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Background: Timely recognition of respiratory failure and the need for 
mechanical ventilation is crucial in managing patients with coronavirus disease 
2019 (COVID-19) and reducing hospital mortality rate. A risk stratification tool 
could assist to avoid clinical deterioration of patients with COVID-19 and optimize 
allocation of scarce resources. Therefore, we aimed to develop a prediction model 
for early identification of patients with COVID-19 who may require mechanical 
ventilation.

Methods: We included patients with COVID-19 hospitalized in United  States. 
Demographic and clinical data were extracted from the records of the Healthcare 
Cost and Utilization Project State Inpatient Database in 2020. Model construction 
involved the use of the least absolute shrinkage and selection operator and 
multivariable logistic regression. The model’s performance was evaluated based 
on discrimination, calibration, and clinical utility.

Results: The training set comprised 73,957 patients (5,971 requiring mechanical 
ventilation), whereas the validation set included 10,428 (887 requiring mechanical 
ventilation). The prediction model incorporating age, sex, and 11 other comorbidities 
(deficiency anemias, congestive heart failure, coagulopathy, dementia, diabetes 
with chronic complications, complicated hypertension, neurological disorders 
unaffecting movement, obesity, pulmonary circulation disease, severe renal 
failure, and weight loss) demonstrated moderate discrimination (area under 
the curve, 0.715; 95% confidence interval, 0.709–0.722), good calibration (Brier 
score  =  0.070, slope  =  1, intercept  =  0) and a clinical net benefit with a threshold 
probability ranged from 2 to 34% in the training set. Similar model’s performances 
were observed in the validation set.

Conclusion: A robust prognostic model utilizing readily available predictors at 
hospital admission was developed for the early identification of patients with 
COVID-19 who may require mechanical ventilation. Application of this model 
could support clinical decision-making to optimize patient management and 
resource allocation.
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Introduction

Coronavirus disease 2019 (COVID-19), caused by the novel severe 
acute respiratory syndrome coronavirus 2, is associated with a 
significantly high mortality rate in patients who progress to respiratory 
failure (1). Approximately 14–33% patients with COVID-19 progress to 
respiratory failure and require mechanical ventilation (2–4). The 
escalating COVID-19 cases poses enormous challenges for healthcare 
systems and strain the availability of mechanical ventilation. Delayed 
recognition of respiratory failure and requirement of mechanical 
ventilation can increase the risk of hospital mortality (5). Therefore, the 
development of risk stratification tool that enables early identification of 
patients with COVID-19 who may require mechanical ventilation is 
essential to optimize resource allocation and prevent 
clinical deterioration.

Although various risk stratification models have been developed to 
identify patients with high risk of severe outcomes (6–9), most of these 
models are at high risk of bias (10). Furthermore, these models have 
major limitation, such as inadequate sample sizes and inappropriate 
model evaluation, which could lead to model overfitting and optimistic 
model performance (11). Moreover, many prediction models have 
incorporated abnormal imaging manifestations and some certain 
biochemical results as predictor variables due to their significant 
association with mechanical ventilation (3, 12). However, these 
parameters were frequently unavailable at the time of hospital admission, 
which consequently impacts the clinical utility of the model for early 
identification of high-risk patients. Hence, it is imperative to develop a 
prediction model that addresses these concerns by employing an 
adequate sample size, appropriate evaluation techniques, and 
incorporating predictor variables that are routinely recorded upon 
hospital admission.

Previous studies have confirmed the association between 
demographic characteristics, comorbidities (such as diabetes, renal 
disease, and neurologic disorders), and the necessity for mechanical 
ventilation in patients with COVID-19 (12–14). Risk stratification 
models based on variables that are readily available at hospital admission 
hold the potential to serve as invaluable tools for facilitating clinical 
triage, judicious allocation of limited resources, and reduce hospital 
mortality, particularly for those with rapid progression of critical illness.

