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Pesticides are any mix of ingredients and substances used to eliminate or control

unwanted vegetable or animal species recognized as plagues. Its use has been

discussed in research due to the scarcity of strong scientific evidence about

its health e�ects. International literature is still insu�cient to establish a global

recommendation through public policy. This study aims to explore international

evidence of the presence of pesticides in urine samples from children and their

e�ects on health through a scoping review based on the methodology described

by Arksey and O‘Malley. The number of articles resulting from the keyword

combination was 454, and a total of 93 manuscripts were included in the results

and 22 were complementary. Keywords included in the search were: urinary,

pesticide, children, and childhood. Children are exposed to pesticide residues

through a fruit and vegetable intake environment and household insecticide use.

Behavioral e�ects of neural damage, diabetes, obesity, and pulmonary function

are health outcomes for children that are commonly studied. Gas and liquid

chromatography-tandem mass spectrometry methods are used predominantly

for metabolite-pesticide detection in urine samples. Dialkylphosphates (DAP)

are common in organophosphate (OP) metabolite studies. First-morning spot

samples are recommended to most accurately characterize OP dose in children.

International evidence in PubMed supports that organic diets in children are

successful interventions that decrease the urinary levels of pesticides. Several

urinary pesticide studies were found throughout the world’s population. However,

there is a knowledge gap that is important to address (public policy), due to farming

activities that are predominant in these territories.
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1. Introduction

Human health is described as the essential condition to
sustain human beings. Ever since the Homo sapiens era, the
cognitive capacity of human beings has been an important
factor in our role within the evolutionary tree and has also
functioned as a key to guaranteeing the stability of human life.
Unfortunately, some of these human capacities have harmed other
living species. The unlimited exploitation of natural resources to
derive economic profit has brought about negative consequences in
the environment, and some of them remain unknown (1).

One such way of causing environmental damage is the use of
pesticides. Pesticides are mixtures of substances that are used to
eliminate or control undesirable plant or animal species, and their
effects behave in a specific way. There are three broad classifications
according to their target population: herbicides for plant control,
insecticides for the management of bugs and insects, and fungicides
that are used to eliminate fungi (2).

Several types of pesticides have been used, and in general are
accepted, based on their role in agricultural activities and economic
development in several countries. By using substances such as
insecticides, herbicides, and fungicides, it is possible to reduce
damage to agricultural products, thereby improving quality, and
in some cases, the yield (3). Farming activities have not always
been easy. In the past, crops suffered from pests and diseases which
resulted in a decreased production of vegetables and fruits. Today,
through the use of pesticides, the loss of vegetables and fruits has
decreased by 78 and 54% respectively (3, 4).

However, not everything is positive with regard to the use
of pesticides. Several authors have reported the harmful health
effects of pesticide exposure in humans and other living species
(pollinators), which is considered a global concern and a public
health issue (5–8). Pesticide exposure has been related to several
chronic diseases such as cancer, birth defects, neurodegenerative
disorders, and others. Cancer and neurodegenerative damage are
the most commonly studied cases (9–12).

Abbreviations: 2,4-D, 2,4-Dichlorophenoxyacetic acid; 3-PBA, 3-

Phenoxybenzoic acid; ADHD, Attention-deficit Hyperactivity Disorder;

AMPA, Aminomethylphosphonic acid; AZM, Azinphos-methyl, (Guthion);

BMI, Body Mass Index; cis-DBCA, Deltamethrin; CKD, Chronic Kidney

Disease; CPS, Chlorpyrifos; DAP, Dialkylphosphates, Organophosphate

metabolites; DCB, Dichlorobenzene; DCBA, 3-(diethylcarbamoyl) benzoic

acid; DCCA, Dimethylcyclopropane carboxylic acid; DDT, Dichloro-

diphenyl-trichloroethane (insecticide); DEAP, Diethyl alkylphosphates; DEET,

N,N-diethyl-m-toluamide; DETP, Diethyl Thiophosphate; DMAP, Dimethyl

alkylphosphates; DMTP, Dimethylthiophosphate; DNA, Deoxyribonucleic

acid; EPH, Environmental Phenols; ETU, Ethylenethiourea; IARC, International

Agency for Research on Cancer; IMI, Imidacloprid; MeSH, Medical

Subject Heads; miRNA, MicroRNA, are small, single-stranded, non-

coding RNA molecules containing 21 to 23 nucleotides; ML, Malathion;

NEOs, Neonicotinoids; OC, Organochlorine; OPP, O-phenylphenol; OPs,

Organophosphates; PAH, Polycyclic Aromatic Hydrocarbons; PBA, 3-

phenoxybenzoic acid; PH, Phosmet; PIR, Family income-to-poverty

ratio; PNP, 4-nitrophenol; PP, Priority Pesticides; PYRs, Pyrethroids; REA,

Regulatory Exposure Assessment; TCPY, 3,5,6-trichloro-2-pyridinol; WHO,

World Health Organization.

