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Introduction: The COVID-19 pandemic has caused over 6 million deaths 
worldwide and is a significant cause of mortality. Mortality dynamics vary 
significantly by country due to pathogen, host, social and environmental factors, 
in addition to vaccination and treatments. However, there is limited data on the 
relative contribution of different explanatory variables, which may explain changes 
in mortality over time. We, therefore, created a predictive model using orthogonal 
machine learning techniques to attempt to quantify the contribution of static and 
dynamic variables over time.

Methods: A model was created using Partial Least Squares Regression trained on 
data from 2020 to rank order the significance and effect size of static variables 
on mortality per country. This model enables the prediction of mortality levels 
for countries based on demographics alone. Partial Least Squares Regression 
was then used to quantify how dynamic variables, including weather and non-
pharmaceutical interventions, contributed to the overall mortality in 2020. Finally, 
mortality levels for the first 60  days of 2021 were predicted using rolling-window 
Elastic Net regression.

Results: This model allowed prediction of deaths per day and quantification of the 
degree of influence of included variables, accounting for timing of occurrence or 
implementation. We found that the most parsimonious model could be reduced 
to six variables; three policy-related variables – COVID-19 testing policy, canceled 
public events policy, workplace closing policy; in addition to three environmental 
variables – maximum temperature per day, minimum temperature per day, and 
the dewpoint temperature per day.

Conclusion: Country and population-level static and dynamic variables can 
be  used to predict COVID-19 mortality, providing an example of how broad 
temporal data can inform a preparation and mitigation strategy for both COVID-19 
and future pandemics and assist decision-makers by identifying population-level 
contributors, including interventions, that have the greatest influence in mitigating 
mortality, and optimizing the health and safety of populations.
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Introduction

The COVID-19 pandemic is among the most disastrous in history 
and the first large pandemic in the last 100 years. COVID-19, which 
is caused by SARS-CoV-2, is not the first pandemic originating from 
the Coronaviridae family; both severe acute respiratory syndrome 
(SARS) and Middle East respiratory syndrome (MERS) were caused 
by newly identified coronaviruses (1). The SARS pandemic began in 
the Guangdong Province in China (2002–2004) with a mortality rate 
of 10%, around 8,000 infections, and nearly 750 deaths (2). The MERS 
pandemic began in Saudi  Arabia in 2012 before spreading to 27 
different countries with around 2,604 confirmed cases, 936 deaths, 
and an mortality rate of 36% (3). COVID-19 had a global impact, 
affecting almost all countries in the world in 2020–2023 and leading 
to at least 7 M – 20 M deaths thus far (4, 5).

With the COVID-related data reported waning, and experiencing 
significant data issues (4), many models have discontinued producing 
forecasts altogether (5–7).

Non-Pharmaceutical Interventions (NPIs) including workplace 
closings, stay-at-home orders, quarantine measures, mask mandates, 
social distancing standards, and the closing of public events were 
implemented in most countries (8). The efficacy of these interventions 
are still debated and may vary considerably by country, demographic 
and societal factors, and likely climate differences across regions. 
Therefore, knowing how country demographics, weather patterns, and 
NPIs may have contributed to COVID-19 mortality is important 
when investigating mechanisms to minimize the COVID-19 death toll 
as well as to provide data-driven solutions to mitigate mortality from 
future pandemics.

Machine learning can facilitate our understanding of factors 
which contribute to covid mortality by incorporating simultaneously 
static and dynamic variables in a single predictive model. The object 
of this study is the evaluation of the contribution and directionality of 
each variable relative to each other using machine learning methods. 
Specifically, we (1) rank order the significance and estimate effect size 
of explanatory variables and their contribution to COVID-19 
mortality, through implementation of two machine learning methods, 
Partial Least Squares Regression (PLSR) and sliding-window Elastic 
Net Regression (ENR); and (2), create time-course predictions for 
COVID-19 mortality, by country. This data-driven approach can then 
be used to inform the responses, in accordance with the importance 
of each driver, with a goal of mitigating mortality from COVID-19.

