data quality and homogeneity. In addition to these 
exclusions, association tests were carefully adjusted for various 
covariates, including age, sex, 10 genetic principal components of 
ancestry and genotyping batches. All information on the sources of 
GWAS data on exposure and outcome can be found in Table 1.

FIGURE 1

The flowchart of the Mendelian randomization study design.
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Instrument identification and Mendelian 
randomization

Initially, a two-sample univariate MR analysis was performed to 
investigate the impact of occupational variables, specifically 
“engagement in physically demanding or manual labor,” 
“predominantly involving walking or standing,” and “satisfaction with 
work/employment,” on the comprehensive causal influence of 
LBP. Furthermore, multivariate Mendelian randomization analyses 
were performed to evaluate the autonomous causal impact of each 
exposure on LBP and to account for plausible confounding factors. In 
order to satisfy the fundamental assumptions of MR analyses, which 
require that genetic variants utilized as instruments are consistently 
linked to the exposure of interest, do not display any correlation with 
confounding factors that influence the relationship between exposure 
and outcome, and are not autonomously linked to LBP through 
pathways other than the exposure of interest, we opted to choose 
genome-wide traits within a 10,000-kb range for each trait, using strict 
pairwise linkage disequilibrium (LD) thresholds (r2 < 0.001) for 
genome-wide significant SNPs (p < 5e-08). The utilization of European 
samples derived from the 1,000 Genomes Project as a reference panel 
for LD is proposed (24). Furthermore, the F-statistic was calculated 

for each exposure, whereby an F-statistic exceeding 10 was regarded 
as indicative of adequate instrument strength (25). The F-statistic was 
calculated as Beta2/SE2 (26). To obtain causal estimates, we  used 
inverse variance weighted (IVW) as the primary MR method, which 
combines estimates of the effect of each SNP on exposure on outcomes 
into causal estimates using random effects meta-analysis to calculate 
Wald ratios, with standard errors derived using the delta method (27).

Sensitivity analysis

We used MR-Egger regression (28), weighted median (29), 
weighted mode (30), and robust adjusted profile score (RAPS) (31) 
and the Mendelian Randomization Pleiotropy RESidual Sum and 
Outlier (MR-PRESSO) (32) method to validate the robustness of IVW 
results in univariate MR analysis. The MR-Egger regression method is 
able to assess directional polymorphisms and produce estimates of 
causal effects when polymorphism effects are also considered. 
However, it depends on the InSIDE and NOME assumption, which 
requires that the strength of the association between genetic variation 
and exposure is not correlated with the degree of bias caused by 
polymorphism and is sometimes of insufficient statistical power (28). 

TABLE 1 Information for exposures and outcomes.

Phenotype Unit Sample 
size

Ancestry Consortium/
cohort

Author Year of 
publication/

release

PubMed ID

Job involves heavy 

manual or physical 

work

Categorical 

ordered

263,615 European MRC-IEU Ben Elsworth 2018 –

Job involves mainly 

walking or standing

Categorical 

ordered

263,556 European MRC-IEU Ben Elsworth 2018 –

Work/job 

satisfaction

Categorical 

ordered

105,358 European MRC-IEU Ben Elsworth 2018 –

Lifetime smoking 

index

SD 462,690 European UK Biobank Wootton et al. 2019 31689377

BMI SD 806,834 European GIANT + UK Biobank Pulit et al. 2018 –

WHR SD 697,734 European GIANT + UK Biobank Pulit et al. 2018 –

WHR adjusted for 

BMI

SD 694,649 European GIANT + UK Biobank Pulit et al. 2018 –

Major depression Binary 500,199 

(170,756 cases)

European PGC + UK Biobank Howard et al. 2019 30718901

Mood swings Binary 451,619 

(204,412 cases)

European MRC-IEU Ben Elsworth 2018 –

Sleep time SD 91,105 European UK Biobank Doherty et al. 2018 30531941

Sedentary behavior SD 91,105 European UK Biobank Doherty et al. 2018 30531941

Overall physical 

activity

SD 91,105 European UK Biobank Doherty et al. 2018 30531941

Education 

attainment

SD 766,345 European SSGAC + UK Biobank Lee et al. 2018 30038396

Low back pain Binary 273,994 (25,163 

cases)