The primary objective of this study was to develop and validate a 
prediction model for patients with COVID-19, aimed at accurately 
identifying those individuals who would ultimately require mechanical 
ventilation, using demographic characteristics and comorbidity variables 
as key predictors.

Methods

Study design and participants

This retrospective study included patients admitted with COVID-19 
utilizing the Healthcare Cost and Utilization Project (HCUP) State 
Inpatients Database (SID) of United States (US) in 2020, which contains 
the universe of the State’s hospital inpatient discharge records. All the 
data users adhered to a Data Use Agreement, and the need for informed 
consent was waived due to de-identification of individual information. 
The Ethics Committee of the Naval Medical University approved this 
study (No. 2021LL024). Model development, validation and reporting 

were conducted in adherence with the guidelines of the Transparent 
Reporting of a Multivariable Prediction Model for Individual Prediction 
or Diagnosis (15).

Patients hospitalized with an admitting diagnosis of COVID-19 were 
included in this study. COVID-19 hospitalization cases were identified 
based on the International Classification of Disease, 10th revision, 
Clinical Modification (ICD-10-CM) code U071 (16). Patients were 
excluded if they were aged <18 years or had a length of stay (LOS) < 2 days. 
Records with missing values were excluded, as only six missing data were 
observed in 94,631 patients.

Outcomes

The primary outcome was the need for mechanical ventilation 
support, which was identified based on the ICD-10 Procedure Coding 
System (PCS) codes 5A1935Z, 5A1945Z, and 5A1955Z (17).

Predictor variables

Age, sex, and Elixhauser Comorbidity Index (ECI) were selected as 
potential predictor variables due to their significant association with 
clinical outcomes of patients with COVID-19, as established in previous 
studies (3, 14). The ECI, encompassing 38 binary comorbidity variables, 
has been demonstrated to significantly impact mortality rates and 
resource allocation within the hospital setting (18). For the purpose of 
analysis, age was categorized into four distinct group: < 60, 60–69, 70–79, 
or ≥ 80 years, to simplify calculation and interpretation.

Model development

Patients included in the HCUP SID dataset from Florida in 2020 
were allocated to the training set and used for developing the model. 
Adhering to the principle of at least 10 events per candidate predictor 
parameter, a total of 5,971 outcome events in the training set was 
sufficient for developing robust models (19).

To address potential issues of overfitting and collinearity among 
variables, feature selection was performed using the least absolute 
shrinkage and selection operator (LASSO) technique, incorporating a 
10-fold cross-validation approach (20). The selection of the optimal 
lambda value for the LASSO regression, which was used to fit the 
prediction model, followed the one standard error rule. Predictor 
variables identified through LASSO regression were further evaluated 
using multivariable logistic regression employing the Enter method. A 
nomogram for predicting the need of mechanical ventilation support in 
patients with COVID-19 was constructed based on the results of 
multivariable logistic regression.

The area under a receiver operating characteristic (ROC) curve was 
used to assess the discrimination of the model. The optimal cut-off point 
was determined by identifying the threshold that maximized the Youden 
index. The agreement between the predicted and observed applications 
of mechanical ventilation was assessed using a calibration curve. 
Additionally, decision curve analysis (DCA) was performed to compare 
the clinical utility of the nomogram and the default strategies of “treat all” 
or “treat none” by calculating the net benefits at different 
threshold probabilities.
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Model validation

To validate the prediction model, patients included in the HCUP 
SID of Kentucky in 2020 were allocated to the validation set. The 
discrimination, calibration, and clinical utility of the prediction 
model were evaluated by ROC analysis, the calibration curve, and 
DCA, respectively.

Sensitivity analysis

Sensitivity analyses were conducted to evaluate the discriminatory 
performance of the prediction model under different scenarios. If dataset 
included patients aged <18  years or those with an LOS  < 2  days, a 
sensitivity analysis was conducted using the complete data. Furthermore, 
considering the existing evidence suggesting variability in the risk of 
mechanical ventilation among patients with COVID-19 across different 
ethnicities (12), additional sensitivity analysis was performed to examine 
model’s performance within various ethnic groups.