Materials and methods

Rationale

Several manuscripts have previously used machine learning to 
predict COVID-19 mortality (9–11). We refer readers to the following 
reviews to highlight the strengths of weaknesses of various approaches: 
Every predictive algorithm has strengths and weaknesses due to 
inherent trade-offs between accuracy, speed, and interpretability. In 
this manuscript, we used two methods (PLSR and sliding-window 
Elastic Net regression). Both methods were chosen to strike a balance 
between being easily interpretable, having the speed to be updated in 
seconds, and having the accuracy to give actionable daily predictions 
for countries across the globe. The strength of this analysis is the 

ability to give actionable advice to global corporations, governments, 
and agencies. The predictions facilitate providing sufficient resources 
by country to prepare ahead of spikes in mortality as well as provide 
actionable interventions to decrease the future global burden of 
the pandemic.

Strengths and limitations

Both algorithms (PLSR and sliding-window Elastic Net 
regression) use the assumptions of independent and identically 
distributed random normal variables. In addition, the linear models 
assume additive effects of each variable to the response. These 
assumptions therefore may have less predictive accuracy using 
variables such as alcohol consumption by country which does not 
follow a normal distribution or miss complex interactions arising 
between the variable interactions. In addition, PLSR assumes that the 
response is generated by a process that is driven a small number of 
latent (not directly observed) variables.

Strengths of these models is their ability to account for a high 
amount of collinearity in the system. Almost all predictive variables 
used in this study have some correlation to each other. The Elastic Net 
and PLSR both control well for the information that may be redundant 
between variables, increasing the accuracy of predictions on data 
outside the training set, and reducing the wide array of variables in the 
dataset to a reduced set of factors. This allows the model to 
be simplified for accuracy, speed, and particularly interpretation. If the 
system can be accurately predicted with a small amount of inputs, one 
can assume that the causal factors driving regional mortality may 
be small enough to be identified and controlled.

Data acquisition

Static and dynamic explanatory and response/outcome variables 
were acquired from a wide array of data sources for each country with 
available daily mortality data (Table 1). Mortality during calendar year 
2020 was acquired from John Hopkins Coronavirus Resource Center 
(6, 12). Static variables providing information of a countries general 
health and healthcare situation prior to any experience with 
COVID-19 (2018–2019) were acquired from Kaggle, the US Central 
Intelligence Agency (CIA), World Bank (WB), Oxford University’s 
Our World In Data platform (OWID) and the World Health 
Organization (WHO) (13–17). Dynamic variables which characterize 
each country’s response to COVID-19 during the pandemic were 
acquired from Oxford’s COVID-19 Government Response Tracker, 
and daily climate measures from the National Oceanic and 
Atmospheric Administration (NOAA) for calendar year 2020 (18, 19).

Data preparation

All analysis was performed using Python 3.8 on a Cloudera 
Machine Learning environment using 8 CPUs and 32 GiB memory. 
All visualization including heatmaps, clustergrams, scatterplots, bar 
graphs, and line graphs were created using Python packages 
matplotlib-3.1.3, adjustText-0.7.3, and seaborn-0.11.2. For heatmaps, 
rows were min-max normalized between 0–1 for clarity.
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TABLE 1 Source of static and dynamic variable data chosen for the predictive model.

Variable type Description Source

Outcome variable

Daily reported COVID-19 mortality Mortality by country, by day, 14 day moving average John Hopkins (6, 12)

Static variables

Alcohol consumption Proportion of daily energy derived from alcohol consumption Kaggle (13)

Median age Median age by country CIA (14)

Obesity Percent BMI ≥ 30 – age 18+ WHO (22)

DALYs – HIV/AIDS and tuberculosis DALYs related to HIV/TB OWID (16)

Percent Urban Percent of country population in urban areas WB (15)

DALYs – Cardiovascular diseases DALYs related to CV diseases OWID (16)

DALYs – Chronic respiratory diseases DALYs related to respiratory diseases OWID (16)

