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Introduction: Several indicators were employed to manage the COVID-19

pandemic. In this study, our objective was to compare the instantaneous

reproductive number and the epidemic growth rate in the Spanish population.

Methods: Data on daily numbers of cases, admissions into hospitals, admissions

into ICUs, and deaths due to COVID-19 in Spain from March 2020 to March 2022

were obtained. The four “pandemic state indicators”, which are daily numbers

of cases, admissions into hospitals, admissions into ICUs, and deaths due to

COVID-19 in Spain from March 2020 to March 2022 were obtained from the

Instituto de Salud Carlos III. The epidemic growth rate was estimated as the

derivative of the natural logarithm of daily cases with respect to time. Both

the reproductive number and the growth rate, as “pandemic trend indicators,”

were evaluated according to their capacity to anticipate waves as “pandemic

state indicators.”

Results: Using both the reproductive number and the epidemic growth rate, we

were able to anticipate most COVID-19 waves. In most waves, the more severe

the presentation of COVID-19, the more e�ective the pandemic trend indicators

would be.

Conclusion: Besides daily number of cases or other measures of disease

frequency, the epidemic growth rate and the reproductive number have di�erent

roles in measuring the trend of an epidemic. Naïve interpretations and the use of

any indicator as a unique value to make decisions should be discouraged.

KEYWORDS

COVID-19, SARS-CoV-2, reproductive number, epidemic growth rate, epidemic growth

curve

1. Introduction

During the COVID-19 pandemic, public health authorities dealt with the need to

make decisions that affected not only the functioning of the health system but also

people’s activities. These decisions could include whether and when to order partial or

total lockdown, disruption of economic life, closing of borders, and use of masks, among

others, and when to resume normal activity. To make the above decisions, several pandemic

indicators were used. An alert system should have at least two kinds of indicators (1): (1)

a measure of state (i.e., what is the current burden of disease) and (2) a measure of trend

(i.e., in what amount is the current burden of disease increasing or decreasing). Several
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state measures were available, namely the incidence of new cases

in the whole population or specific age groups, the number of

patients admitted to hospitals or ICUs, and the number of deaths.

However, regarding the trend measures, the spectrum is rather

limited, with the instantaneous reproductive number being the

most widely used (2).

In brief, the basic reproductive number (R0) is the average

number of secondary cases produced by each primary case at the

beginning (i.e., time = 0) of the pandemic, when all people in the

population are susceptible to the disease, and no control measures

have been put in place. R0 depends on the number of contacts

per day a primary case has, the probability of transmitting the

disease to a contact, and the duration of infectiousness. Then, the

instantaneous reproductive number at time t (Rt) is the average

number of secondary cases produced by each primary case at time

t when some people are no longer susceptible or some control

measures are enforced (2). Estimating Rt requires a model that at

least should include the number of cases and the serial interval

(i.e., the gap between a primary case with symptom onset and

a secondary case with symptom onset) (3). Several methods of

estimating Rt have been developed (4–6), including both dynamic

and statistical approaches.

Dynamic models are usually variants of the Lotka-Euler

equation (7). They require the estimation of parameters in a fully

specified epidemiological model (say, SIR, SEIR, etc.) to analytically

obtain Rt. For instance, Arroyo-Marioli et al. (8) estimated Rt as

a linear transformation of the growth rate in the context of a SIR

model to study the evolution of COVID-19. Lipsitch et al. (5)

derived Rt for a SEIR model as a non-linear transformation of

the epidemic growth rate and applied it to the epidemic of SARS.

Rodiah et al. (9) used an age-structured SEIRS model to study the

evolution of Rt in Germany during the COVID-19 pandemic.

However, statistical models can also be used to study the

characteristics of a pandemic based on time series data and

information on the serial interval. For instance, let us suppose

a disease with a fixed serial interval of 5 days. Rt is estimated

by dividing the number of new cases on day t by the number

of new cases on day t-5. Cori et al. (4) further developed this

idea by considering the serial interval as a random variable with

a known distribution, thus building a Bayesian estimator of Rt.

