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Invasive group B streptococcal (GBS) disease is the commonest perinatally-
acquired bacterial infection in newborns; the burden is higher in African countries 
where intrapartum antibiotic prophylaxis strategies are not feasible. In sub-Saharan 
Africa, almost one in four newborns with GBS early-onset disease will demise, and 
one in ten survivors have moderate or severe neurodevelopmental impairment. 
A maternal GBS vaccine to prevent invasive GBS disease in infancy is a pragmatic 
and cost-effective preventative strategy for Africa. Hexavalent polysaccharide 
protein conjugate and Alpha family surface protein vaccines are undergoing 
phase II clinical trials. Vaccine licensure may be  facilitated by demonstrating 
safety and immunological correlates/thresholds suggestive of protection against 
invasive GBS disease. This will then be followed by phase IV effectiveness studies 
to assess the burden of GBS vaccine preventable disease, including the effect on 
all-cause neonatal infections, neonatal deaths and stillbirths.
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Introduction

Progress to reduce under five mortality rates by 2030, as part of the sustainable 
developmental goals, has been modest for many African countries (1), and children living in 
sub-Saharan Africa are ten-fold more likely to die in the first month after birth compared to 
high-income countries (1, 2). Many of the deaths in this age group are at and/or around birth; 
in 2021, of the five-million deaths in children less than 5 years of age, 46% occurred in the 
neonatal period (1, 2). In this neonatal period, the leading causes of death are from preterm 
related complications (17%), intrapartum related events (11%) and pneumonia, sepsis or 
meningitis (8%) (2).

In terms of specific infectious causes, Streptococcus agalactiae, commonly referred to as 
Group B Streptococcus (GBS), is the commonest reported cause of early-onset disease (EOD; 
i.e.: disease in the first 6 days after birth) in neonates (3–7). However, adverse perinatal outcomes 
are not limited to EOD in neonates, and late-onset disease (LOD) also occurs mostly within the 
neonatal period. Whilst considerable mortality is associated with EOD and LOD, survivors may 
also develop moderate or severe neurodevelopmental impairment (NDI) (8–10). Prior to birth, 
there may be miscarriages and stillbirth from invasive GBS disease in-utero (11, 12), and GBS 
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colonisation has been associated with preterm labour (13, 14). 
Pregnant women may also develop GBS sepsis (15).

Burden of disease in Africa

Worldwide, based on maternal GBS colonization, and using 
Bayesian modelling, there were an estimated 394,000 cases of invasive 
GBS disease (EOD and LOD) and 58,300 (95%CI: 26,500–125,800) 
deaths in early infancy (8). The majority of cases of invasive GBS 
disease, 231,800 (95%CI: 114,100–455,000) cases, were EOD. The 
burden of disease and death from GBS EOD is high in African 
countries, with 90,800 (95%CI: 43,000–186,600) of all EOD cases in 
sub-Saharan Africa (8) and the incidence of EOD almost double the 
worldwide estimate (16). Consequently, almost half of all early-onset 
GBS deaths occur in sub-Saharan Africa, where the case fatality is also 
high (23%, vs. 6% in developed countries) (8). Factors driving the 
incidence of EOD in African countries include higher prevalence of 
maternal GBS colonization, and limited or no intrapartum antibiotic 
prophylaxis (IAP). IAP is commonly given in high-income countries, 
based on either clinical risk-based screening or microbiological 
screening to prevent EOD (16, 17). It should also be noted that there 
are data gaps in Africa, with less than a quarter of African countries 
contributing data to estimates (8, 16).

The adverse consequences of EOD GBS disease in neonates are 
not limited to disease and death. There may also 
be neurodevelopmental impairment (NDI). In high-income countries, 
survivors of invasive GBS disease (sepsis and/or meningitis) compared 
to matched controls have a two-fold increased risk of moderate or 
severe NDI by 10 years of age (9). There is a paucity of long-term 
outcome data from Africa, but in a recent multi-country matched 
cohort study undertaken in South Africa, India, Mozambique, Kenya, 
and Argentina, 38% (8.8% were moderate or severe) of survivors 
(n  = 138) of invasive GBS disease had NDI compared to 22% of 
non-GBS (n = 390) children (10). Specifically, survivors of GBS EOD 
commonly developed NDI (10, 18).