DALYs – Diabetes, urogenital, blood, and endocrine 

diseases

DALYs related to diabetes, etc. OWID (16)

DALYs – Self-harm DALYs related to self-harm OWID (16)

DALYs – Interpersonal violence DALYs related to interpersonal violence OWID (16)

Child immunization (DTP3) Percentage of infants receiving three doses of diphtheria-tetanus-pertussis– 

containing vaccine (DTP3)

WHO (17)

At least basic sanitation Percentage of households using at least basic sanitation facilities WHO (17)

Mean fasting plasma glucose Age-standardized mean fasting plasma glucose for adults aged 18 years and older WHO (17)

Tobacco nonsmoking Age-standardized prevalence of adults aged 15 years and older not smoking tobacco 

in last 30 days

WHO (17)

Hospital bed density Hospital beds per capita, relative to a maximum threshold of 18 per 10,000 population WHO (17)

Health worker density Health professionals (physicians, psychiatrists and surgeons) per capita, relative to 

maximum thresholds for each cadre

WHO (17)

International health regulations core capacity index Average percentage of attributes of 13 core capacities WHO (17)

Dynamic variables (time dependent)

Daily minimum and maximum temperature Minimum / maximum Daily Temp NOAA (19)

Percent of day with precipitation Hourly measure of precipitation NOAA (19)

Dewpoint temperature per day Dewpoint per day NOAA (19)

Cancelled Public Events policy Record cancelling public events Oxford (18)

Restrictions on gatherings policy Record limits on gatherings Oxford (18)

Movement restriction policy Record restrictions on internal movement between cities/regions Oxford (18)

Face coverings – masking policy Record policies on the use of facial coverings outside the home Oxford (18)

Shelter in place policy Record orders to “shelter-in-place” and otherwise confine to the home Oxford (18)

Income support policy Record if the government is providing direct cash payments to people who lose their 

jobs or cannot work.

Oxford (18)

Contract tracing policy Record government policy on contact tracing after a positive diagnosis Oxford (18)

School closing policy Record closings of schools and universities Oxford (18)

Public transit closing policy Record closing of public transport Oxford (18)

Public information campaigns Record presence of public info campaigns Oxford (18)

International travel policy Record restrictions on international travel Oxford (18)

COVID-19 Testing policy Record government policy on who has access to testing Oxford (18)

Debt relief policy Record if the government is freezing financial obligations for households (e.g., 

stopping loan repayments, preventing services like water from stopping, or banning 

evictions)

Oxford (18)

Workplace closing policy Record closings of workplaces Oxford (18)
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Daily deaths by country were calculated by subtracting the prior 
days cumulative mortality from the current day cumulative. Daily 
deaths then were converted to 14-day moving averages for each 
country. Countries which had fewer than 200 deaths during 01 Jan 
2020 through 31 Dec 2020 were excluded from the analysis. Weather 
was mapped to respective countries using latitude and longitude from 
the NOAA data lake. Weather information including temperatures, 
dew point, and days with precipitation was averaged for every weather 
station reported within the area of a country. To acquire an average of 
weather patterns, data was used from the years 2010–2020 and 
averaged for all years before analysis. Any given variable for which 
more than 5 years of data was missing was removed from the analysis. 
Climate measures that had more than five years of missing data for a 
given variable were removed from the analysis. All data was manually 
downloaded and stored as comma-separated value files from 
respective sources. The data was merged using the ISO3 country 
codes. Missing data was imputed using the median values for the 
respective variable from all other countries.

Statistical modeling

To cluster countries by mortality dynamics, we  min-max 
normalized the daily mortality values by country and used cosine 
similarity. We manually chose six clusters based on the hierarchical 
clustering to help conceptualize countries with similar COVID-19 
dynamics. The clusters were used for visualization only; all countries 
with more than 200 reported deaths within 2020 were used separately 
to train the predictive models.