European FinnGen Kurki et al. 2022 –

BMI, Body Mass Index; WHR, Waist-to-Hip Ratio; MRC-IEU, The MRC Integrative Epidemiology Unit; GIANT, Genetic Investigation of ANthropometric Traits Consortium; PGC, 
Psychiatric Genomics Consortium; SSGAC, Social Science Genetic Association Consortium.
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The weighted median method is a statistical tool for estimating the 
median of a weighted empirical density function of ratio estimates that 
provides a consistent estimate of the causal effect if at least 50% of the 
instrumental variables are valid and no single IV contributes more 
than 50% of the weight (29). The weighted mode method could 
produce robust estimates of causal effects for horizontal 
polymorphisms even when most IVs were invalid (30). MR-RAPS is 
designed to address the problem of systematic and specific multivariate 
variability, it involves balanced multivariate effects and allows for 
some large values. This approach is particularly useful when no 
genetic variants satisfy the exclusionary restriction assumption. 
MR-RAPS could yield reliable estimates even when instrumental 
variables are weak (31). MR-PRESSO is a statistical method that 
detects and corrects for outlier genetic variation in Mendelian 
randomization studies to mitigate bias in causal effect estimates. The 
method uses a regression-based approach to identify outliers and 
provide outlier-corrected estimates of causal effects based on a test for 
heterogeneity in causal estimates of different genetic variants to reduce 
the effect of outliers (32). Further sensitivity analyses included the 
MR-Egger intercept test, the MR-PRESSO global test, the Cochran’s Q 
test, the leave-one-out analysis, and the MR Steiger filtering to verify 
the robustness of the MR analysis. The MR-Egger intercept analysis 
was used to assess whether there was horizontal pleiotropy for 
multiple instrumental variables, and if the intercept term of the 
MR-Egger regression was significantly different from zero, it indicated 
that there was horizontal pleiotropy (28). The MR-PRESSO global test 
is another method of determining the presence of horizontal 
pleiotropy, which assesses the degree of horizontal pleiotropy by 
calculating the sum of the squared residuals of the effect of each SNP 
and the IVW result after removing that SNP (32). We used Cochran’s 
Q test to identify the presence of heterogeneity (33), When p-values 
significantly indicated the presence of heterogeneity, MR analysis was 
carried out using the random effects IVW method. We used leave-
one-out analysis to determine whether individual SNPs drive causality, 
and observe whether there is a significant change in causal effect by 
sequentially excluding a SNP. To avoid reverse causal effects, we used 
the MR-Steiger filtering method to test the direction of the potential 
causal associations (34). All MR analyses were performed using 
TwoSampleMR package (version 0.5.6) (35), Mendelian 
Randomization package (version 0.6.0) (36) and MVMR package 
(version 0.3). MR-PRESSO package (version 1.0). All analyses were 
based on R software (version 4.2.1; The R Foundation for Statistical 
Computing, Vienna, Austria).

Results

The F-statistics for job involves heavy manual or physical work, 
job involves mainly walking or standing and work/job satisfaction 
were 36.7 (from 29.8 to 85.0), 43.4 (from 31.2 to 101.6), and 22.7 (from 
20.9 to 28.2), indicating adequate strength of the instrumental 
variables. Given the significant heterogeneity (p for 
heterogeneity < 0.05) (Table 2), the random effects IVW method was 
used as the basic analysis. Univariate IVW results showed that 
genetically predicted jobs involving heavy manual or physical work 
were significantly positively associated with LBP (OR, 2.117; 95% CI, 
1,288–3.479; p = 0.003) (Figure 2). Although the MR-Egger intercept 
test failed to suggest horizontal pleiotropy (p for intercept = 0.204), the 

MR-PRESSO global test showed the presence of horizontal pleiotropy 
(p for global test < 0.001). Robustness analysis using multiple MR 
methods showed consistent trends, except for MR-Egger, which may 
be due to violation of the NOME assumption (37). After removing 
outliers by MR-PRESSO, evidence of horizontal pleiotropy was no 
longer present (p for global test = 0.100), although the results were not 
significantly different from the original results after removing outliers 
(p for distortion test = 0.702). The leave-one-out analysis showed that 
all error lines after removing any SNP were located to the right of 0, 
which demonstrated that causal effects are not driven by partial SNPs 
(Figure 3A).