Statistical analysis

Continuous variables were presented as either mean (standard 
deviation) or median (interquartile range, IQR), whereas categorical 
variables were expressed as percentages. The Kruskal–Wallis test, 
Chi-square test, or Fisher’s exact test were used to compare the 
demographic and clinical characteristics of patients who required 

mechanical ventilation and those who did not, as appropriate. 
Multivariable logistic regression analyses were conducted, and the 
results were reported as coefficients and odds ratios (OR) with 
corresponding 95% confidence intervals (CI). Results were considered 
statistically significant for p < 0.05. R software (version 4.3.0) was used 
to perform all the statistical analyses.

Results

Baseline characteristics

A total of 94,631 patients who were hospitalized with COVID-19 
underwent screening, resulting in the inclusion of 73,957 patients in 
the training and 10,428 patients in the validation set (Figure 1). The 
median age of the patients was 67 years (IQR, 54–78) and 47.27% 
were female patients. Among the patients, 44.02% belonged to the 
white ethnic group, whereas 54.74% belonged to non-white ethnic 
groups. The median LOS was 6  days (IQR, 4–11), and 39.45% 
patients had more than three comorbidities. Additionally, 8.13% of 
the patients received mechanical ventilation. The most prevalent 
comorbidities included uncomplicated hypertension (44.27%), 
obesity (27.83%), and diabetes with chronic complications (26.27%). 
In comparison to patients without mechanical ventilation, those 
receiving mechanical ventilation were more likely to be older, male, 
and have higher burden of comorbidities. Details regarding the 
baseline characteristics of the patients in the training and validation 
sets are presented in Table 1.

FIGURE 1

Flow chart of study participants in the training and validation sets.

https://doi.org/10.3389/fpubh.2023.1227935
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1227935

Frontiers in Public Health 04 frontiersin.org

TABLE 1 Demographic and clinical characteristics for training and validation set of patients admitted to hospital with COVID-19.

Characteristics Training set Validation set

Overall 
(n =  73,957)

Not 
ventilated 

(n =  67,986)

Ventilated 
(n =  5,971)

p 
value

Overall 
(n =  10,428)

Not 
ventilated 
(n =  9,541)

Ventilated 
(n =  887)

p 
value

Age (median, IQR) 67 (55–78) 67 (54–79) 69 (59–77) <0.001 63 (51–74) 63 (51–74) 67 (57–75) <0.001

<60y 25,206 (34.08) 23,710 (34.87) 1,496 (25.05) 4,310 (41.33) 4,029 (42.23) 281 (31.68)

60–69y 15,583 (21.07) 13,982 (20.57) 1,601 (26.81) 2,316 (22.21) 2089 (21.89) 227 (25.59)

70–79y 16,470 (22.27) 14,627 (21.51) 1843 (30.87) 2,252 (21.60) 1989 (20.85) 263 (29.65)

≥80y 16,698 (22.58) 15,667 (23.04) 1,031 (17.27) 1,550 (14.86) 1,434 (15.03) 116 (13.08)

Female 35,239 (47.65) 32,880 (48.36) 2,359 (39.51) <0.001 4,652 (44.61) 4,337 (45.46) 315 (35.51) <0.001

Ethnicity <0.001 <0.001

White 32,404 (43.81) 30,172 (44.38) 2,232 (37.38) 4,743 (45.48) 4,411 (46.23) 332 (37.43)

Non-white 40,781 (55.14) 37,143 (54.63) 3,638 (60.93) 5,410 (51.88) 4,886 (51.21) 524 (59.08)

Not recorded 772 (1.04) 671 (0.99) 101 (1.69) 275 (2.64) 244 (2.56) 31 (3.49)

Number of comorbidities <0.001 <0.001

≤ 3 44,114 (59.65) 41,769 (61.44) 2,345 (39.27) 6,984 (66.97) 6,570 (68.86) 414 (46.67)

> 3 29,843 (40.35) 26,217 (38.56) 3,626 (60.73) 3,444 (33.03) 2,971 (31.14) 473 (53.33)

