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Background: Air pollution may impair male fertility, but it remains controversial 
whether air pollution affects semen quality until now.

Objectives: We undertake a meta-analysis to explore potential impacts of six 
pollutants exposure during the entire window (0–90  days prior to ejaculation) 
and critical windows (0–9, 10–14, and 70–90  days prior to ejaculation) on semen 
quality.

Methods: Seven databases were retrieved for original studies on the effects of six 
pollutants exposure for 90  days prior to ejaculation on semen quality. The search 
process does not limit the language and search date. We only included original 
studies that reported regression coefficients (β) with 95% confidence intervals (CIs). 
The β and 95% CIs were pooled using the DerSimonian-Laird random effect models.

Results: PM2.5 exposure was related with decreased total sperm number (10–14 
lag days) and total motility (10–14, 70–90, and 0–90 lag days). PM10 exposure 
was related with reduced total sperm number (70–90 and 0–90 lag days) and 
total motility (0–90 lag days). NO2 exposure was related with reduced total sperm 
number (70–90 and 0–90 lag days). SO2 exposure was related with declined total 
motility (0–9, 10–14, 0–90 lag days) and total sperm number (0–90 lag days).

Conclusion: Air pollution affects semen quality making it necessary to limit 
exposure to air pollution for Chinese men. When implementing protective 
measures, it is necessary to consider the key period of sperm development.
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Introduction

8–12% of reproductive-age couples are infertile in the world and its prevalence may 
be increasing (1). Male factors cause 40–50% of infertile couples (2). Total sperm number, sperm 
concentration, progressive and total motility are commonly adopted to evaluate male 
reproductive potential. Sperm quality of sperm donors in China’s Henan Province showed a 
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decreasing trend from 2009 to b2019 (3). Although the exact cause 
remains unclear, air pollution might be a hazard factor for declining 
semen quality (4).

Particulate matter (PM) pollution included PM ≤ 10 μm (PM10) as 
well as PM ≤2.5  μm (PM2.5). Gaseous pollutants included sulfur 
dioxide (SO2), carbon monoxide (CO), nitrogen dioxide (NO2), and 
ozone (O3). Due to different economic growth levels and economic 
development patterns, air pollution varies greatly from place to place 
(5–9). Air pollution was serious in China due to rapid industrialization 
(10–13). Air pollution could cause respiratory symptoms (14–16), 
cardiovascular disease (17–20), kidney disease (21–23), adverse 
prenatal outcomes (24), and impaired neurodevelopment (25, 26). It 
remains controversial whether air pollution exposure during the 
whole sperm development window has an influence on sperm quality 
(27–47). A meta-analysis of relevant research data is needed.

The growth period of mature sperm is approximately 90 days, 
including three critical windows: 0–9 days prior to ejaculation 
(epididymal storage), 10–14 days prior to ejaculation (development of 
sperm motility), and 70–90 days prior to ejaculation (spermatogenesis) 
(48). There are fewer studies on which stage of sperm development is 
most vulnerable to air pollution, but the findings remain controversial 
(27, 29, 33, 34, 36–40, 42–44, 47). A meta-analysis of relevant research 
data is needed.

Although there are five systematic review and meta-analyses on 
whether semen quality is affected by air contaminants (49–53), the 
measured indicators of the four systematic review and meta-analyses 
were the mean differences and the exposure periods were not 90 days 
(49–52). The four systematic review and meta-analyses compare 
semen quality between men exposed to high levels of air pollution and 
men exposed to low levels of air pollution and were not standardized 
when merging the effects of air pollution from different studies (49–
52). The main distinction between the reported four meta-analyses 
and the present work is that we  have studied the association air 
pollution exposure during the whole 90 day period as well as the three 
critical windows of sperm development. A systematic review and 
meta-analysis by Xu et al. reported the effect of air pollution exposure 
during lag 0–90 days or 0–12 weeks on semen quality based on 
exposure-response relationships but did not report the effect of air 
pollution exposure during the three critical windows of sperm 
development (53). The included articles did not include those 
published in Chinese and those published recently in 2023, and 
subgroup or sensitivity analyses were also not performed (53). There 
is still no systematic review on whether semen quality is affected by 
air pollution exposure during the three critical windows of 
sperm development.

Therefore, the first meta-analysis was done for analyzing the 
relation of air pollution exposure during the whole and three critical 
windows of sperm development and sperm quality in China.