Furthermore, they developed the software EpiEstim, which helps

estimate Rt from time-series data. Other authors, such as Wallinga

and Teunis (6), also applied likelihood-based procedures to study

the SARS epidemic.

The naïve interpretation of Rt is straightforward. Let us suppose

a disease with a 10-day serial interval. Rt = 2 would mean that at

day t+10, the number of new cases will be twice the number of

new cases at day t. Therefore, Rt > 1 means the next generation

of cases will outnumber the current generation (so the incidence

is increasing), Rt < 1 means the opposite (so the incidence is

decreasing), and Rt = 1 means the incidence is stable (6). This

interpretation, which has been widely used in the media during

the pandemic, has some caveats. First, Rt is an average estimate.

Therefore, Rt in a region could be >1 while some parts of it have

Rt < 1. Second, Rt is unitless, leading to its non-interpretability

as a measure of time. For instance, let us suppose two diseases, A

and B, with the same Rt = 2 but different serial intervals (10 days

for disease A and 6 months for disease B). For disease A, Rt = 2

means that the number of new cases would double every 10 days,

while for disease B, it means that the number of new cases would

double every 6 months. Therefore, Rt says nothing about the speed

at which the incidence is growing or declining (10). Finally, it has

been pointed out that estimating Rt always requires a delay, as at

least a serial interval would pass before the required information is

gathered (10).

An alternative trend indicator is the epidemic growth rate,

which has been much less used than Rt during the COVID-19

pandemic. The epidemic growth rate is the instantaneous change

in incidence at time t and could be estimated as a derivative

from a smoothed function of the incidence. As with Rt, the naïve

interpretation of the growth rate is uncomplicated, with 0 being the

threshold: a growth rate > 0 means that the incidence is rising, and

a growth rate < 0 means that the incidence is declining. Contrary

to Rt, the epidemic growth rate has units expressed as the change

per time unit. For instance, a growth rate = 0.1/day means that

the number of cases at day t+1 will be 10% higher than at day

t. A couple of advantages of the epidemic growth rate over the

reproductive number are that the growth rate does not require

model assumptions and that estimating it does not require waiting

until the next generation of cases appears. Among its downsides, it

has been noted that communicating a figure such as the epidemic

growth rate, which is obtained as a derivative, is not as simple as

communicating Rt.

The purpose of this study is to compare the evolution of Rt

and the epidemic growth rate in the Spanish population during the

COVID-19 pandemic and to describe their respective abilities to

anticipate an epidemic wave.

2. Methods

2.1. Notation

Instantaneous reproductive number: The average number of

secondary cases produced by each primary case at time t. For

simplicity, we have used “reproductive number” as a synonym.

When abbreviating it, we have used Rt throughout the article.

Epidemic growth rate: The first derivative of a smoothed

function of the number of cases at time t. For simplicity, we used

“growth rate” as a synonym.

Generation time: The interval of time between successive

infections in a transmission chain (11). We assume that the

generation time is a random variable rather than a fixed value. The

generation time is usually unobserved.

Serial time: The interval of time between the illness onsets of

the infector and the infected (11). Serial time is generally and, in

this article, used as a proxy for generation time. We assume that

serial time is a random variable with a gamma distribution.

2.2. Data and sources of data

Data were obtained from the Instituto de Salud Carlos

III (ISCIII) and proceeded from notified cases to the Spanish
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epidemiological surveillance net (Red Nacional de Vigilancia

Epidemiológica). These data are publicly available at https://

cnecovid.isciii.es/covid19/#documentaci%C3%B3n-y-dato (12)

and were downloaded on 1 January 2023. Data include the number

of new cases by date of diagnosis, new admissions to hospitals, new

admissions to the ICU, and deaths. In the absence of the date of

diagnosis, the date of declaration or date of symptom onset was

used. Data were obtained on a daily basis from 1 March 2020 to

27 March 2022. Data collected after 27 March 2022 were excluded

from the study as they only included people aged 60 years and

above. Information on the prevalence of circulating variants was

obtained from Our World in Data (13).