Using partial least squares regression, all explanatory variables 
were unit normalized to have a mean of 0 and a standard deviation of 
one before modelling. The PLSRegression() function was used from 
the scikit-learn-0.24.2 python package. Model accuracy over a range 
of principal components was assessed using the root mean squared 
error (RMSE). The number of principal components to use in the final 
model was chosen using the elbow rule (20). Two principal 
components were used in the static variable model and four for the 
dynamic model.

To train the machine learning algorithm to predict COVID-19 
mortality, a response vector, y, and two sets of matrices (XS for static 
variables and XY for dynamic variables) were compiled. The model 
was then trained on data from the 366 days in 2020. The model was 
then tested using a data set consisting of the first 60 days in 2021. 
Rolling elastic net regression was performed using the linear_model.
ElasticNet() function from the scikit-learn-0.24.2 python package. 
Optimization of the two parameters in elastic net regression, alpha 
and the l1_ratio, was performed using an exhaustive search method 
for a random subset of ten countries to minimize the root mean 
squared error for the predictive model over the test set.

Rolling regression was performed by choosing a minimal window 
size of 1 day. The training data then consisted of using the mortality 
data for a single country from the previous day for all countries in 
conjunction with the dynamic variable values for the given country 
from the same time window as predictors. The model was trained on 
the value for 365 days using the previous day as a predictor (the first 
day in the sequence did not have a preceding date and could not 
be used in the training set). The window size was then increased to 
2 days and calculated each day using the mean and slope of the data 

within the 2-day window. The model was trained on 364 days, as the 
first two days in the series did not have a complete set of explanatory 
variables. The window size was expanded until a size of 60 days was 
reached, as we were predicting 60 days into the future. A consensus 
model was then created by averaging the prediction for each model of 
varying window size.

Confidence intervals

A bootstrap method was applied to calculate the confidence 
bounds in the predictions, whereby 20% of the training data was 
replaced with data sampled randomly from the complete distribution 
of training data for each given country. The bootstrap procedure was 
repeated 100 times. The predictions were sorted by value, and the 
0.975 and 0.025 quantiles were calculated for each day for the upper 
and lower bounds of the 95% confidence intervals, respectively. The 
0.75 and 0.25 quantiles for the 50% confidence interval were 
also calculated.

Data compilation for response variable

In order to train a machine learning algorithm to predict 
COVID-19 mortality, we compiled the 14-day moving average with 
two sets of matrices for static and dynamic variables. The model was 
trained using data from each of the 366 days in 2020 and tested to 
make predictions on the first 60 days of 2021. The response vector was 
acquired from the John Hopkins University of Medicine Coronavirus 
Resource Center (6, 12). Countries were clustered by similarity 
in dynamics.

Data compilation for static explanatory 
variables

To construct the static variable matrix, we searched for global 
data, by country, for an array of population dynamics to characterize 
each country’s subsequent mortality due to COVID-19. Preceding the 
spread of the COVID-19 pandemic, aggregated data relating to a 
country’s burden of disease (21), comorbidities (16), alcohol 
consumption (13), proportion population obese (22), access to 
healthcare (17), economic situation (23), geographic location (6, 12, 
19), median age (14), and urbanization (15) were gathered. The 
Disability-Adjusted Live Years (DALYs) lost per 100,00 population 
overall and by disease were also compiled (21, 22).

Data compilation for dynamic explanatory 
variables

During the expansion of the pandemic in 2020, daily data relating 
to a country’s climate measures (maximum daily temperature, 
precipitation, etc.) and non-pharmaceutical interventions (NPI) were 
collected from the United States NOAA (19) and Oxford University’s 
COVID-19 Government Response Tracker (18), respectively. To 
create the matrix of dynamic variables, the data of a country’s 
maximum daily temperature and precipitation were retrieved for the 
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timeframe of 01 Jan 2020 through 31 Dec 2020 from the NOAA (19). 
Daily assessments of each country’s Non-Pharmaceutical Interventions 
(NPI) stringency were collected from Oxford University’s COVID-19 
Government Response Tracker (18). The respective government 
responses included recorded closing of schools and universities, 
workplaces and public transportation, cancellation of public events 
and limits on gatherings, shelter in place orders, restriction on 
international travel, financial support and debt relief, campaigns to 
educate the population on COVID-19 and safety, and policies on 
access to COVID-19 testing and facial coverings outside the home.