Methods

The present meta-analysis was performed in compliance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (54) as well as PRISMA 2020 checklist had been 
provided in Supplementary Materials A. This meta-analysis was 
registered on the PROSPERO website (No. CRD42022374712). 
Literature search.

We retrieved the Cochrane Library, EMBASE, Web of Science, 
PubMed, VIP, China National Knowledge Infrastructure (CNKI) as 
well as Wanfang databases for articles. The search process does not 
limit the language and search date. Only epidemiological observational 
studies published in Chinese or English would be  included. The 
applied search words and detailed search strategies are shown in 
Supplementary Table S1; Supplementary Materials B, respectively. 
Searches were performed independently by RL and JY Disagreement 
was resolved by a third author (JL)

Outcomes

Outcomes included total sperm number, sperm concentration, 
total and progressive motility.

Inclusion and exclusion criteria

Inclusion criteria were: (a) reporting the effect of at least one air 
pollutant exposure during the whole window and/or critical stages of 
sperm development on sperm quality; (b) cross-sectional or cohort 
studies; (c) reporting regression coefficients (β) and 95% confidence 
intervals (CIs); (d) Chinese males; and (e) English and Chinese 
articles. The measured indicators of case-control studies were the 
means and standard deviations (SDs) rather than β and 95% CIs.

The following exclusion criteria were adopted: (a) animal studies, 
case reports, commentaries, reviews, protocols, editorials, conference 
abstracts, letters, or book chapters; (b) case-control studies; (c) studies 
in countries other than China; (d) reported shorter or longer exposure 
period; (e) focused on indoor air pollution; and (f) multivariate 
logistic regression.

Study selection

Two authors (RL and JY) conducted the literature selection 
independently. If any disagreement arose during the selection process, 
it would be resolved by discussing with the third author (JL).

Data extraction

Using a standardized form, the following information was 
extracted independently from eligible publications by two authors (RL 
and JY): publication year, first author, design of study, region, setting, 
research period, study subjects, size of the sample, pollutants exposure 
measurement, outcome, exposure period, statistical model, adjusted 
confounding factors, adjusted β with their corresponding 95% CIs. 
Through discussion with the third author (JL), any disagreement in 
the data extraction was resolved. The missing information of the 
original study was requested by contacting the corresponding author.

Quality assessment

Quality assessments of eligible publications were executed 
independently by two researchers (QW and LW). If there was any 
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inconsistent opinion, it would be resolved by discussing with the third 
researcher (YD). The Newcastle-Ottawa Scale (NOS) checklist was 
adopted for evaluating the quality of retrospective as well as 
prospective cohort studies (55). The Joanna Briggs Institute (JBI) 
critical appraisal checklist was adopted for evaluating the quality of 
cross-sectional studies (56). Based on the Grading of 
Recommendations Assessment, Development and Evaluation 
(GRADE) guidelines (57), the certainty of evidence was started with 
moderate and further downgraded based on the following items: 
publication bias, directness, study limitations, consistency, and 
precision (58, 59), and upgraded for dose-response gradient, strong 
effect size as well as plausible confounding effect (60).

Data analyses

If the articles did not give interquartile range (IQR) values or 
original incremental units of pollutant exposure, we  would 
contact the authors by email. For parts per billion (ppb) units, the 
following equations were used to convert to μg/m3: 1 
ppb = 48/22.4 μg/m3 (O3); 1 ppb = 46/22.4 μg/m3 (NO2). It was 
assumed that the standard ratio of 24 h average, 8 h max, and 1 h 
max was 8:15:20, which was widely used for O3 conversion (61–
63). To improve comparability, we converted all estimates to 24-h 
average. The standardized increment was 10 μg/m3 in this study, 
otherwise it would be  converted using the following formula 
(64, 65):

 
( ) ( ) ( ) ( )standardized original Increment 10 / Increment originalβ β= ×

Statistical analyses were conducted with Stata v12.1 (Stata Corp., 
United  States). The β and 95% CIs were combined using the 
DerSimonian-Laird random effect models. Chi-squared test and I2 
statistics were used to quantify the heterogeneity. Heterogeneity existed 
when p < 0.05 or I2 > 50% (66). In order to find sources of heterogeneity, 
we conducted sub-group analyses based on design of the study (cross-
sectional and cohort), location (northern and southern China), and 
exposure assessment approaches (estimating models or monitoring 
station). Egger’s test as well as funnel plots were adopted for assessing 
publication bias. Stability of the findings was judged with the help of 
sensitivity analysis. p < 0.05 was statistical significance.