2.3. Identification of epidemic waves

Although there is no standard definition of the epidemic wave,

both the media and public health authorities have identified a

number of them. In this study, we used the periods identified for

the evolution of the pandemic in Spain by the ISCIII as follows (14):

• First period: From the beginning of the pandemic until 21 June

2020, when the main restrictions on movement were removed

(i.e., the end of the so-called “Estado de Alarma”).

• Second period: From 22 June 2020 to 6 December 2020.

• Third period: From 7 December 2020 to 14 March 2021.

• Fourth period: From 15 March 2021 to 19 June 2021.

• Fifth period: From 20 June 2021 to 13 October 2021.

• Sixth period: From 14 October 2021 to 27 March 2022.

2.4. Estimation of the instantaneous
reproductive number

The effective reproductive number was estimated using the

software EpiEstim 2 (15), which is accessible from the study of

Thompson et al. (16). It uses a modification of Cori et al. (4) with a

Bayesian framework where the a priori distribution of Rt is gamma

with a mean of 5 and a standard deviation of 5, which makes

the prior a little more informative. The serial interval distribution

was set as having a gamma distribution with a mean of 5 days,

a standard deviation of 1.9, and a maximum length of 10, as

previously described with Spanish data (17). Then, EpiEstim 2

obtains the posterior distribution of Rt conditioned to the serial

interval distribution by combining the Rt prior with the Poisson

likelihood obtained from the data.

2.5. Estimation of the epidemic growth rate

The epidemic growth rate was estimated as the derivative of

the natural logarithm of daily cases with respect to time. To make

logarithms estimable, days with zero cases were set at 0.1. Then, a

5-day moving average was obtained. Finally, the moving average

was fitted with a cubic spline, which was analytically differentiated.

This procedure was carried out using the software Stata 16/SE

(StataCorp, College Station, TX, USA).

TABLE 1 Share of SARS-CoV-2 variants circulating in Spain every 4 weeks.

Period
(wave)

Date Alpha Delta Omicron

1 Any date 0 0 0

2 Any date 0 0 0

3 7 December 2020 0 0 0

3 4 January 2021 13 0 0

3 1 February 2021 28 0 0

3 1 March 2021 58 0 0

4 29 March 2021 85 0 0

4 26 April 2021 88 0.1 0

4 24 May 2021 86 2.8 0

5 21 June 2021 66 19 0

5 19 July 2021 16 75 0

5 16 August 2021 2 96 0

5 13 September 2021 0 100 0

5 11 October 2021 0.1 99 0

6 8 November 2021 0 100 0

6 6 December 2021 0 98 2

6 3 January 2022 0 34 66

6 31 January 2022 0 5 95

6 28 February 2022 0 0.3 99

Data are expressed in percentages. Source: Our World in Data (https://ourworldindata.org/

covid-cases, accessed on 9 January 2023).

3. Results

Although there is no one-to-one correspondence between

waves and SARS-CoV-2 variants, some relationships could be

noted. The first case of the alpha variant was identified at the

end of 2020; the alpha variant share was 58% by 1 March 2021

and 85% by 29 March; then, it plateaued until 24 May 2021,

after which the alpha variant share began to decline; thus, the

emergence of the alpha variant corresponded to the third wave and

its dominance to the fourth wave. The first case of delta variant in

Spain was identified on 26 April 2021, reaching 19% by 21 June

2021, 53% by 5 July 2021, and 89% by 2 August 2021. Therefore, the

emergence of the delta variant corresponded to the fourth wave and

its dominance to the fifth wave. The first case of the omicron variant

was identified on 29 November 2021; it reached 66% by 3 January

2022. Therefore, its emergence corresponded to the beginning of

the sixth wave and its dominance to the second half of the sixth

wave (Table 1). We limited our analysis to waves second to sixth, as

the data in the first wave were much less reliable.

The daily number of cases, admissions into hospitals,

admissions into the ICU, and deaths is summarized in Figure 1.