In 2015, the International Agency for Research on Cancer
(IARC), the cancer agency of the World Health Organization
(WHO), declared glyphosate a potential carcinogen. Indeed,
glyphosate is the most common pesticide used around the world.
Unfortunately, this genotoxic herbicide is only one of several toxic
compounds used in agricultural activities (13). Several damage
mechanisms to human health related to pesticide use are reported
in international literature.

A disturbance in cellular homeostasis is followed by disruptions
in ion channels, receptors, and enzymes, and can result in the
changing of some metabolic pathways and mechanisms (6).
Neurodegenerative damage has been associated with reactive
oxygen metabolism and the disruption of mitochondrial
bioenergetics. Some polymorphisms are associated with the
risk of Parkinson’s disease after exposure to pesticide-metabolizing
enzymes (14). Other studies reported that exposure to pesticides
such as paraquat increases the risk of neuroblastoma due to
overexpression of α-synuclein (mutated A53T) (15). Glyphosate
exposure showed no overexpression of the protein. Other chemical
compounds increase the protein levels which are associated with
activity in melanoma cell lines (SK-MEL-2) and higher levels of
A53T mutated protein related to neurodegenerative damage (15).

In some regions of Europe, carbamates, organophosphates
(OPs) (acetylcholinesterase inhibitors), and organochlorines were
associated with domestic animal poisoning. Banned pesticides were
reported in the north of Italy (carbofuran and methamidophos)
(16). The illegal use of pesticides is not limited to some regions.
The problem has spread throughout the world, in both developed
and developing countries (16–19).

The use of pesticides has a long history and has been a
talking point among researchers, due to the scarcity of strong
scientific evidence regarding their health effects. The international
literature contains many articles in relation to this topic. Despite
this amount of knowledge, it is still insufficient for establishing a
global recommendation for public policy. Nevertheless, the need
for research concerning pesticides is still relevant in countries such
as Mexico, as well as for those in Latin American areas where their
usage remains a common human practice. The question for this
scoping review focuses on the following: What has been studied
regarding the presence of pesticides in the urine of children?

This study aims to explore the international evidence of the
presence of pesticides in urine samples from children and their
effects on health through a scoping review methodology.

2. Methods

Based on the methodology described by Arksey and O‘Malley
(20), before an extensive review of information, the question for
the literature review was defined using keywords included in
MeSH terms. The only source of information was PubMed. The
screening was performed by a work team using different word
combinations. Filters were used in order to limit the number of
hints and to obtain the most specific manuscripts regarding the
topic. The keywords included in PubMed were: urinary, pesticide,
children, and childhood, but not adolescents. The number of
articles resulting from the keyword combination was 454. Boolean
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TABLE 1 Keyword combination and PubMed results.

Keywords and boolean
operators

Number
of hints

Final
selection

Urinary pesticides AND children 200 88

Urinary pesticides AND children NOT
adolescents

134 0

Urinary pesticides AND childhood 28 0

Pesticides AND children health NOT
adults

92 5

Total 454 93

operators, AND and NOT, were included among the keywords, and
the number of hints is described in Table 1.

A total of 93 articles were selected for the results section, and 22
were used for complementary sections. The basic selection criteria
were: English language, quantitative empirical manuscripts,
and applied research in children, published during the last 10
years. Research in adults and adolescents, prenatal-only pesticide
research, qualitative research, reviews, and clinical cases were
excluded from this study. All the included articles were full text.
Articles with only a summary were not considered. A review and
selection of the articles were performed over a 6-month period
(2021–2022), and after several suggestions, new information
was added from May to July 2023. The selected articles were
reviewed and mapped by main topics such as diet, geography,
occupation, and health facts. After being divided into topics, the
articles were systematized in an excerpt matrix (worksheet) that
included: the lead author, year and place, study design, sample,
variables, statistical analysis, and results (Supplementary Table 1).
This process is outlined in the PRISMA-ScR chart
(Figure 1).

3. Results

Pesticides are used in all countries. Selected articles included
countries such as Canada, the United States, Mexico, Costa Rica,
Colombia, Brazil, Chile, Argentina, Spain, France, Germany, Italy,
the United Kingdom, Norway, Greece, Slovenia, Lithuania, South
Africa, India, Taiwan, Iran, Thailand, Israel, Malaysia, Japan,
China, South Korea, Saudi Arabia, Vietnam, Cyprus, and Australia
(Supplementary Table 1).

The most common methods used to measure pesticides
were: high-pressure liquid chromatography spectrometry (HPLC-
MS/MS), isotope-dilution gas chromatography–tandem mass
spectrometry (GC–MS/MS), and gas chromatography/mass
spectrometry (GC/MS) (Supplementary Table 1).