Results

Study characteristics

As depicted in Figure 1, 3,952 publications were retrieved from 
the seven databases, and 34 articles remained after duplicate literature, 
abstracts and titles exclusion. After reading the full article, 14 articles 
were further excluded and detailed exclusion reasons were given in 
Supplementary Table S2. The remaining 21 eligible publications were 
eventually included in this meta-analysis. Missing data of original 
articles were requested by contacting the authors via email or WeChat. 
Studies with missing information were excluded if multiple contacts 
with the corresponding author remained unanswered. Table  1 
illustrates the primary characteristics of the eligible publications. 
Table  2 demonstrates the original incremental units, outcomes, 
statistical models used and adjusted confounding factors of all the 
eligible studies. If the increment unit of the original study was not 

FIGURE 1

Flow diagram of literature selection.
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TABLE 1 Characteristics of the included studies in this meta-analysis.

Author 
publication 
year

Study 
design

Location Setting Study 
period

Subjects Sample size Exposure 
measurement

Qualitya,b

Dai et al. (2022) Cohort East China Urban 2014–

2019

Male partners of 

infertile couples

1,494 men Air monitoring station 6 (NOS)

Guan et al. (2020) Cohort East China Urban and 

rural

2015–

2017

Male partners of 

infertile couples

1955 men with 2073 

semen samples

Inverse distance 

weighting model

7 (NOS)

Huang et al. (2019) Cohort Central China Urban 2014–

2015

Male partners of 

infertile Couples

1,081 with 1,278 

semen samples

Air monitoring station 7 (NOS)

Huang et al. (2020) Cohort South China Urban 2018–

2019

Sperm donors 1,168 men with 3,797 

semen samples

Inverse distance 

weighting model

8 (NOS)

Lao et al. (2018) Cross-

sectional

East China Urban and 

rural

2001–

2014

Men from the 

general 

population

6,475 men Hybrid spatiotemporal 

model

8 (JBI)

Liu et al. (2017) Cohort Central China Urban 2013–

2015

Male partners of 

infertile couples

1759 men with 2,184 

semen samples

Inverse distance 

weighting model

8 (NOS)

Ma et al. (2022) Cohort Central China Urban and 

rural

2015–

2020

Male partners of 

infertile couples

15,112 men with 

28,267 semen 

samples

Inverse distance 

weighting model

8 (NOS)

Ma et al. (2023) Cohort Central China Urban and 

rural

2015–

2020

Male partners of 

infertile couples

15,112 men with 

28,267 semen 

samples

Inverse distance 

weighting model

8 (NOS)

Qiu et al. (2020) Cohort Southwest 

China

Urban 2013–

2018

Sperm donors 686 men with 4,841 

semen samples

Air monitoring station 7 (NOS)

Tian et al. (2017) Cohort Central China Urban 2013–

2015

Male partners of 

infertile couples

1780 men Air monitoring station 7 (NOS)

Wang et al. (2018) Cross-

sectional

Central China Urban 2013–

2015

Male partners of 

infertile couples

1827 men Air monitoring station 7 (JBI)

Wang et al. (2020) Cross-

sectional

Central China Urban and 

rural

2013–

2015

Male partners of 

infertile couples

1852 men Air monitoring station 7 (JBI)

Wu et al. (2017) Cohort Central China Urban 2013–

2015

Male partners of 

infertile couples

1759 men with 2,184 

semen samples

Inverse distance 

weighting model

8 (NOS)

Wu et al. (2022) Cohort East China Urban 2014–

2016

Fertile men 

from NUM-

LIFE study

1,554 men Inverse distance 

weighting model

8 (NOS)

Yu et al. (2022) Cohort South China Urban 2019 Sperm donors 1,310 men with 4,912 

semen samples

Land-use random 

forest model

8 (NOS)

Zhang et al. (2019) Cohort North China Urban 2015–

2018

Sperm donors 1,116 men with 8,945 

semen samples

Air monitoring station 7 (NOS)

Zhang et al. (2023) Cohort East China Urban 2019–

2021

Sperm donors 1,515 men Inverse distance 

weighting model

8 (NOS)

Zhao et al. (2022) Cohort East China Urban and 

rural

2013–

2019

Male partners of 

infertile couples

33,876 men Air monitoring station 7 (NOS)