All data in this figure has been smoothed with cubic splines to

eliminate irregularities due to underreporting on weekends. The

figure is arranged from the top to the bottom so that there is a

gradient in severity. Vertical dotted lines (red) indicate the breaking

points between waves. A grid has been drawn to serve as a temporal
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FIGURE 1

Daily number of cases, admissions into hospitals, admissions into the ICU, and deaths in Spain from 30 March 2020 to 27 March 2022 (smoothed with

cubic splines). Vertical dotted lines (red) indicate the beginning and the ending of each wave. A grid has been added to serve as a reference; the

distance between two consecutive lines in the grid is 2 weeks.

reference; the gap between two consecutive lines in the grid is 2

weeks. Let us consider the second wave (between 21 June 2020 and

6 December 2020). There is some delay in the maximum as we

move from the top to the bottom of the figure, i.e., the more severe

the disease, the later the wave peak; the total gap from the peak in

number of cases to the peak in number of deaths is approximately 2

weeks. This total gap also occurred during waves third and fifth, the

latter with a total gap of 4 weeks, but not during waves fourth and

sixth, in which the peaks are nearly coincident (in the fourth wave,

the peak in number of deaths is almost undetectable, but deaths

occurred before any other peaks were achieved). A remarkable

finding is that, except for the fifth wave, there were no more than

2 weeks between the peak in number of cases and the peak in

number of deaths. Therefore, there was little time to take public

health measures between the increase in cases and the increase in

more severe disease or death, making it necessary to use epidemic

indicators other than the number of cases.

The evolution of the daily number of cases, instantaneous

reproductive number, and epidemic growth rate are displayed in

Figure 2. In each wave from the second to the sixth, both the

reproductive number and the growth rate peaked widely before

the number of cases. The second wave is somehow peculiar,

meaning that the number of cases increased gradually so that

both the reproductive number and the growth rate peaked twice:

the first one, which is the highest, at approximately 15 weeks

before the summit of cases, and the second one at 3 weeks

before the peak in number of cases. In the third, fourth, fifth,

and sixth waves, both the reproductive number and the growth

rate peaked 4 weeks before the number of cases. In all waves,

peaks in reproductive number and growth rate coincided with

each other.

Figures 3–5 show the joint evolution of reproductive number

and growth rate with the number of admissions into hospitals

(Figure 3), admissions into the ICU (Figure 4), and deaths

(Figure 5). In all three figures, there was a notable temporal gap

between the summits of reproductive number and growth rate

and those of the disease indicators, which happened in each wave.

The only exception was the small peak in number of deaths

(Figure 5) in the fourth wave, which happened early in the wave

and almost coincided with peaks in reproductive number and

growth rate.

To further demonstrate the relationships between the new cases

or deaths and both the reproductive number and the epidemic

growth rate, we applied the same methods to the pandemic

evolution in Italy, the first European country hit by COVID-

19, and the United Kingdom. The results are reported in the

Supplementary material. Both the growth rate and the reproductive

number increased some weeks before any wave in incidence cases

or deaths. It is remarkable that, in Italian data, increases in

reproductive numbers in July 2021 (about the time the delta variant

emerged) and December 2021/January 2022 (related to the first

omicron-variant wave) were more abrupt than those in growth

rate. The Supplementary material also displays the uncertainty in

estimating the reproductive number.
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FIGURE 2

Daily number of cases (smoothed with cubic splines) (green line), instantaneous reproductive number (blue line), and epidemic growth rate (red line).

Dotted vertical lines (red) and the corresponding dates in the x-axis indicate the beginning and the ending of each wave. A grid has been added to

serve as a reference; the distance between two consecutive lines in the grid is 2 weeks. The y-axis on the left is set so that epidemic growth rate = 0

and reproductive number = 1 coincide.

FIGURE 3

Daily number of admissions into hospitals (smoothed with cubic splines) (green line), instantaneous reproductive number (blue line), and epidemic

growth rate (red line). Dotted vertical lines (red) and the corresponding dates in the x-axis indicate the beginning and the ending of each wave. A grid

has been added to serve as a reference; the distance between two consecutive lines in the grid is 2 weeks. The y-axis on the left is set so that

epidemic growth rate = 0 and reproductive number = 1 coincide.