According to the univariate IVW results, genetic prediction of job 
involves mainly walking or standing was significantly positively 
associated with LBP (OR, 1.429; 95% CI, 1,035–1.975; p = 0.030) 
(Figure 2). The MR-Egger intercept test failed to suggest horizontal 
multiplicity (p for intercept = 0.999), and similarly, the MR-PRESSO 
global test showed the absence of horizontal pleiotropy (p for global 
test = 0.052). Furthermore, although robustness analysis using 
multiple MR methods showed a consistent trend, leave-one-out 
analysis showed that this causal effect was driven in part by SNPs 
(Figure 3B).

When exposure was genetically predicted by work/job satisfaction, 
neither univariate IVW nor other MR methods were significant, 
demonstrating a lack of relevant evidence for a causal link 
(Figures 2, 3C).

Despite the use of the Steiger filtering method, however, for the 
three exposures of interest, no SNP was found to explain more 
variance in the outcomes than exposure, i.e., there were no reverse 
causal IVs. The MR-Steiger directionality test indicated that the 
hypothesized direction of causality for work-related LBP risk was 
correct for all (Table 2).

We examined the effect of potential confounders on causal 
associations using the multivariate MR approach. The direct causal 
association of job involves heavy manual or physical work on LBP 
remained significant regardless of adjustment for any of the 
confounders, although some estimates were attenuated (Figure 4). In 
addition, when adjusting for BMI, major depression, mood swings, 
sedentary behavior and years of schooling, the causal relationship 
between job involves mainly walking or standing and LBP was no 
longer significant (Figure 4). Given that no causal effects were found 
for work/job satisfaction and LBP, multivariate MR analyses were 
not conducted.

Discussion

This MR study provided evidence that genetically predicted job 
involves heavy manual or physical work may be causally associated 
with increased risk of LBP, even after adjusting for various potential 
confounding factors. By way of contrast, genetically predicted job 
involves mainly walking or standing and genetically predicted job 
satisfaction, were not found to be causally linked to the likelihood of 
experiencing LBP. Our study validated the association between heavy 
physical work and LBP through a causal inference approach based on 
genetic data, providing new evidence for occupation-related LBP.

With regard to the positive causal association from jobs involving 
heavy manual or physical work to LBP, the results are similar to those 
of a recent national health questionnaire study, which found that 
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occupations such as construction workers and floor cleaners had the 
highest prevalence of low back pain (frequent and severe), while 
construction and extractive occupations reported the highest work-
related prevalence of LBP, and in addition, workers who required 
frequent exertion or standing were more likely to report low back pain 
outcomes than workers who did not report these problems (38). This 
phenomenon may be attributed to the fact that heavy manual workers 
have to be  exposed to more lifting, dragging, and whole-body 
vibration, adding additional forces to the spine, and several case-
control studies have demonstrated that peak lumbar shear forces 
during manual labor (39) and cumulative lumbar disk compression 
are significantly associated with LBP (40), and another cohort study 
that included 1,131 workers showed that each unit increase in 
cumulative lower back moment pair would increase the risk of LBP by 
3.01-fold after adjusting for age, sex, BMI, smoking, and work status 
(41). A recent in vitro study showed that abnormal spinal mechanical 

stress activates the Wnt signaling pathway in disk tissue, accelerating 
disk matrix degeneration, neural invasion, and scorching, ultimately 
leading to disk degeneration (42).

Our study showed no causal relationship between job involves 
mainly walking or standing and LBP. Although the IVW results 
were significant, the leave-one-out method suggested that this 
causal effect was spurious and that there were several single SNPs 
driving the causal effect. The multivariate MR approach further 
explored the effects of potential confounding, and after adjusting 
for BMI, major depression, mood swings, sedentary behavior and 
years of schooling, the direct causal effect from job involves mainly 
walking or standing to LBP was no longer significant, demonstrating 
that job involves mainly walking or standing was not a direct causal 
factor for LBP. Previous observational studies have not consistently 
concluded whether walking or walking at work contributes to LBP, 
with one cohort study including 187 workers finding a significant 

TABLE 2 The results for sensitivity analysis.