Predicting cumulative mortality for 2020

To predict cumulative mortality for each country over 2020 using 
the matrix of static variables, PLSR was used, which first projects the 
high-dimensional data into a lower-dimensional space of latent 
variables. These latent variables represent orthogonal or uncorrelated 
sources of variance in the data. Only the number of latent dimensions 
that contributed significant predict power to the model to prevent 
fitting the model to extraneous noise in the training set were kept.

Predicting mortality per day using elastic 
net rolling regression

We incorporated the time dimension to explore how each 
dynamic variable might contribute to COVID-19 mortality. Each 
variable may have a different contribution to explaining COVID-19 
mortality at a specific lag. The lag is defined as the number of days 
from infection to the mortality event. To fully utilize the data from 
dynamic variables, it must be incorporated at a reasonable timeframe 
before the events a model aims to predict. For every 60 consecutive 
days in 2020, the parameters of the model including the coefficients, 
and L1- and L2-penalties were trained to predict the mortality for each 
of the subsequent 30 days. For validation, the model was then used to 
predict the mortality for the first 30 days of 2021. Elastic Net 
Regression (ENR) is a constrained form of Ordinary Least Squares 
regression whereby an L1 and L2 penalty is applied to the fitted 
coefficients. The L1- and L2-penalties encourage regression 
coefficients to remain near zero, thereby preventing overfitting 
through coefficient inflation.

Results

Table 1 Mortality is described in Figure 1A, with countries with 
similar mortality patterns clustered together in Groups A – F. A 
complete clustergram of mortality dynamics per country are included 
in Supplementary Figure S1. To conceptualize the static variables 
representing countries in Cluster B, the heatmap (Figure 1B) shows 
the min-max row normalized value for each variable by country. To 
conceptualize the format of the dynamic variables, we  show the 
dynamics of each variable averaged for the countries in Cluster B in 
Figure 1C.

For the 17 static variables considered, the 17-dimensional matrix 
was projected into a lower-dimensional (latent) space. Model error 
was tested (RMSE) after stepwise discarding the latent dimensions that 

explained the smallest amount of variance in the response. The scree 
plot in Supplementary Figure S2 shows the amount of information 
gained as a function of the number of latent variables included. As 
most of the information was contained in the first two principal 
components, the PLSR model was created to predict each country’s 
cumulative mortality per capita in 2020 from the first two principal 
components of the matrix.

Figure 2A illustrates each static variable’s Variance of Importance 
in Projection (VIP score). The VIP score measures how much each 
variable contributes to the projection in two dimensions. This value 
corresponds to the amount of predictive power that each variable adds 
to the model. The volume of alcohol consumed by the population had 
the most predictive power of cumulative mortality in 2020, followed 
by the number of health workers per capita and the median age of the 
individuals in each country. A threshold of 1.0 is applied to PLSR 
models to separate significant variables from those that contribute 
little to the model. Using this threshold, percent kcal from alcoholic 
beverages, health workers per 10,000 population, country median age, 
percent basic sanitation, hospital beds per 10,000 population, percent 
BMI ≥ 30 – age 18+, international health regulations core capacity 
index, and percent urban reasonably predicted, with positive 
associations, with the number of COVID-19 deaths expected per 
country, in the absence of government/public health interventions.

The PLSR scores for countries are plotted in Figure 3 in the same 
latent space. Countries with similar demographics cluster together on 
the scatterplot. Countries that appear far to the right are predicted to 
have the highest COVID-19 mortality in 2020, given the demographics 
listed, while countries to the left are predicted to have low mortality.

In order to evaluate the significance and effect size of the dynamic 
variables, we summed each dynamic variable for every day in 2020. 
We then created a PLSR model using the same method developed for 
the static variables with the summed dynamic data. Examining the 
scree plot shown in Supplementary Figure S3, we observed that most 
of the data was contained in four principal components, as opposed 
to the two in the static variable model. For this reason, we included 
four principal components (PC) in the dynamic model.