The pesticides most commonly reported in the selected articles
were: N-desmethyl-acetamiprid, pyrethroids, organophosphates,
DAP, 3-PBA, permethrin, TCPY, glyphosate, CPS, and other
pesticide compounds.

Children’s health is related to factors such as diet. The ingestion
of food constitutes a route of exposure to pollution and also a
mechanism of risk to health, therefore, the possible presence of

chemical residues such as pesticides may be present in the food that
children consume (21).

3.1. Diet

Some findings point out the relevance of diet in children’s
exposure to pesticides. In Australia, Li Y. et al. evaluated the
concentration of pesticides and their respective trend in the
associative model, (n = 400, 0–5 years of age). They found
a significant increase in concentrations of DETP, TCPY, 4-
nitrophenol, and 3-PBA according to age, which suggested that
exposure increases after weaning, or as a result of increased dietary
intake, mobility, and activity (22). In Greece, Myridakis et al. noted
the exposure of preschoolers (n = 500) to several contaminants
including pesticides. It was observed that the presence of
organophosphate levels was linked to food consumption (23).
In India, urine samples were evaluated to determine significant
changes in exposure between sexes (n = 377, 6–15 years of age), in
children in a conventional diet. It found that girls had 87% higher
levels of DAP pesticides than boys (24).

3.1.1. Organic diet
In a cohort study conducted in the United States of America,

within integrated families with children between 4–15 years of
age (n = 9), it was found that interventions consisting of organic
diets significantly decreased the levels of 13 pesticide metabolites
and their original compounds corresponding to organophosphates
(malathion and chlorpyrifos), neonicotinoids (clothianidin), the
herbicide 2,4-D, and pyrethroid insecticides in urine compared
to the levels of pesticides that are found at a baseline under the
conditions of a conventional diet (25).

Fagan et al. demonstrated that a 6-day intervention based on
an organic diet applied to children (n = 9, 4–15 years of age)
resulted in a decrease in urine glyphosate levels by 71% and its
metabolite AMPA by 76% (95% CI) (26). Other authors agree
in their findings that an organic diet decreases concentrations of
metabolites in organophosphate insecticides and the herbicide 2,4-
D in urine levels in children (n= 40, 3–6 years of age) (27). Venners
et al. evaluated 2,4-D exposure in four municipalities in British
Columbia, Canada, in (n = 40) households, with at least one child
aged 18–72 months. The statistical analysis reported that urinary
levels of 2,4-D were lower when more than 50% of the diet was
organic. Among other contributions, this study points out that food
may be a route of exposure to 2,4-D (28).

A cross-sectional study located in five countries in the
European Union concluded that fruit consumption was positively
associated with the presence of organophosphate pesticide
metabolites in infant urine (n = 1,288), while the consumption
of organic food was negatively associated with organophosphate
metabolites (29). Another study from Norway reported that
fruit consumption was the largest factor contributing to a
variation in urinary DAP levels. As a result, they concluded
that the consumption of organic fruit is the best way to reduce
infant and maternal exposure to organophosphate pesticides (30).
These studies agreed that organic diets are effective ways to
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FIGURE 1

PRISMA ScR chart.

substantially reduce exposure to pesticides, glyphosate herbicides,
and organophosphates.

3.1.2. Fruit and vegetable consumption
In 2012, research by Lemke et al. found no clear association

between exposure to glyphosate or AMPA and a vegetarian diet
or consumption of cereals, pulses, or vegetables, nor could it be
identified (31). In a performed cohort design study conducted
in the USA, researchers found no associated patterns between
dimethyl metabolite levels (DMAP) and the consumption of
fruits, vegetables, or apple juice throughout the planting-harvesting
seasons, while only significant relationships were found between
vegetable consumption during the harvesting season and the
presence of levels of metabolite dimethyl (p< 0.002) (32). However,
in a cross-sectional study in Israel on children (n = 103, 4–11
years of age), fruit consumption was associated with higher levels
of DAP metabolites in urine, which indicates evidence of exposure
to organophosphate pesticides, where some of the children studied
were exposed to levels above those considered safe (33). The
frequency and method of consumption are also related to pesticide
levels in children. In Malaysia, a child population (n = 180, age 7–
12 years) was studied, in which it was reported that children who
frequently consumed apples had four times more risk of detection
of pesticides than those who consumed cucumbers less frequently
(34). A study performed on a cohort in Spain (n = 559, 3–11 years
old), concluded that not washing fruit before eating is a factor that
can determine the differences in exposure levels (35).