Exposures Heterogeneity test Pleiotropy test MR-
PRESSO 

distortion 
test

MR-Steiger 
directionality 

test

Cochran’s 
Q statistic

p MR-Egger 
regression

MR-PRESSO global test p

Intercepts p p (before 
removing 
outliers)

p (after 
removing 
outliers)

Job involves 

heavy manual or 

physical work

66.99 <0.001 0.029 0.204 <0.001 0.100 0.702 Correct causal 

direction

Job involves 

mainly walking 

or standing

23.41 0.037 −1.12e-05 0.999 0.052 – – Correct causal 

direction

Work/job 

satisfaction

54.97 <0.001 −0.004 0.771 <0.001 0.017 0.831 Correct causal 

direction

FIGURE 2

Causal effect of occupational factors on low back pain in univariable Mendelian randomization analyses.
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negative association between walking and high LBP intensity, and 
a non-significant result between standing still and high LBP 
intensity (43), while another study including 698 blue-collar 

workers reported a significant positive association between 
prolonged standing during the day and LBP (β = 0.27) (44). Roffey 
et al. (8) conducted a systematic review that included 18 original 

FIGURE 3

Leave-one-out plots of (A) job involves heavy manual or physical work, (B) job involves mainly walking or standing, (C) work/job satisfaction.

FIGURE 4

Causal effect of occupational factors on low back pain in multivariable Mendelian randomization analyses (Estimates based on multivariable inverse 
variance weighted method).
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studies and concluded, after assessing them using Bradford-Hill 
causality criteria, that occupational standing or walking was 
unlikely to be an independent cause of LBP in workers.

As univariate MR did not find a causal effect between job 
satisfaction and LBP, we  did not conduct multivariate MR to 
explore possible sources of confounding. Earlier studies have 
suggested a positive association between low job satisfaction and 
LBP (9, 45), but this association is subject to challenges of 
confounding and reverse causation. First, low job satisfaction 
may be associated with excessive job stress. Even in the absence 
of organic disease, individuals reporting high levels of stress may 
report more pain, whereas individuals with different personality 
traits report low stress and no symptoms despite the presence of 
objective signs of illness (46). This effect may explain the 
sometimes strong association between work stress and 
LBP. Alternatively, back injuries at work may contribute to LBP, 
which may also lead to reduced job satisfaction, creating 
uncertainty about the correct interpretation of the association 
between the two.

Our current study has several advantages. We controlled for bias due 
to population stratification by limiting the study population to individuals 
of European ancestry. We  conducted several important sensitivity 
analyses to test the assumptions of the MR model. We selected the most 
significant independent SNPs identified by the most recent and largest 
GWAS of work-related phenotypes available, so that all SNPs were 
strongly associated with the exposure of interest, ensuring the “correlation” 
hypothesis. Several statistical methods were used to reduce the pleiotropic 
effect and to satisfy the “exclusion restriction” and “exchangeability” 
assumptions, and possible confounding was analyzed using multivariate 
MR methods to further validate the robustness of the results and explore 
possible levels of sources of pleiotropy.

However, the present study must be interpreted in the context 
of its limitations. First, because genetic analyses are generally 
weak at detecting non-linear effects and provide qualitative 
rather than quantitative information, clinical effects may differ 
from the effect sizes of our genetic analyses. Second, because 
causal estimates of binary exposure may represent the average 
causal effect of disease liability (47), a residual possibility of a 
common risk factor effect for heavy physical labor and LBP may 
exist. Given these two limitations, the clinical and biological 
interpretation of causal findings in this study should 
be interpreted with caution. Third, due to the unavailability of 
pooled GWAS data on work factors from other ethnic groups, 
we  used only individuals from European populations in this 
study, and we were unable to further validate the MR results; 
further studies extending the analysis to other ethnic populations 
may help to confirm the generalizability of the results. Further 
MR studies are needed to confirm the finding that heavy work 
has a causal risk effect on LBP. Finally, our assessment of 
occupational factors relied on questionnaires, lacking data tools 
or standards to quantify the physical demands or intensity of a 
job. Consequently, potential inaccuracies might arise due to 
cognitive or other subjective factors among the participants, 
which could lead to attenuated results.

In conclusion, we  provided genetic evidence that heavy 
physical work could elevate the risk of LBP; at the same time, 

there was no statistically significant relationship between 
prolonged walking and standing at work, job satisfaction, and 
LBP. These findings may contribute to the development of 
effective LBP prevention and intervention strategies. For 
instance, encouraging regular breaks for heavy manual workers, 
optimizing the work environment, providing appropriate tools 
and equipment, alleviating lower back pressure, and 
implementing routine health check-ups can be  undertaken to 
ameliorate the health inequalities stemming from lower back pain 
induced by strenuous physical labor.
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