Figure 4A shows the VIP score corresponding to each variable’s 
significance in adding to the projection. The most parsimonious 
model could be reduced to six variables: COVID-19 testing policy, the 
maximum temperature per day, dewpoint temperature per day, 
minimum temperature per day, canceled public events policy, and 
workplace closing policy. These variables were evaluated on a daily 
basis, as mortality accumulated over time. They represent what 
countries did, or experienced. Other variables may be significant in 
reducing COVID-19 mortality, but most of the information regarding 
the predictive model is contained within these six dynamic variables.

The loading plot in Figure 4B shows each variable’s effect size and 
directionality. Variables with a positive loading score in principal 
component 1(PC1) positively contribute to mortality, whereas a 
negative loading score negatively contributes to mortality. As these 
variables change considerably over the year, this high-level analysis 
only illustrates how the sum of the variables over the year contributes 
to the overall mortality for 2020. In order to create a combined model 
using static and dynamic variables and observe how variables affect 
mortality based on timing, a model was created to predict mortality 
per country per day using sliding-window Elastic Net regression.

Rolling regression uses data in a given window of past timepoints 
to predict future results. To create an accurate model for days 
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immediately in the future, we created a consensus model from the 
average of many window sizes. To predict the next day into the future, 
we used a window size of 1, where each of the previous 200 days was 
used as a predictor. For the second day into the future, we combined 
the previous model with a new one with a window size of 2. For a 
window size of 2, we combined the data for two days into the past and 
used the slope and mean of the window as the predictor. We continued 
this process until we reached a window size of 60 in order to predict 
60 days into the future.

The predictions from rolling Elastic Net regression are shown in 
Figure  5 for the 28 most populous countries in the world. The 
regression included the mortality data per day for every country in the 
model, as well as the dynamic variables including weather and NPIs 
for the specific country being predicted. In this way, the model is 
informed by the country-specific demographics inherent in the past 
mortality data as well as the dynamic variables that influences how the 
future mortality time-courses. We calculated the confidence bounds 
of the predictions by bootstrapping the prediction 100 times. The dark 

blue region in the figure show the area of the 50% confidence bounds 
while the wider light blue region shows the area within the 95% 
confidence bounds. The red line shows the actual mortality data 
reported for each country over the same point in time. Data was 
predicted for the last 60 days of 2020 (shown as −60 to 0 days in the 
figure) to assess the accuracy of predicting with the training time 
period. The first 60 days of 2021 (shown as 0 to 60 days in Figure 5) 
were predicted only on data from 2020 to give us an assessment of data 
on a test set.

Finally, we examined the value of the regression coefficients from 
the rolling regression to determine the explanatory power of each 
variable at specific time points before a mortality event. Figure 6A 
shows the regression coefficients for the timepoints from 1–60 days 
before a mortality event. Columns correspond to the lag in days while 
the rows show each dynamic variable. A blue color at a specific 
timepoint for a variable is indicative of the variable decreasing 
mortality for that specific lag. A red color represents an increase in the 
model prediction for mortality at the specified lag. These coefficients 

FIGURE 1

We first graphed the response variable (COVID-19 mortality) for each country for each day in 2020. Columns correspond to days of the year. 
Hierarchical clustering was used to show how each country related to other countries using cosine similarity. (A) For clarity, countries are clustered 
into groups with similar dynamics with each row representing a mean of the normalized mortality of each country in the group. (B) The unit 
normalized static variables were clustered with the static response variable (the sum mortality for each country over 2020). In this case, rows represent 
countries and are clustered by cosine similarity. The columns representing the explanatory variables are clustered with the static response variable. 
(C) Graph of the unit normalized explanatory variables for the countries in Group B are shown as an example of how weather and the stringency of 
governmental interventions varied over the year. Here, columns correspond to the days of 2020 and rows represent magnitude of dynamic variables.
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show that some dynamic variables show a sustained decrease in 
mortality over a wide range of timepoints. Some coefficients have 
positive or negative influence depending on the amount of time before 
the mortality event, suggesting that the influence of the variable varies 
over time. For example, all variables show less of an influence within 
7 days of the response as the infection was likely to occur before this 
time period. Figure 6B shows a simple sum of the coefficients over the 
60 days preceding a mortality event.