LOS (median, IQR) 6 (4–11) 6 (3–9) 17 (10–28) <0.001 6 (4–10) 5 (3–9) 17 (10–27) <0.001

AIDS 743 (1.00) 655 (0.96) 88 (1.47) <0.001 40 (0.38) 36 (0.38) 4 (0.45) 0.956

Alcohol abuse 1,283 (1.73) 1,150 (1.69) 133 (2.23) 0.003 180 (1.73) 160 (1.68) 20 (2.25) 0.259

Deficiency anemias 15,433 (20.87) 13,367 (19.66) 2066 (34.60) <0.001 1751 (16.79) 1,452 (15.22) 299 (33.71) <0.001

Arthropathies 2,109 (2.85) 1935 (2.85) 174 (2.91) 0.794 209 (2.00) 190 (1.99) 19 (2.14) 0.856

Chronic blood loss anemia 223 (0.30) 189 (0.28) 34 (0.57) <0.001 17 (0.16) 15 (0.16) 2 (0.23) 0.963

Leukemia 414 (0.56) 376 (0.55) 38 (0.64) 0.461 49 (0.47) 45 (0.47) 4 (0.45) 1

Lymphoma 478 (0.65) 410 (0.60) 68 (1.14) <0.001 57 (0.55) 48 (0.50) 9 (1.01) 0.082

Metastatic cancer 561 (0.76) 516 (0.76) 45 (0.75) 1 53 (0.51) 48 (0.50) 5 (0.56) 1

Solid tumor without 

metastasis, in situ

9 (0.01) 8 (0.01) 1 (0.02) 1 1 (0.01) 1 (0.01) 0 (0.00) 1

Solid tumor without 

metastasis, malignant

1,262 (1.71) 1,152 (1.69) 110 (1.84) 0.428 159 (1.52) 146 (1.53) 13 (1.47) 0.994

Cerebrovascular disease 2,616 (3.54) 2,344 (3.45) 272 (4.56) <0.001 245 (2.35) 211 (2.21) 34 (3.83) 0.003

Congestive heart failure 10,693 (14.46) 9,305 (13.69) 1,388 (23.25) <0.001 1,356 (13.00) 1,151 (12.06) 205 (23.11) <0.001

Coagulopathy 7,023 (9.50) 5,967 (8.78) 1,056 (17.69) <0.001 955 (9.16) 795 (8.33) 160 (18.04) <0.001

Dementia 11,540 (15.60) 10,895 (16.03) 645 (10.80) <0.001 784 (7.52) 737 (7.72) 47 (5.30) 0.011

Depression 7,458 (10.08) 6,915 (10.17) 543 (9.09) 0.009 654 (6.27) 606 (6.35) 48 (5.41) 0.302

Diabetes with chronic 

complications

19,403 (26.24) 16,832 (24.76) 2,571 (43.06) <0.001 2,767 (26.53) 2,383 (24.98) 384 (43.29) <0.001

Diabetes without chronic 

complications

10,050 (13.59) 9,422 (13.86) 628 (10.52) <0.001 1,525 (14.62) 1,438 (15.07) 87 (9.81) <0.001

Drug abuse 1,210 (1.64) 1,098 (1.62) 112 (1.88) 0.142 192 (1.84) 173 (1.81) 19 (2.14) 0.571

Hypertension, complicated 19,360 (26.18) 16,915 (24.88) 2,445 (40.95) <0.001 2,406 (23.07) 2077 (21.77) 329 (37.09) <0.001

Hypertension, 

uncomplicated

32,969 (44.58) 30,692 (45.14) 2,277 (38.13) <0.001 4,391 (42.11) 4,079 (42.75) 312 (35.17) <0.001

Liver disease, mild 3,317 (4.49) 2,950 (4.34) 367 (6.15) <0.001 513 (4.92) 467 (4.89) 46 (5.19) 0.762