Zhou et al. (2014) Cohort Southwest 

China

Urban and 

rural

2007–

2013

Healthy fertile 

men

1,346 men Air monitoring station 8 (NOS)

Zhou et al. (2018) Cohort Southwest 

China

Urban 2014–

2015

General college 

students

796 men Air monitoring station 7 (NOS)

Zhou et al. (2021) Cross-

sectional

North China Urban and 

rural

2018–

2019

Male partners of 

infertile couples

423 men Ordinary Kringing 

model

8 (JBI)

aThe Newcastle-Ottawa Scale (NOS) checklist was adopted for evaluating the quality of retrospective as well as prospective cohort studies and the maximum score is 9.
bThe Joanna Briggs Institute (JBI) critical appraisal checklist was adopted for evaluating the quality of cross-sectional studies and the maximum score is 8. NUM-LIFE, Nanjing Medical 
University Longitudinal Investigation of Fertility and the Environment; NOS, Newcastle-Ottawa Scale; JBI, Joanna Briggs Institute.
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TABLE 2 Pollutants, outcomes, and statistical information of the 19 included studies.

Author 
publication 
year

Outcome Exposure 
period 
(day)

Pollutants 
(Original 
incremental unit)

Statistical 
mode

Adjusted confounding factors

Dai et al. (2022) Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (IQR)

PM10 (IQR)

Multivariate linear 

regression models

Age, abstinence days, education level, occupation, 

average ambient temperature, seasons, and 

gaseous air pollutants

Guan et al. 

(2020)

Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (IQR)

PM10 (IQR)

Multivariate linear 

regression models

Age, abstinence days, semen volume

Huang et al. 

(2019)

Sperm concentration

Total sperm count

Total motility

90 PM2.5 (IQR) Multivariate linear 

mixed models

Age, BMI, race, education, smoking, alcohol 

consumption, abstinence period, and season

Huang et al. 

(2020)

Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (μg/m3)

PM10 (μg/m3)

SO2 (μg/m3)

NO2 (μg/m3)

CO (mg/m3)

Linear mixed-effect 

models

Age, BMI, percent body fat, ethnic, marital status, 

childbearing history, career, smoking, alcohol 

consumption, abstinence period, season, a 

natural cubic spline function of time, a natural 

cubic spline function of temperature during 

exposure period

Lao et al. (2018) Sperm concentration

Progressive motility

Total motility

Percentage of normal 

morphology

90 PM2.5 (5 μg/m3) Multivariate linear 

regression models

Age, education level, smoking status, alcohol 

drinking, exercise and occupational exposure to 

asbestos and organic solvent, body mass index, 

systolic blood pressure, fasting blood glucose and 

total cholesterol levels, season, year of medical 

examination

Liu et al. (2017) Sperm concentration

Total sperm count

Progressive motility

Total motility

Total motile sperm count

90 SO2 (IQR)

NO2 (IQR)

CO (IQR)

O3 (IQR)

Multiple linear 

regression analysis

Age, BMI, race, education, smoking amount, 

alcohol consumption, and abstinence period, 

temperature, season

Ma et al. (2022) Sperm concentration

Total sperm count

Progressive motility

Total motility

Progressively motile 

sperm count

Total motile sperm count

90 PM2.5 (IQR)

PM10 (IQR)

Linear mixed-effects 

models

Age, BMI, smoking, drinking, occupation, 

abstinence period, month (at the date of semen 

collection) and temperature (average temperature 

of contemporary period)

Ma et al. (2023) Sperm concentration

Total sperm count

Progressive motility

Total motility

Progressively motile 

sperm count

Total motile sperm count

90 SO2 (IQR)

NO2 (IQR)

CO (IQR)

O3 (IQR)

Linear mixed-effects 

models

Age, BMI, smoking, drinking, occupation, 

abstinence period, month (at the date of semen 

collection) and temperature (average temperature 

of contemporary period)

Qiu et al. (2020) Semen volume

Sperm concentration

Progressive motility

90 PM2.5 (μg/m3)

PM10 (μg/m3)

SO2 (μg/m3)

NO2 (μg/m3)

CO (mg/m3)

O3 (1ppb)

Linear mixed-effects 

models

Abstinence days, age, BMI, education level, year 

of sample collection, relative humidity (current 

day, 90-day preceding), temperature (current day, 

90-day preceding)

Tian et al. (2017) Sperm concentration

Total sperm count

90 O3 (μg/m3) Multivariate linear 

mixed models

Age, BMI, education level, smoking status, 

seasons of semen collection, abstinence days, 

average temperature, average relative humidity

(Continued)
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TABLE 2 (Continued)

Author 
publication 
year

Outcome Exposure 
period 
(day)

Pollutants 
(Original 
incremental unit)

Statistical 
mode

Adjusted confounding factors

Wang et al. 