In Australia, a cross-sectional study concerning pesticide
exposure in children (n = 56, 12.9 months of average age), found
by multivariate analysis a positive association between vegetable
consumption and the metabolite 3-PBA, while, in general, fruit
and vegetable consumption was associated with the presence of
total organophosphate metabolites in urine. In this sense, other
factors associated with the presence of concentrations of insecticide
metabolites were diet, age, mobility, having pets, frequency of
pesticide use at home, frequency of hand washing, and the
season, where variables such as hand washing and washing fruits
and vegetables are modifiable behaviors, therefore, educational
interventions are suggested to minimize childhood exposure to
insecticides (36).

Thomas et al. found in the toddler population (n = 41, 15–
18 months of age), that organophosphate flame retardants were
detected in 100% of urine samples. The research reported that
higher income (>10,000 US dollars annually) is associated with
lower levels of 1,3-dicchoro-isopropyl (TDCPP) and triphenyl
phosphate (TPP), in addition to isopropylated triphenyl phosphate
(ITP). This fact suggests that with higher income, the quality
of meals is better, avoiding fast food and other industrialized
products such as sausages. Toddlers of mothers with an income
of <10,000 US dollars annually reported higher levels of the
three compounds (TTP/TDCPP/ITP) in the urine (7.8, 12.11, and
4.69 ng/mL respectively). They concluded that a diet consisting
of fresh food is related to lower levels of organophosphate flame
retardants. The authors suggested that the lack of fresh meals and
an increase in meat and fish consumption is associated with higher
urinary levels of organophosphate flame retardants (37).
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3.2. Environmental and educational
interventions

Pesticide exposure has also been studied as an outcome of
human-environmental interactions and work environments since
educational interventions have focused on their effectiveness in
reducing pesticide exposure.

Galea KS et al. compared biomarkers of urinary concentrations
in children (n= 24, 4–12 years of age) during pesticide application
(roseate events). Approximately 98 and 97% of penconazole and
captan concentrations were lower than the Regulatory Exposure
Assessment-predicted exposures, respectively. Although a number
of the chlorpyrifos and chlormequat spray-related urinary
biomarker concentrations were greater than the predictions, the
concentrations suggest these were not significantly different from
the levels expected had no pesticide spraying occurred (38).

Werthmann et al. found green building practices had no impact
on children’s pyrethroid urinary concentrations. Further studies
with larger sample sizes are needed to confirm these findings (39).

3.2.1. Geographical factors
Several articles concluded that geographical issues are key

factors in the risk of pesticide exposure in children, which further
illustrates the relevance of a child’s environment in this regard. In
a cross-sectional study conducted in Japan, the researchers found
that childhood exposure to neonicotinoid pesticides by inhalation
was not associated with the season of application (spraying)
in pine wilt disease control fields; however, the presence of 6
neonicotinoids reflected the high intake of agricultural products
(40). In another cross-sectional study conducted in Australia,
Heffernan et al. evaluated pesticide exposure from a sample selected
from the general population. The urine pools of 100 specimens were
analyzed, and it was observed that the highest concentrations of
five organophosphate metabolites were found in the youngest and
oldest strata. This may be related to age-specific differences such as
behavior or physiology. Additionally, it was found that the levels of
metabolites of the organophosphate insecticide, chlorpyrifos, were
higher than those reported in the USA and Canada. This may be
due to differences in the registered applications of pesticides that
exist between countries (41).

In Mexico, the presence of pesticides such as glyphosate,
metoxuron, and malathion, was detected in 100% of the children
from two agricultural communities (urine samples). The study
reported a total of 17 pesticides in urine samples (42). In this regard,
a cross-sectional maternal-infant study conducted in Slovenia (n
= 168, 7–8 years of age and n = 178 pairs of mothers and their
children), authors found that all metabolites of organophosphate
pesticides (PNP, 3-PBA) and pyrethroids (TCPY) analyzed in
urine samples had the highest concentrations and were discovered
in children, which in mothers was also associated with higher
concentrations; and even higher levels occurred in children (43).
Raherison et al. studied exposure to airborne pesticides n = 96
in children who were living in the vicinity of vineyards located in
rural areas in France, where the main airborne pesticides found
outside its walls were fungicides and insecticides. Children living
in rural areas near vineyards are at increased risk of exposure

to dithiocarbamates during the summer, while an association was
found between urinary concentrations of ETU and symptoms
of asthma and rhinitis (44). In a two-year cohort conducted in
communities near farms in Chile in 2020, Muñoz-Quezada et al.
found that all the children evaluated hadmore than twometabolites
of urinary pesticides, where 3-PBA was the most frequent (45).