Liver disease, moderate to 

severe

393 (0.53) 326 (0.48) 67 (1.12) <0.001 52 (0.50) 41 (0.43) 11 (1.24) 0.002

Chronic pulmonary disease 17,263 (23.34) 15,705 (23.10) 1,558 (26.09) <0.001 2,285 (21.91) 2046 (21.44) 239 (26.94) <0.001

(Continued)

https://doi.org/10.3389/fpubh.2023.1227935
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhang et al. 10.3389/fpubh.2023.1227935

Frontiers in Public Health 05 frontiersin.org

Model construction and performance 
assessment

The training set consisted of 73,957 patients, out of which 5,971 
required mechanical ventilation. The LASSO method with 10-fold 
cross-validation was employed for feature selection among 40 
candidate predictors, of which 13 predictor variables were identified 
and subsequently assessed by a multivariate logistic regression analysis 
(Figure 2). The variables associated with increased need for mechanical 
ventilation included older age, deficiency anemias, congestive heart 
failure, coagulopathy, diabetes with chronic complications, complicated 
hypertension, neurological disorders unaffecting movement, obesity, 
pulmonary circulation disease, severe renal failure, and weight loss 
(Table  2). Conversely, female and dementia were associated with 
decreased need for mechanical ventilation. It was notable that there 
was no significant difference in the need for mechanical ventilation 
between patients aged ≥80 years and those aged <60 years (OR, 1.08; 
95% CI, 0.98–1.19). Subsequently, a nomogram incorporating age, sex, 
and the 11 aforementioned comorbidities was constructed to predict 
the need for mechanical ventilation by assigning a weighted score to 
each selected variable (Figure 3). The calculations of the total score was 
as follows: total score  =  65  ×  (age, 60–69  years: yes  =  1, 
no = 0) + 77 × (age, 70–79 years: yes = 1, no = 0) + 10 × (age, ≥ 80 years: 
yes = 1, no = 0) + 47 × (sex, female: yes = 0, no = 1) + 64 × (deficiency 
anemias: yes = 1, no = 0) + 15 × (congestive heart failure: yes = 1, 
no = 0) + 75 × (coagulopathy: yes = 1, no = 0) + 89× (dementia: yes = 0, 
no  =  1)  +  64  ×  (diabetes with chronic complications: yes  =  1, 
no  =  0)  +  27  ×  (complicated hypertension: yes  =  1, 
no = 0) + 100 × (neurological disorders unaffecting movement: yes = 1, 
no = 0) + 73 × (obesity: yes = 1, no = 0) + 46 × (pulmonary circulation 

disease: yes  =  1, no  =  0)  +  16  ×  (severe renal failure: yes  =  1, 
no = 0) + 92 × (weight loss: yes = 1, no = 0). The optimal cut-off point 
of the nomogram was determined to be  227, corresponding to a 
threshold probability of 0.071.

In the training set, the nomogram exhibited a discriminatory 
performance for distinguishing patients who required mechanical 
ventilation from those who did not, with an area under the curve (AUC) 
of 0.715 (95% CI, 0.709–0.722). The cut-off value of 0.071 provided 
maximal discrimination, with a specificity of 0.647 and a sensitivity of 
0.678 (Figure 4A). Furthermore, the calibration curve plotting the actual 
probability against the predicted probability demonstrated good 
calibration (Brier score = 0.070, slope = 1, intercept = 0) (Figure 5A). The 
DCA demonstrated that the nomogram had a superior clinical net 
benefit with a threshold probability range of 2–34%, when compared to 
the strategies of “treat all” or “treat none” (Figure 6A).

Validation of the nomogram

The validation set consisted 10,428 patients of whom 887 patients 
required mechanical ventilation. In this set, the nomogram displayed 
comparable discrimination ability with an AUC 0.722 (95% CI, 0.704–
0.739) (Figure 4B). Using the cut-off value of 0.071 identified in the 
training set, the specificity and sensitivity in the validation set were 
0.656 and 0.684, respectively (Figure 4B). The calibration curve also 
demonstrated good agreement in the validation set (Brier 
score = 0.073, slope = 1.022, intercept = 0.073) (Figure 5B). The DCA 
illustrated that the clinical net benefit of the nomogram was higher 
than default strategy of “treat all” or “treat none,” with a threshold 
probability range of 3–42% (Figure 6B).