Discussion

Understanding and predicting COVID-19 mortality involves 
considering its multi-factoral nature – pathogen, host, social, 

environmental in addition to vaccination and treatment factors – with 
both global and regional components. Traditional prognostic models 
employed since the beginning of the COVID-19 pandemic have 
yielded some successes in predicting mortality and the associated 
surge of infections the population levels but generally in very region-
specific contexts and with wide confidence intervals. With the 
COVID-related data reported waning, and experiencing significant 
data issues (4), many models have discontinued producing forecasts 
altogether (5–7). These data quality issues are observed in Figure 5, 
where forecasted mortality from the machine learning models deviates 
from reported mortality in certain countries While the prediction of 
mortality was more accurate for some countries than others, given the 
disparate methods of quantifying mortality between countries as well 
as the quality of data integrity, the Elastic-Net model still was able to 

FIGURE 2

We trained a predictive model using Partial Least Squares Regression (PLSR) to examine the magnitude, directionality, and significance that each 
explanatory variable contributed to COVID-19 mortality. (A) The bar chart is sorted in descending order of the Variance of Importance in Projection 
(VIP) score. The VIP score is a measure of the significance each variable contributes to the predictive accuracy of the model. Generally, a VIP score 
below 1.0 can be discarded from a predictive model with little loss in accuracy. (B) The loadings of the first principal component (PC1) are an indicator 
for the magnitude and directionality of the effect of each static variable on explaining mortality. Variables with a positive score correlate positively with 
mortality whereas variables with a negative score correlate negatively. Loadings close to the zero line indicate that the variable contributes little to the 
model.
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predict the directionality of trends and reduce the number of 
predictive variables down to a small subset of significant predictors, 
lowering the search space for causal factors driving COVID-19 
mortality. The machine learning model presented here evaluated 
multiple factors that contributed to COVID-19 mortality in 2020, 
before the introduction of anti-COVID-19 vaccinations. By 
establishing the baseline effect of other variables, the model can also 
be valuable for predicting COVID-19 mortality in the presence of 
vaccinations and treatments by accounting for differences in efficacy, 
availability, and uptake. Some mortality projections for the first 
60 days of 2021, before the wide spread availability of vaccinations, are 
presented here and demonstrate the value of the model for COVID-19 

mortality forecast. The projections also offer a glimpse into the 
application of this machine learning model in the future. Further 
analyses incorporating data related to vaccinations and therapeutics 
are necessary to ensure this machine learning model can accurately 
predict COVID-19 mortality.

Based on the results of the model we  observe significant 
contributions of static variables in predicting mortality. Use of alcohol, 
health care workers and hospital beds per 10,000 population, the 
median age of a country’s population, basic sanitation, obesity, 
urbanization and core capacity index all are useful in understanding 
a country’s position to manage introduction of a pandemic. In regards 
to dynamic variables, or variables which move in time with the 

FIGURE 3

The plot above shows the scores for countries projected into the first two principal components (PC). The components were rotated so that the first 
PC on the x-axis corresponds to variance that explains COVID-19 mortality whereas the second PC is all other variance in the model. Countries that 
appear near to each other in two-dimensional space have higher similarity of variables that have explanatory effect on total mortality for 2020 than 
countries that appear further apart. Countries with a higher x-value are predicted in this model to have higher COVID mortality if dynamic factors were 
not considered.
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outcome, climate measures and manageable interventions such as 
testing policy and calcellation of public events / workplace closings 
were highly associated with mortality.