In 2021, in the Western Cape, South Africa, Molomo et
al. reported pesticide exposure as the sum of three urinary
concentrations of DAP phosphate metabolites in a sample of
children (n = 183, 9–14 years of age). The study further notes
that in younger children, living near grape and apple farms was
associated with increased urinary DAP concentrations (46). In
another cross-sectional study in the USA, pesticide exposures
inside and outside the home were analyzed in children (n = 1,094,
6–11 years of age), in which it was determined that exposure
both inside and outside the home does not affect the levels of
any dialkyl phosphates. The group of children always presented
higher levels than adolescents and adults (47). In Japan, Yoshida
et al. studied children who were exposed (n = 132, 6–15 years
of age) to environmental local conditions. From the analysis of
urinary pesticides and air quality within its walls, it was found that
transfluthrin was the most remarkable pyrethroid as an intramural
pollutant (48).

Other research examined the characteristics of exposure to
imidacloprid (IMI) in urine samples in children living in rural areas
(n = 247, average age 5 years), and found that younger children
tend to be at higher risk of exposure. Inhabitants of areas with
orchids were more exposed to IMI to various degrees (49). Ospina
et al. determined in urinary pesticide analyses of children (n =

505, 3–5 years of age), that an ethnic group comprised of Asians
was more likely than non-Asians to have N-desmethyl-acetamiprid
concentrations greater than the 95th percentile (50). In light of this,
another study evaluated urinary concentrations of 2,4-D in children
in central and southern China, n = 108, and found a positive
correlation between these concentrations and the biomarker of
oxidative stress 8-OHdG in young children (51).

A cross-sectional study in South Korea reported that 10% of
the child population, (n = 70, 6–12 years of age) with higher
urinary levels of 3-PBA tended to be girls who were younger than
9 years of age, who lived in a rural area in an apartment, and
usually had higher concentrations of urinary 3-PBA than those
in other countries (52). Lehmler et al. characterized exposure
to urinary pyrethroid pesticides and evaluated demographic and
social factors of infants (n = 2,295). It was determined that age,
gender, race/ethnicity, and PIR were associated with levels of 3-
PBA (53).

In a cohort study carried out in the United Kingdom (n = 22,
average age of 8 years), researchers point out that they found no
evidence indicative of urinary pesticide biomarkers in addition to
chlorpyrifos, resulting from roseling or the application of pesticides
per season, suggesting that there are other responsible sources
in addition to pesticide roseling, of the relatively low urinary
biomarkers of pesticide detected (54). Other research studied the
presence of pesticides in the general population (n= 322, 1–8 years
of age), in which they determined organophosphate components in
77% of the total urine samples analyzed. It found that the intake of
chlorpyrifos is higher in the populations of Vietnam, Greece, India,
China, and Korea (≥9.6 µg/day) than those estimated for other
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countries (<5 µg/day). Similarly, the daily intake of parathion was
found to be higher in China, India, and Korea, than estimated in
other countries (5.7–9.3 µg/day) (55).

3.2.2. Occupation of relatives
Another relevant factor is the activities that relatives perform

and their impact on children’s exposure. A study (n = 180, age
7–12 years) concluded that children whose parents’ occupation
was related to agricultural work had a 3 times higher risk of
pesticide detection than those who have a non-agricultural parent
(34). In France, a maternal and infant cohort study reported that
the variable of the child’s father being occupationally exposed
to pesticides means that he is three times more likely to have
higher concentrations of 3-PBA, while the household dust content
is correlated with insecticide use, higher mean concentrations of
permethrin (0.3–1.3µg/g), and an increased risk of detection of
cyfluthrin (56).

A cohort study analyzed dust samples contained in vehicles
and homes and found higher DAP levels in urine samples in
resident children (n = 170) than in homes of farm workers
exposed to occupational organophosphates. Mean concentrations
of AZM, CPS, ML, and PH in households inhabited by a farm
worker exceeded the levels of those households where a farmer
does not live (57). Weak or non-significant associations were
related to increased DAP levels with an elevated household income,
along with members of a household where someone works with
pesticides, including those who live on a farm or drink water from
an open source, or eat from a vineyard or garden crops (44).

3.2.3. Educational interventions
Regarding educational intervention, researchers reported that it

was not associated with a reduction in urinarymetabolite levels, nor
were there any significant differences between the pre- and post-
measures (58). In Italy, Bravo et al. found an association between
greater parental education and higher concentrations of OPs and
PYR metabolites, based on a cohort design on urine samples of
the infant population (n = 199, 7 years of age), which may reflect
different eating habits, however, fish consumption is not related to
concentrations of POs and PYR (59).

González-Alzaga et al. identified that the number of years
of formal education of the mother and the variables related to
the residential environment and exposures at home are the most
important determinants for the presence of DAP metabolites (35).

Cartier et al. found no evidence that prenatal OP exposure
adversely affected cognitive function in 6-year-olds, perhaps
because of the population’s socioeconomic status, which was higher
than in previous studies, though other causal and non-causal
explanations are also possible (60).