TABLE 1 (Continued)

Characteristics Training set Validation set

Overall 
(n =  73,957)

Not 
ventilated 

(n =  67,986)

Ventilated 
(n =  5,971)

p 
value

Overall 
(n =  10,428)

Not 
ventilated 
(n =  9,541)

Ventilated 
(n =  887)

p 
value

Neurological disorders 

affecting movement

2049 (2.77) 1896 (2.79) 153 (2.56) 0.327 194 (1.86) 182 (1.91) 12 (1.35) 0.299

Neurological disorders 

unaffecting movement

6,144 (8.31) 5,225 (7.69) 919 (15.39) <0.001 882 (8.46) 687 (7.20) 195 (21.98) <0.001

Seizures and epilepsy 2,670 (3.61) 2,381 (3.50) 289 (4.84) <0.001 266 (2.55) 233 (2.44) 33 (3.72) 0.028

Obesity 20,739 (28.04) 18,399 (27.06) 2,340 (39.19) <0.001 2,747 (26.34) 2,447 (25.65) 300 (33.82) <0.001

Paralysis 2,355 (3.18) 2080 (3.06) 275 (4.61) <0.001 231 (2.22) 196 (2.05) 35 (3.95) <0.001

Peripheral vascular disease 2,937 (3.97) 2,590 (3.81) 347 (5.81) <0.001 336 (3.22) 292 (3.06) 44 (4.96) 0.003

Psychoses 3,322 (4.49) 3,078 (4.53) 244 (4.09) 0.122 340 (3.26) 320 (3.35) 20 (2.25) 0.096

Pulmonary circulation 

disease

1881 (2.54) 1,602 (2.36) 279 (4.67) <0.001 232 (2.22) 193 (2.02) 39 (4.40) <0.001

Renal failure, moderate 9,189 (12.42) 8,097 (11.91) 1,092 (18.29) <0.001 1,072 (10.28) 941 (9.86) 131 (14.77) <0.001

Renal failure, severe 4,064 (5.50) 3,386 (4.98) 678 (11.35) <0.001 664 (6.37) 548 (5.74) 116 (13.08) <0.001

Hypothyroidism 10,328 (13.96) 9,476 (13.94) 852 (14.27) 0.492 1,277 (12.25) 1,175 (12.32) 102 (11.50) 0.512

Other thyroid disorders 815 (1.10) 729 (1.07) 86 (1.44) 0.011 123 (1.18) 114 (1.19) 9 (1.01) 0.754

Peptic ulcer with bleeding 329 (0.44) 273 (0.40) 56 (0.94) <0.001 111 (1.06) 89 (0.93) 22 (2.48) <0.001

Valvular disease 3,151 (4.26) 2,811 (4.13) 340 (5.69) <0.001 332 (3.18) 305 (3.20) 27 (3.04) 0.882

Weight loss 4,377 (5.92) 3,721 (5.47) 656 (10.99) <0.001 752 (7.21) 639 (6.70) 113 (12.74) <0.001

IQR, interquartile range; LOS, length of stay; AIDS, Acquired immune deficiency syndrome.
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FIGURE 2

LASSO coefficient profiles of 40 candidate predictors (A) and 13 predictors selected using LASSO regression (B).