(2018)

Semen volume

Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM10 (10 μg/m3) Multiple linear 

regression analysis

Age, BMI, education level, smoking status, 

abstinence days, seasons of semen collection, 

average temperature, average relative humidity

Wang et al. 

(2020)

Sperm concentration

Total sperm count

Progressive motility

90 SO2 (IQR)

NO2 (IQR)

Multivariate linear 

regression models

BMI, education level, smoking, age, and 

abstinence period, temperature, humidity, season, 

and PM2.5

Wu et al., (2017) Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (IQR)

PM10 (IQR)

Multivariate linear 

regression models

Age, BMI, ethnic, education, smoking, alcohol 

consumption, abstinence period, season and 

temperature

Wu et al. (2022) Semen volume

Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (10 μg/m3) Multivariate linear 

regression models

Age, BMI, ethnicity, education, smoking status, 

drinking status, family income, abstinence 

period, season, and temperature

Yu et al. (2022) Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (IQR)

PM10 (IQR)

Linear mixed-effect 

models

Age. BMI, percent body fat, education, ethnic, 

martial status, childbearing history, career, 

smoking, drinking, abstinence period, month, a 

natural cubic spline function of temperature 

during exposure period

Zhang et al. 

(2019)

Sperm concentration

Progressive motility

90 PM2.5 (μg/m3)

PM10 (μg/m3)

SO2 (μg/m3)

NO2 (μg/m3)

CO (mg/m3)

O3 (μg/m3)

Linear mixed-effect 

models

Age, abstinence duration, month, average 

temperature

Zhang et al. 

(2023)

Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (μg/m3)

PM10 (μg/m3)

SO2 (μg/m3)

NO2 (μg/m3)

CO (μg/m3)

O3 (μg/m3)

Multivariate linear 

regression models

Age, ethnicity, season of semen collection, 

abstinence period and temperature.

Zhao et al. (2022) Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (IQR)

PM10 (IQR)

Linear mixed-effect 

models

Ethnicity, age, educational level, body mass index, 

smoking, alcohol consumption, season of semen 

collection, abstinence period, temperature, 

relative humidity, and gaseous pollutants

Zhou et al. (2014) Semen volume

Sperm concentration

Progressive motility

Total motility

Percentage of normal 

morphology

90 PM10 (μg/m3)

SO2 (μg/m3)

NO2 (μg/m3)

Multiple linear 

regression analysis

Age, education, smoking, BMI, alcohol use, 

abstinence time period and season

Zhou et al. (2018) Semen volume

Sperm concentration

Total sperm count

Progressive motility

Percentage of normal 

morphology

90 PM2.5 (μg/m3)

PM10 (μg/m3)

Multiple linear 

regression analysis

Age, smoking, alcohol use, BMI and abstinence 

time

(Continued)
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10 μg/m3, effect sizes were converted. The credibility of the evidence 
was categorized as very low or low (Supplementary Table S3).

Air pollutants and sperm quality

Six air pollutants exposure during the whole window did not affect 
sperm concentration (Supplementary Table S4; Figure 2). PM10, SO2, 
and NO2 exposure during the whole window were related with decreased 
total sperm number, while such association was not found for PM2.5, CO, 
and O3 exposure (Supplementary Table S4; Figure 2). PM2.5, PM10 as well 
as SO2 exposure during the entire window were negatively related with 
total motility, while such association was not found for other pollutants.

In order to find sources of heterogeneity, we conducted sub-group 
analyses based on design of the study (cohort and cross-sectional), 
location (northern China and southern China), and exposure 
assessment approaches (monitoring station or estimating models). 
The majority of sub-group results were consistent with the pooled 
results (Supplementary Table S5; Figure 3).

During 0–9 lag days, only SO2 exposure was related with declined 
total motility (Supplementary Table S5; Figure 3). During 10–14 lag 
days, PM.2.5 exposure was adversely related with total sperm number 
and total motility, SO2 with total motility (Supplementary Table S5; 
Figure  3). During 70–90 lag days, PM10 and NO2 exposure were 
adversely related with total sperm number, PM2.5 with total motility 
(Supplementary Table S5; Figure 3).