As an important note, these variables cannot be considered causal, 
only predictive. It is also quite possible that a variable serves as a proxy 
for another factor more clearly within a causal pathway of COVID-19 
mortality. For example, number of health workers are highly correlated 
with median age of a population. To demonstrate this quantitatively, 
Supplementary Figure S4 shows the PLSR loadings plot which 
demonstrates how each static variable relates to each other. The 

loadings plot shows the explanatory variables in the new reduced 
latent space. Variables closer on the plot have a higher covariance than 
those that are further apart. To separate the variance related to the 
response from the unrelated, the latent space was rotated so that all 
variance related to mortality was parallel to the x-axis in a process 
known as Orthogonal Partial Least Squares Regression (OPLSR). 
There are some important additional limitations to the data used for 
analysis and application of the machine learning model. That causality 
cannot be determined between the variables and estimated mortality 
is particularly relevant to COVID-19-related public health policies 

FIGURE 4

A PLSR model was used to find the significance and effect size of dynamic variables in explaining COVID-19 mortality. (A) The bar graph shows the VIP 
score of each dynamic variable. The VIP score is a measure of how much predictive power each variable adds to the model. (B) The loading plot of the 
first principal component show the directionality and effect size that each variable adds to the prediction. Variables with a positive loading contribute 
to a higher mortality prediction, whereas variables with a negative loading contribute to a lower prediction for the response variable.
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FIGURE 5

Mortality projections for 28 countries using the Elastic Net regression model. Twenty-eight countries were included in the study in descending order of 
total population. The projections are for the last 60  days of 2020 representing the training set and the first 60  days of 2021 representing the test set. 
The dark blue region shows the projections between the 25% and 75% quantiles and the light blue area shows the projected values between the 97.5% 
and 2.5% quantiles after 100 bootstrapped projections. The red line represents the observed COVID19 mortality as reported by each country.
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because the data shows dates of policy introduction rather than when 
or how well the policy was implemented. That increased number of 
health workers per 10,000 population, hospital beds per 10,000 
population, and percent basic sanitation were associated with 

increased mortality are counter-intuitive, likely related to other 
variables (perhaps more clearly on a causal pathway), and an 
important caveat to blind acceptance that associations derived 
through machine learning algorithms represent cause-effect 

FIGURE 6

Summary of how each dynamic variable contributed to COVID-19 mortality. (A) The heatmap shows the correlation of each variable at specific time 
before the mortality on the day being predicted. The leftmost column corresponds to a correlation with a 1-day lag and the rightmost column with a 
60-day lag. (B) The bar graph shows the sum total of all the coefficients per variable for the previous 40  days.
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associations. Instead, they represent a country’s situation in the year 
prior to COVID, describing the environment in which the disease 
spread. Many are not modifiable. They can provide insight to our 
current societal structures, especially when compared to a century 
ago, and provide a base upon which to further untangle complex 
relationships among host, pathogen and environmental conditions.

Each variable which had an impact on COVID-19 mortality had a 
unique delay from the measurement to the change in COVID-19 
mortality. Mortality data is available on a very granular level globally, 
however it is likely under-reported. Issues of accuracy and consistency in 
reporting mortality may undermine predictions of future mortality. 
Global mortality, vaccination, and booster uptake is reported on an 
aggregated level, with no information regarding age, sex or comorbidities. 
While these considerations can be  understood with more focused 
analyses on a country or regional level, globally these cannot currently 
be directly included in mortality forecasts. Similarly, the time period 
between variable observations (e.g., masking mandates, travel restrictions, 
etc.) and mortality are nearly always regionally somewhat unique.

Conclusion

Considering prior models have retired due to data degredation, 
this machine learning model presents a framework for forecasting 
mortality for this pandemic, and future pandemics. Responding to the 
multi-dimensional and shifting nature of the COVID-19 pandemic 
and its regional variability in both static and dynamic factors, this 
machine learning method may be  a valuble tool for starting to 
untangle the complex factors which contribute to globally dynamic 
COVID-19 mortality and provide a framework for investigating 
influential factors in subsequent pandemics.
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