3.3. Consequences on children and
teenagers

Some authors suggest potential associations of chlorophenol
pesticides with being overweight, obese, and a lipid profile,

along with blood pressure in children and adolescents (61)
and adverse neurodevelopmental effects associated with early
childhood CPS exposure, but not prenatal exposure (62). The
compound 3-PBA in children’s urine samples was positively
associated with BMI z-scores, however, its concentrations at
midterm pregnancy reported no association (63). Pyrethroid and
organophosphate pesticide exposure might have harmful effects
on children’s verbal and memory development (64). Researchers
reported associations related to pyrethroid insecticide use and
urinary 3-PBA concentrations among preschool-age boys (65).
Neuropsychological impairment was reported as a negative effect
after pesticide exposure in children, however, no relationship was
reported after prenatal exposure in newborns (66).

Oya et al. examined levels of OP pesticides in Japanese
toddlers. Some exposure behaviors such as the use of
insect repellent sprays, herbicides, and insecticides, were
associated with increased creatinine-unadjusted DAP
concentrations (67).

In Japan, Yoshida et al. found that the main route of
exposure for DCB (dichlorobenzene) absorption in children was
considered to be inhalation while at home. Indoor concentrations
of dichlorobenzene surpassed the risk of cancer over a lifetime
from 10−3 in 9% of the residences and 10−4 in 22% of
them (68).

Suh et al. demonstrated no relationship between agricultural
pesticides and the development of precocious puberty (69).
Van Wendel de Joode et al. found that after adjustment
for potential confounders, higher urinary TCPy concentrations
were associated with poorer working memory in boys, poorer
visuomotor coordination, and increased prevalence of parent-
reported cognitive problems/inattention due to children living
near banana plantations who were exposed to pesticides that may
affect their neurodevelopment (70). Zhang et al. demonstrated
that children in an agricultural region of China were exposed to
carbamate pesticides. Exposure in utero and at 3 and 7 years old
may adversely impact a child’s neurodevelopment (71). Fiedler
et al. found that no significant adverse neurobehavioral effects
were observed between participant groups during either the high
or low pesticide use season, however, due to the small sample
size, any significant differences observed should be regarded with
caution (72).

Neurodevelopmental effects were reported in Chinese children
from agricultural communities that were exposed (pre and
postnatal) to carbamate pesticides (73). Poorer Verbal IQ in boys
was associated with maternal urinary DEAPs but showed no effects
in girls (74). Organophosphate exposure (pyrethroids) has been
associated with attention-deficit/hyperactivity disorder frequency
(75), the elevation of gonadotropin serum levels, and early
puberty in boys (76). Thyroid gland diseases have been related to
organophosphate exposure. The prevalence of hypothyroidism was
reported as higher in children with positive urinary metabolites. A
study reported pesticide exposure as a risk factor in children living
in rural areas (77). Kidney injury or renal damage has been studied
by several authors. Some have found no evidence or association
between renal injury in children exposed to low levels of glyphosate
(78). Other reported weak evidence which suggests that urinary
DAP metabolites are related to kidney injury among children with
CKD and poor outcomes (79).
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DNA damage was reported in children exposed to aromatic
hydrocarbons and DDT compared to samples from children
living in low-exposure areas (80). Other organ damage such as
pulmonary and brain diseases have been reported and suggested
to be secondary to PYR environmental exposure in teenagers
(lower forced expiratory flow/forced vital capacity). Furthermore,
increased frequency of cytogenetic damage markers, delayed
puberty onset in girls, and enhanced risk of neurodevelopmental
diseases have been reported (81–87). A cohort study in the USA, in
an infant population (n = 279, 6–60 months of age), determined
that total urinary concentrations of dialkyl phosphate (OP) were
associated with a significant decrease in lung function in children
aged 7 years (88). Another study evaluated differences between
different contaminants in children urine (n = 226, 6–11 years
of age). It found no differences for any PP (priority pesticides),
and BMI was negatively associated with OPP levels, while in girls
higher levels of PAH, EPH, and PPs metabolites were found than
in children, adolescents, adults, and older adults (89). In Thailand,
Sapbamrer et al. determined that DAP (dialkyl phosphate) levels
were significantly higher in children living in farming communities
than those living in urban communities. This study suggests that
children may be exposed to OPs both inside and outside the
home and that this exposure can cause oxidative stress in children.
Oxidative stress contributes to the development of chronic diseases
and is recommended to be measured as a biomarker among
children exposed to POs as a preventive way to identify chronic
diseases (90).

Oxidative damage is one of the most commonly studied
effects. DNA can be damaged by oxidative stress which has
several consequences. In 2021, Konstantinuo et al. presented a
metabolomics study that showed a reduction in biomarkers of
oxidative stress in children after a dietary intervention. Reducing
the exposure to pyrethroids and neonicotinoids resulted in better
metabolism of glucose and uric acid (91).