Sensitivity analysis

In the datasets including patients aged <18 years or with an 
LOS < 2 days, the prediction model exhibited similar discrimination 
performance in both the training set (AUC, 0.720; 95% CI, 0.714–0.727; 
specificity, 0.664; sensitivity 0.671) and the validation set (AUC, 0.730; 
95% CI, 0.713–0.747; specificity, 0.674; sensitivity, 0.681). After the 
stratification of the datasets by ethnicity, better discrimination 
performance was observed in non-white ethnic group (AUC, 0.728; 
95% CI, 0.719–0.737; specificity, 0.666; sensitivity, 0.689) compared with 
white ethnic group (AUC, 0.699; 95% CI, 0.688–0.710; specificity, 0.623; 
sensitivity, 0.664), in the training set. Comparable results were observed 

in the validation set, with a lower discrimination performance observed 
in the white ethnic group (AUC, 0.690; 95% CI, 0.660–0.719; specificity, 
0.635; sensitivity, 0.666) than in the non-white ethnic group (AUC, 
0.743; 95% CI, 0.720–0.765; specificity, 0.673; sensitivity, 0.697).

Discussion

In this study, we developed and evaluated a risk stratification 
model for predicting the need for mechanical ventilation in a 
large cohort including 84,025 patients hospitalized with COVID-
19. The present model incorporates age, sex, and 11 other 
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comorbidities, demonstrates moderate discrimination, good 
calibration, and clinical utility. Sensitivity analyses support the 
robustness of the model across different settings.

Compared with the present prediction model constructed using 
a hybrid method combining LASSO regression and multivariable 
logistic regression, several existing models using machine learning 

TABLE 2 Multivariable logistic regression of risk factors for mechanical ventilation support in patients with COVID-19 in the training set.

β OR 95% CI p value

Intercept −3.27

Age (years) <0.001

<60 Reference Reference Reference

60–69 0.501 1.65 1.53–1.78

70–79 0.587 1.8 1.67–1.94

≥80 0.076 1.08 0.98–1.19

Female −0.36 0.7 0.66–0.74 <0.001

Deficiency anemias 0.49 1.63 1.53–1.74 <0.001

Congestive heart failure 0.12 1.12 1.03–1.22 0.007

Coagulopathy 0.58 1.78 1.65–1.92 <0.001

Dementia −0.68 0.51 0.46–0.56 <0.001

Diabetes with chronic complications 0.49 1.63 1.53–1.73 <0.001

Hypertension, complicated 0.21 1.23 1.13–1.33 <0.001

Neurological disorders unaffecting 

movement

0.77 2.15 1.98–2.34 <0.001

Obesity 0.56 1.75 1.65–1.86 <0.001

Pulmonary circulation disease 0.35 1.42 1.24–1.64 <0.001

Renal failure, severe 0.13 1.13 1.02–1.26 0.016

Weight loss 0.7 2.02 1.84–2.22 <0.001

OR, odds ratio; CI, confidence interval.

FIGURE 3

Nomogram for predicting mechanical ventilation requirement in patients with COVID-19.
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techniques have shown a moderate to good discrimination ability 
(AUC, 0.65–0.94) (6, 21–24). However, these existing models were 
commonly developed by cohorts with small sample size or the 
patients already admitted to the intensive care units, leading to an 
optimistic estimate of model performance or limiting their 
application in generally hospitalized patients. Our present 
prediction model was more interpretable and easier bedside to use, 
without need for an application or a website that hosts the calculator.

Age has consistently been identified as a strong predictor of 
adverse outcomes in patients with COVID-19 (25). Our study 
observed an increasing trend in risk of mechanical ventilation with 
age was observed in the current study, except for those aged 
≥80 years. A study conducted in Japan found that patients aged 
≥75 years had a lower rate of requirement for mechanical ventilation 
support compared with those aged 65–74 years (26). Similarly, 

another study using data from Korea also suggested that patients 
aged ≥80 years were less likely to receive mechanical ventilation 
(27). Considering the higher proportions of do-not-intubate (DNI) 
orders in older patients with COVID-19 (8), these results potentially 
reflect a clinical decision made in advance, rather than a lower risk 
of severe respiratory failure. Other factors such as medical resource 
availability, the potential harm and benefits of mechanical 
ventilation, and expected prognosis also contributed to the clinical 
decision-making for older patients (28, 29).