Sensitivity analysis

In the sensitivity analyses for six pollutants exposure during the 
whole window and sperm quality, pooled effect sizes did not change 
significantly by omitting one study from each analysis, thus indicating 
that our findings were stable (Supplementary Table S4; 
Supplementary Figure S1). However, when the study of Wu et al. (40) 
was omitted from sensitivity analyses of PM2.5 exposure and progressive 
motility, a significant association disappeared (p = 0.081; 
Supplementary Table S4; Supplementary Figure S1A). When the study 
of (34) was omitted from sensitivity analyses of PM10 exposure and 
sperm concentration, a significant association disappeared (p = 0.119; 
Supplementary Table S4; Supplementary Figure S1B). When the study 
by Ma et  al. (33) was omitted from the sensitivity analysis of O3 
exposure and total motility, a significant association disappeared 
(p = 0.104; Supplementary Table S4; Supplementary Figure S1F).

In the sensitivity analyses of six pollutants exposure during critical 
windows and sperm quality, the pooled effect sizes did not change 
significantly by omitting one study from each analysis, thus indicating 
that our findings were stable. However, when the study of Ma et al. (33) 
was omitted from the sensitivity analyses of O3 (70–90 lag days) exposure 
and total motility, a significant association disappeared (p = 0.197) with 
heterogeneity decreasing from 51 to 0% (Supplementary Table S5).

Discussion

Summary of study results

China has a population of more than 1.4 billion and covers a land 
area of approximately 9.6 million km2. Due to the vast territory of 
China, it varies greatly in climate conditions, landforms, geography, 
population density, and economic development level in different 
regions. Based on economic development levels and climatic 
conditions, China is generally grouped into seven geographic regions 
(67–69). Detailed geographic location is presented in 
Supplementary Figure S2. China is roughly classified as southern and 
northern China (70–72). Distribution of southern and northern 
China is shown in Figure 4. As a result of the limited sample size, 
we performed sub-group analysis by location (northern China and 
southern China). Air quality is closely related with climatic conditions 
and economic development levels. Air quality is better in western 
China than in eastern China (67). Economic development levels in 
western and eastern regions result in different chemical compositions 
of pollutants (73, 74). In the eastern and central regions, industry and 
traffic are the primary causes of air pollution (75). Biomass burning 
and soil dust are the primary reasons of air pollution in the western 
region. Different sources of air pollution in different regions result in 
different toxicity, concentrations, and chemical compositions. This 
may explain, to some extent, the inconsistent results.

Different individual exposure assessment approaches can partially 
explain the controversial results. Lao et  al. estimated individual 
exposure levels of PM2.5 using a high-resolution (1 × 1 km) 
spatiotemporal model (31). Zhou et al. (44) adopted the ordinary 
Kriging model to measure individual exposure concentrations. Some 
studies used the land-use random forest model (41) or inverse distance 
weighting model (28, 29, 32, 34, 39, 40) to assess the actual individual 
exposure levels. Some other studies used the averaged levels of the 
city-wide or the nearest monitoring station to assess actual individual 
pollutant exposure concentrations (27, 30, 35–38, 42, 43, 45, 46).

TABLE 2 (Continued)

Author 
publication 
year

Outcome Exposure 
period 
(day)

Pollutants 
(Original 
incremental unit)

Statistical 
mode

Adjusted confounding factors

Zhou et al. (2021) Sperm concentration

Total sperm count

Progressive motility

Total motility

90 PM2.5 (μg/m3)

PM10 (μg/m3)

SO2 (μg/m3)

NO2 (μg/m3)

CO (mg/m3)

O3 (μg/m3)

Multiple linear 

regression models

Abstinence, age, BMI, socioeconomic status, 

smoking status, alcohol consumption, 

psychological stress, exposures to heat, metals or 

solvents, average ambient air temperature, multi-

time windows and multi-pollutants

PM2.5, particulate matter with the diameter ≤ 2.5 μm; PM10, particulate matter with diameter ≤ 10 μm; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; BMI, body 
mass index; IQR, inter-quartile rages (IQR).
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This is the first meta-analysis to analyze potential impacts of 
ambient air pollution exposure during the whole window and three 
critical windows on semen quality in China. Sperm motility, a 
conventional semen parameter, is one of the common indicators of 
fertility assessment. Sperm motility is commonly used as one of the 
most important sperm functions to determine whether female 
partners can successfully conceive without any assisted reproductive 

FIGURE 2

Regression coefficients and 95% confidence intervals for the relation 
between six pollutants exposure during the whole window and 
sperm quality.