4. Discussion

The main result of this study is that both the instantaneous

reproductive number and the epidemic growth rate anticipated

the waves of severe or deadly COVID-19 several weeks before

they could be anticipated by the number of cases. This result was

consistent for admissions to the hospitals, admissions to the ICU,

and deaths, as well as for most waves in the first 2 years of the

pandemic. A public health implication would be that real-time

estimation of either the reproductive number or the growth rate

would allow the authorities to make decisions faster than waiting

for the evolution of the number of cases.

The evolution of reproductive numbers and epidemic growth

rates mirror each other, which is not surprising as both are

transformations from the number of cases curve, provided that

the generation time does not change. With this assumption in
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FIGURE 4

Daily number of admissions to the ICU (smoothed with cubic splines) (green line), instantaneous reproductive number (blue line), and epidemic

growth rate (red line). Dotted vertical lines (red) and the corresponding dates in x-axis indicate the beginning and the ending of each wave. A grid has

been added to serve as reference; distance between two consecutive lines in the grid is 2 weeks. The y-axis on the left is set so that epidemic growth

rate = 0 and reproductive number = 1 coincide.

FIGURE 5

Daily number of deaths (smoothed with cubic splines) (green line), instantaneous reproductive number (blue line), and epidemic growth rate (red

line). Dotted vertical lines (red) and the corresponding dates in x-axis indicate the beginning and the ending of each wave. A grid has been added to

serve as reference; the distance between two consecutive lines in the grid is 2 weeks. The y-axis on the left is set so that epidemic growth rate = 0

and reproductive number = 1 coincide.

mind, reproductive numbers and epidemic growth rates encode the

same information (7). Therefore, when deciding which indicator

could be more useful, we should focus not on the information

it provides but on its estimation properties, as discussed in the

following paragraphs.

First, let us zoom in on the characteristics shared by

the reproductive number and the growth rate. (A) Both the

reproductive number and the epidemic growth rates are averages

across different sub-populations (e.g., age groups or geographical

units), making it possible for an estimate to hide great disparities in

transmission between, say, people aged 60–64 vs. people aged 10–

14 or between rural vs. urban areas. (B) They are both averages over

time, forcing the researcher or the public health authority to decide

the time window for estimating them. A brief time window may
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yield few points for a reliable estimation, whereas an extended time

window could compromise the ability to capture the immediate

characteristics of trend indicators (10). (C) Any trend indicator

requires data to be reliably gathered during the studied period.

The reliability of data collection during the pandemic has been

affected by multiple factors. These include shifts in clinical and

epidemiological testing criteria, variations in test quality—ranging

from lab-intensive methods in the early stages to at-home rapid

tests introduced approximately a year later—and fluctuations in

the volume of tests conducted. Additional complications arise from

changes in reporting guidelines, inconsistencies in data definitions,

and delays in reporting.

Second, let us focus on differences when estimating the

reproductive number and the growth rate. The main difference

in estimating them is that the reproductive number requires a

model (18), whereas the growth rate is model-free (10). Different

models to estimate the reproductive number coexist (4–6), some

using a dynamic model such as the SIR-type (5) and others using

a statistical model (4, 6). They all need at least some competence

to estimate (10) or assume (18) the generation time or serial time

distribution. It is noteworthy that serial intervals could change

during an epidemic due to public health measures, behavioral

changes (19), or the emergence of new viral variants. Therefore,

the reproductive number estimates are susceptible to the chosen

model, so different assumptions could eventually lead to different

estimates (19, 20), making it less practical to make decisions in

an epidemic. For instance, Challen et al. (19) have shown the

way that changes in serial interval assumptions could affect the

reproduction number estimates: assuming larger means would lead

to reproductive number estimates away from the critical value 1,

and this effect is more important in the dynamic phases of the

epidemic (i.e., when ascending or descending, not in the peak),

while assuming a larger standard deviation has little effect in the

ascending or descending phases but could lead to an estimate

that the reproductive number would cross 1 later than estimates

obtained with a lower standard deviation.