Glyphosate is a common compound used around the world.
Some compounds can be found in the air, soil, water, and meals
(92). Exposed children can suffer respiratory symptoms (cough
and bronchospasm), and skin damage. DNA damage has been
demonstrated in children who are exposed to glyphosate. Genetic
damage observed in micronucleus assays was a real warning of its
potentially harmful effects on health (93). As hormone-disruptive
agents (xenobiotics), pesticides were associated with an increased
prevalence of cryptorchidism in areas of Europe where the amounts
of these compounds were higher (94).

As previously mentioned, pesticides can trigger mutagenic
processes in different pathways. DNA damage observed in
micronucleus tests has been reported in populations that have been
exposed to pesticides compared to those in non-exposed groups.
However, there was no definitive conclusion regarding the future
results of DNA damage since a comparison of biomarkers between
groups showed no differences (95).

Other studies have reported an increased risk of cancer and
respiratory problems in children (15, 87). Similarly, neurological
and behavioral changes in children have been associated with
pesticide exposure. A specific mechanism is unclear, but the main
theory is that it is induced by oxidative stress and DNA damage (73,
74, 76, 96).

Several authors have studied the relationship between kidney
damage and pesticide exposure (78, 79). Evidence of this
relationship is weak. Studies have reported no association between
glyphosate levels and albuminuria in regions with the highest
incidence reports of chronic renal disease (42, 97).

Research regarding genotoxic risk among children exposed to
pesticides concluded that there was a significant positive association
between the extent of DNA damage and the age of the children,
length of residence in the area, pesticide detection, and frequency
of apple consumption (98).

In 2017, Weldon et al. reported changes in miRNAs related
to total urinary concentration of DAPs, (major metabolites of
organophosphates pesticides) in farmworkers’ children during the
post-harvest season compared with the thinning season (75). Other
studies reported a decrease in DAP metabolite levels (51%) after an
educational home intervention (96). Pyrethroid pesticide exposure
and ADHD association were reported as having increased and
were the cause for hyperactive-impulsive symptoms in children
aged 8–11 years old and had deleterious effects on the children’s
neurodevelopment (99, 100). Fluegge et al. found that prenatal
PYRs exposure exerts heterogeneous effects by class on mental, but
not motor, functioning at 3 months of age (101).

Exposure to certain pyrethroids (PBA, DCCA) at
environmental levels may negatively affect neurobehavioral
development by 6 years of age (102). These same authors reported
that low-level childhood exposures to deltamethrin (cis-DBCA),
in particular, and for pyrethroid insecticides, in general (as
reflected in levels of the 3-PBA metabolite) may negatively affect
neurocognitive development by 6 years of age (103).

In general terms, the amount of reported information regarding
health damage is increasing. However, currently, no cause-
effect fact has been reported between a specific pesticide and a
specific disease. Available research assumes certain facts regarding
metabolic pathways which are affected by DNA damage and the
resulting consequences. International scientific information has
not been good enough to change public policy regarding the
indiscriminate use of pesticides.

3.4. Measuring pesticides

In 2018, a cohort study performed in Europe determined
that for the quantification of the variability of non-persistent
chemicals in urine, approximately a dozen samples were required
to accurately assess exposure for periods spanning several quarters
or 1 month (104). Hyland et al. determined that risk assessments
of pesticide exposure from the analysis of urine samples that are
not taken immediately in the morning may underestimate the
daily dose of organophosphates (OP). They recommend collection
and analysis of the first-morning spot samples to more accurately
characterize the concentration of OP pesticides in children (105).
Hernández AF et al. found that human hair has advantages
over urine samples for the evaluation of cumulative exposure to
organophosphates. This resulted from analyzing data from the
child population in Almeria, Spain (n= 222, average age 7.5 years),
and residents in the vicinity of areas of intensive agricultural use of
greenhouses (106).
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Calafat et al. analyzed the feasibility of urine collection for
the determination of various substances. They recommend the
urine sample as a biomarker for evaluation of exposure to these
substances in 3–5 year old children (107). These same authors
focused on evaluating the level of exposure to DEET in the general
population (n = 5,348, 6>years of age). It was found that the
highest concentrations of DCBA were greater in the period from
May to September than in the October-April period. However,
they noted that the general US population, including school-age
children, is exposed to DEET, yet it is not advisable to rely solely
on the presence of DEET as the only urinary biomarker as it could
probably underestimate the prevalence of exposure (108).