FIGURE 3

Regression coefficients and 95% confidence intervals for the relation 
between six pollutants exposure during three critical windows and 
sperm quality.
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technology (ART). Sperm motility parameters are also sensitive 
indicators of male reproductive toxicity (76). PM10, PM2.5 as well as 
SO2 exposure were adversely related with total motility during 
0–90 days prior to ejaculation. PM2.5, CO as well as O3 exposure were 
adversely related with total sperm number during 0–90 lag days.

In order to find sources of heterogeneity, we conducted sub-group 
analyses based on design of the study (cohort and cross-sectional), 
location (northern China and southern China), and exposure 
assessment approaches (monitoring station or estimating models). 
Although subgroup analysis reduced heterogeneity to some extent, 
heterogeneity remained high level in some subgroups, and it was 
necessary to continue to explore potential sources of between-
studies heterogeneity.

In addition, the possible exposure susceptibility window was also 
investigated. PM2.5 exposure affected total motility (10–14 and 70–90 
lag days) and total sperm number (10–14 lag days). PM10 affected total 
sperm number (70–90 lag days). SO2 influenced total sperm number 
(0–9 and 10–14 lag days). NO2 affected total sperm number (70–90 
lag days). The findings suggested that pollutants exposure might affect 
total motility and total sperm number.

Biological mechanisms

The biological mechanisms that environmental pollutant 
exposure may damage the development of total motility have not 

been elucidated. PM10, PM2.5, and O3 exposure can lead to elevated 
concentrations of reactive oxygen species (77, 78), which may 
disrupt the blood-testis barrier, detriment spermatogenesis and 
result in declined sperm motility (79–82). PM exposure can also 
cause systemic inflammatory reactions by elevating tumor necrosis 
factor (TNF) as well as interleukin-1β (IL-1β) levels (83–86). 
Higher concentrations of IL-1β and TNF are related with impaired 
total sperm motility (87–89). Significant reduction in air pollutants 
emissions was accompanied by improvements in people’s markers 
of inflammatory conditions, thrombosis as well as oxidation stress 
(90). We  hypothesized that environmental pollutant exposure 
would elevate oxidative stress levels and inflammatory reactions, 
which could lead to decreased total sperm motility. This hypothesis 
requires further toxicological studies to elucidate the detailed 
mechanism of reduced sperm motility caused by environmental 
pollutant exposure.

Strengths and limitations

This present meta-analysis has three advantages. First, it is the first 
meta-analysis to analyze whether semen quality is affected by air 
pollution exposure during the whole and critical windows. Second, 
the findings are relatively new as a result of most eligible studies being 
published within recent 4 years. Third, results of different original 
studies were difficult to compare since the exposure increment units 

FIGURE 4

Distribution of northern and southern China.
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were different in most cases. Therefore, the comparability of the results 
was improved by standardizing the data through transformation.

However, the present meta-analysis still has four limitations. First, 
a high degree of heterogeneity for some pollutants was found, which 
may be explained by differences in pollutant concentrations, types of 
air pollutants, chemical components of particulate matter, individual 
exposure assessment approaches, design of the study, study setting, 
sample size, study regions, selection bias, and adjustment confounding 
factors. Due to the high degree of heterogeneity, caution should 
be given when interpreting some pooled effects. A high degree of 
heterogeneity may also hinder the detection of publication bias. 
Second, selective bias may occur due to some of the included studies 
selecting patients from infertility clinics. Third, subgroup analysis by 
exposure assessment approaches was not performed as a result of the 
insufficient sample size. Fourth, the sample size is still inadequate, 
with only 2 articles from northern China being included. Insufficient 
data might lead to inescapable errors, and the original researches need 
to be  further supplemented. Fifth, many of the included studies 
obtained estimates of air pollution exposure from ecological data or 
modeling and did not examine individual exposure to air pollution.

Conclusion

This evidence suggested that ambient air pollution could reduce 
semen quality in Chinese men and may even lead to infertility. For 
Chinese men, there is a need to reduce the duration of exposure. 
Further studies should be conducted to explore the possible biological 
mechanisms behind the findings observed in this study.
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