Even after setting the model and its assumptions, real-time

estimation of the reproductive number is not straightforward. First,

cases could be reported some days after the beginning of symptoms,

making the estimation of the reproductive number misleading.

Second, estimating the instantaneous reproductive number for day

t requires information on the immediate next generation of cases,

which could last for a complete serial interval to be completed.

For instance, in our study, we used a serial interval with a mean

= 5 days, standard deviation = 1.9, and a maximum of 10 days.

Therefore, to have the complete set of necessary data available,

the reproductive number could not have been estimable until day

t+10 (i.e., t + maximum of the serial interval). Some ways of

reducing this gap have been published. Some models assume a

fixed value for serial intervals (for instance, 5 days for all secondary

cases), eventually sacrificing accuracy for immediacy. In this regard,

Wallinga et al. (7) have shown that reproductive number estimates

under such an assumption are biased upward so that they put

an upper bound on the values the reproductive number can take.

Another approach is to treat the beginning of symptoms as a

missing data problem. In this regard, De Salazar et al. (17) first

imputed the day of the beginning of symptoms conditionally to the

day of the report and then imputed the day of the beginning of

symptoms for those cases not yet reported. The whole procedure

allowed them to estimate the reproductive number in near real-

time. However, their procedure had only been tested in March–

April 2020, when most diagnosed cases were symptomatic and

many were severe. Notably, the wide availability of testing was not

on the agenda until several months later. Therefore, the method by

De Salazar et al. requires further validation in a setting where most

diagnosed cases are asymptomatic.

In this regard, the main advantage of the epidemic growth rate

is that its calculation does not require data on the next generation

of cases (10), which allows its earlier estimation. However, as

mentioned above, estimating the growth rate from noisy data

requires some smoothing procedures, which might be equivalent

to modeling assumptions (18). Therefore, although Pellis et al.

(10) favored the growth rate based on the lack of assumptions it

requires, Parag et al. (18) considered that both the growth rate and

reproductive number are valuable, the first being better to indicate

the speed at which incidence is growing or declining and the second

being more intuitive for public communication.

The analysis performed in this article depends on the reported

data. Therefore, our results could be sensitive to underreporting,

which varies widely from country to country. For instance, the

incidence-detection ratio has been estimated to be as low as

6.9% globally but 44.6% in high-income countries (21). Regarding

Spanish data, the incidence-detection ratio was estimated at 45.3%,

with important differences from region to region, ranging from

29.3% in the Canary Islands to 61.9% in La Rioja (21). Not only

did the underreporting vary geographically but also throughout

the development of the pandemic. Thus, the infection-detection

ratio trends continued to increase (21), which could be associated

with the wider availability of diagnostic tests. The impact of

underreporting cases in our analysis is difficult to evaluate. We

consider three scenarios: Scenario (1): Underreporting was a

constant in the pandemic: Had this been the case, underreporting

would have affected the results only as a matter of scale (i.e., the

actual number of cases would have been obtained by multiplying

the reported numbers by a constant), leaving the reproduction

number and growth rate unchanged. We could hardly consider

this scenario reliable, as the wider availability of diagnostic tests

could eventually lead to lower underreporting. Scenario (2):

Underreporting could decrease from wave to wave, remaining

almost constant during each wave. In this scenario, estimates

of Rt and growth rate during each wave would have still been

stable, eventually allowing their use to forecast the wave evolution

and make decisions. We consider this scenario to be a fair

approximation as test availability did not change abruptly; for

instance, the infection-detection ratio in Figure 2 shown in Barber

et al. (21) remains constant but slow increases as the pandemic

continued. Scenario (3): Underreporting significantly decreased

during any wave. If this were the case, the reproductive number and

the growth rate would have been downscaled as the wave went on.

Under this scenario, the utility of the reproductive number and the

growth rate would have been questionable unless reliable estimates

of underreporting were available in real time.

In conclusion, despite limitations imposed by data quality, the

epidemic growth rate and the reproductive number would have
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different roles in measuring the trend of an epidemic together

with measures of disease frequency. Naïve interpretations and the

use of any indicator as a unique value to make decisions should

be discouraged.
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