A case-control study performed in Japan determined an
association between the detection of urinary concentrations and
the prevalence of N-desmethyl acetamiprid and neonicotinoid
symptoms (109). It was also identified that urine samples collected
during the summer were more susceptible to having concentrations
of metabolites above the 95th percentile than those collected during
the winter (48). In 2021, research carried out in Mexico showed
that urinary glyphosate concentrations might vary depending on
the season, due to consumption habits and the ready availability
of products (110). A cohort study in Japan characterized childhood
exposure to NEOs, OPs, and PYRs in 3-year-old children (n= 223),
in which they found that urinary concentrations of NEO and PYR
metabolites were significantly higher in the summer than in winter,
meaning that children in Japan are environmentally exposed to
three major lines of insecticides and that daily sources of exposure
to NEOs are more common than those of OPs (111).

In another Japanese cohort study, urine samples from children
n = 150 (3 years of age) were analyzed to look for differences in
seasonal concentration levels. The results showed that in Japanese
children, exposure to PYR-related hygiene products has increased
in the past decade (2006–2015), while exposure to higher levels of
hygiene-PYR occurs more in the summer than in the winter (112).
Ueyama J. et al. established a method with high detection ranges for
the biomonitoring of neonicotinoids (NEOs), dinotefuran, and N-
desmethyl acetamiprid in urine extracted from disposable diapers
in Japan (113). Hernández et al. measured concentrations of six
OP metabolites in serum and urine in children and adolescents n
= 60 (average age of 11.8 years) and determined that the levels
found of OC andOP lend credibility to the national estimates in the
US (Centers for Disease Control and Prevention, Fourth report on
human exposure), so these values can be considered as a baseline
for children and adolescents of Mexican descent residing in the
Lower Rio Grande Valley (114).

4. Discussion

Pesticides are a mix of ingredients and substances used to
eliminate or control unwanted vegetable or animal species that
are recognized as plagues. Pesticides are categorized according to
their target pest. In general, there are herbicides for weeds and
vegetation, insecticides for insects, and fungicides for fungi (50).
People are exposed to pesticide residues through fruit and vegetable
intake (20, 21, 24–26, 29, 32), as well as the environment and
household insecticide use (32–34, 36–40, 82, 84, 98).

Long-standing use and the absence or inadequate practices
of protective equipment imply pesticide exposures, mainly

in farmworker housing complexes and through agriculture-
related activities. Pesticide exposure has been studied due
to public health concerns, particularly in populations with
children. Neurobehavioral damage (68), serum glucose alterations,
obesity (62), and harmful effects on pulmonary function (88)
are health outcomes that have been studied. Gas and liquid
chromatography-tandemmass spectrometry analysis methods have
been used predominantly for metabolite-pesticide detection in
urine samples (24, 30, 33, 34, 36, 44, 83, 85).

The 24-h urine samples are considered the “gold standard” for
evaluating daily exposure to pesticides and other environmental
chemicals that are excreted in the urine. However, non-
first-morning spot samples might underestimate the daily
organophosphate dose and the percentage of children with
concentrations that exceeds the regulatory levels. First-morning
spot samples are recommended for characterizing the OP dose
more accurately in children (23). However, some authors consider
that hair samples are the best way for performing studies that
measure long-term pesticide exposure (36).

In Mexico, urinary glyphosate herbicide was detected in
100 and 73% of children in two different communities. In
addition, 17 other pesticides were present, which reveals that
there are important exposure circumstances, thus strategies aimed
to decrease those levels are needed (42). Common urinary
organophosphate metabolites (OP) are DETP, followed by DMTP
and DEP (32).

Information regarding pesticides and their interaction with the
environment and human health is extensive. A search in PubMed
using the words “pesticide” and “health” yielded around 40,000
hints. The most important limitation of the present study was to
delimit and select the most relevant information. Around 20 years
ago, several articles reported assumptions concerning the harmful
effects of pesticides on children.Moreover, new information reports
facts with a sustainable methodology. As a scoping review, the
main objective of this study was to provide readers with a general
panorama of the topic (20), which might be considered as the main
limitation. Trying to compile all the available information would be
ideal for a book that covers this topic. The strengths of this article lie
in examining the scope and nature of the evidence on the subject.
After reading the information, readers will be able to make their
own assumptions. The authors did not assume any relationship
between a pesticide and a disease.

5. Conclusion

International evidence in PubMed supports that organic diets
in children are successful interventions that can mainly decrease
the urinary levels of pesticides, insecticides, and herbicides. First-
morning spot samples are the most recommended for accurately
characterizing an OP dose in children. Neurobehavioral damage-
targeted studies were predominant, however, more studies on organ
damage associated with urinary pesticides and cohort studies are
needed to understand health damage to children. Only a few
urinary pesticide-related studies were found in Mexico and Latin
America, therefore, there is a knowledge gap that must be attended
to, since agricultural and farming activities are predominant and
extend through the respective territories.
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