Comorbidity play a crucial role in predicting the prognosis of 
patients with COVID-19 (13). The predictive effect of comorbidities 
was usually presented in two forms in different risk stratification 
models: individual comorbidity unequally weighted and a count of 
comorbidities equally weighted (30, 31). In our cohort, we observed 
that neurological disorders unrelated to movement and weight loss 
exhibited the greatest ORs, which were significantly higher than 
those of the other comorbidities. In contrast with other 
comorbidities, dementia presented an oppositely predictive effect 
on mechanical ventilation (OR, 0.51; 95% CI, 0.46–0.56). Therefore, 
in our final prediction, we assigned weighted scores to individual 

FIGURE 4

Discrimination of the nomogram for predicting mechanical 
ventilation requirement in patients with COVID-19. Receiver operator 
characteristic curves of the nomogram in the training (A) and 
validation sets (B).

FIGURE 5

Calibration of the nomogram for predicting mechanical ventilation 
requirement in patients with COVID-19. Calibration curves of the 
nomogram in the training (A) and validation sets (B).
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comorbidity, rather than using an unweighted count of 
comorbidities. The association between dementia and decreased 
risk of mechanical ventilation may be explained by the fact that 
patients with dementia are more likely to have an advance care 
planning (ACP) or do-not-resuscitate (DNR) order, leading to a 
lower treatment intensity (32). After risk adjustment of ACP, 
dementia showed no significant effect on the likelihood of receiving 
mechanical ventilation (33).

The timely prediction of adverse outcomes of patients is of 
paramount important for effective allocation of the healthcare 
resources and prevention of clinical deterioration. However, 
prediction models which exhibit different performance in various 
subpopulations might potentially introduce unfairness in clinical 
decision-making and exaggerate health inequity (34). 
Underdiagnosis of mechanical ventilation requirement can result in 
delayed medical intervention, while overdiagnosis can lead to 
inappropriate aggressive treatment (35). The present model 
demonstrated similar performance between white ethnic group and 
non-white ethnic groups in terms of specificity and sensitivity, 
confirming that its application would not introduce unfairness in 
clinical decision-making.

One of the major strengths of our study was using a large, 
representative dataset to develop a model with a sufficient sample 
size, thereby reducing the risk of bias. Additionally, we  also 
implemented LASSO regression for feature selection, a robust 
method that effectively mitigates multicollinearity within the 
model. Moreover, we  performed sensitivity analyses to evaluate 
model’s discriminatory performance in different subpopulations 
and confirm its robustness.

However, this study has some limitations that should 
be acknowledged. First, the HCUP SID database did not provide 
details on DNR or DNI orders of patients, particularly those with 
greater age or dementia. This limitation might have influenced 
the analysis of truly requirement for mechanical ventilation in 
our study. Patient treatment preferences should be considered in 
the future studies to improve model performance. Second, the 
HCUP SID database did not record imaging and laboratory 
results, which were common predictor variables in other 
prediction models (8, 9). Consequently, it was impossible to 
compare their performance with our model in the present 
datasets. Third, all the patients included in this study were from 
US in 2020, which might limit the generalizability of the present 
model to a broader population. Moreover, the application of 
emerging vaccines and anti-viral agents, as well as the emergence 
of new COVID-19 variants, could exert influence on the risk of 
adverse outcomes (36–38). Hence, future validations using data 
from patients with COVID-19 from different pandemic periods 
and regions should be conducted to confirm the stability and 
generalizability of this prediction model.

Conclusion

This study has presented a robust prediction model 
incorporating age, sex, and a set of comorbidities to assess the risk 
of receiving mechanical ventilation in hospitalized patients with 
COVID-19. Good performance of this risk stratification model was 
observed in discrimination, calibration, and clinical utility. The 
application of this model, incorporating predictor variables readily 
available at hospital admission, can facilitate early identification of 
the patients with a high-risk for mechanical ventilation, and assist 
front-line clinicians to optimize patient management and resource 
allocation during periods with a surge in infections and a limited 
supply of mechanical ventilators.
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Decision curve analyses depicting the net benefits of the nomogram. 
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