In addition to this burden, there is also a substantial burden from 
GBS causing stillbirth from infections in-utero, with 20,300 (95%CI: 
9,000–40,500) out of 46,200 (95%CI: 20,300–111,300) GBS stillbirths 
in 2020 in sub-Saharan Africa (8). Furthermore, babies born with 
intrapartum hypoxia from invasive GBS disease may present with 
neonatal encephalopathy (19, 20).

Maternal GBS colonization increases the risk of preterm labour 
(13), although data are limited; of the 15 million preterm births that 
occurred globally in 2020, approximately 518,100 (95%CI: 36,900–
1,142,300) were estimated to be associated with GBS, most of which 
were from sub-Saharan Africa (8). Prematurely born infants also have 
an increased risk of acquiring invasive GBS disease (21); and being 
premature and acquiring invasive GBS disease was independenty 
associated with death and NDI in survivors (18, 22–24).

The acute healthcare cost and impact on the family of a neonate 
having a sepsis and/or meningitis is important. In a recent study from 
South Africa (a third of participants had EOD), the mean household 
and hospital cost of having a child with culture-confirmed GBS, E-coli 
or Staphyloccal infection was 52 and 684 international dollars, 
respectively (25). Average hospitalization cost for confirmed sepsis 
ranged from $55 to $129 in most high-income countries (26). Extra 
care for a child with invasive GBS disease is also required, and if the 

child has NDI this will be long-term. In cases of infant deaths from 
GBS EOD, parents of infants experience grief and express frustrations 
over the death of the child, and fears of future pregnancy (27).

Microbiology and pathogenesis of 
EOD

Streptococcus agalactiae is an encepsulated Gram positive coccus 
exclusively in the “B” Lancefield grouping of Streptococci. 
Approximately 18% (95%CI: 17–19%) of pregnant women are 
gastrointestinal and/ or genitourinary tract colonised with GBS 
globally (28); colonization rates are reported to be higher (22–25%) in 
Southern Africa (28–30), and approximately half of pregnant women 
are colonized at some point during their pregnancy (31). Of the 20 
million pregnant women that had rectovaginal colonization in 2020, 
6 (30%) million were living in sub-Saharan Africa (8).

There are ten GBS serotypes (Ia, Ib, II-X), serotype III being the 
commonest cause of invasive disease followed by Ia and V (16). 
Geographical differences in the prevalence of serotypes have been 
reported, and in Africa, serotype III is the commonest for EOD (16); 
most of the hypervirulent clonal complex 17 is serotype III (32).

There are several risk factors for EOD, GBS colonisation of the 
pregnant women is the only unequivocal risk factor (33). Other risk 
factors for EOD include prolonged rupture of membranes (>18 h; 
PROM), maternal fever during labor, premature labour, previous 
infant with invasive GBS disease, maternal GBS bacteriuria, 
chorioamnionitis, absence of screening for GBS colonisation, 
unavailability of intrapartum antibiotic prophylaxix (IAP), 
unavailability of a skilled birth attendant (8, 22, 34).

GBS colonization is usually asymptomatic, and maternal GBS 
colonization status is unknown to most African pregnant women as 
this is not routinely tested for in pregnancy. During the prenatal or 
perinatal period, ascending GBS into amniotic cavity can adversely 
affect the pregnant women resulting in chorioamnionitis or invasive 
maternal disease (15). For the foetus or newborn, the possible 
outcomes are EOD (pneumonia, sepsis, meningitis and/ or neonatal 
encephalopathy), stillbirth, or prematurity (11–13, 19, 20, 24) 
(Figure 1).

Current preventative strategies

Currently, prevention of invasive GBS EOD is dependant on the 
availability of intravenous antibiotics that can be administered to a 
pregnant women at least 4 h before delivery by adequately trained 
health care workers (35). There are two screening approaches 
(microbiological or clinical risk-based) to determine which 
pregnant women should get IAP. Many high-income countries use 
the microbiological screening approach in which pregnant women 
have a vaginal-rectal swab in the 36 or 37th week of gestation, and 
are offered IAP if they are GBS colonized (36). This strategy resulted 
in a 80% reduction in EOD in the United States from the early 
1990’s to 2010 (37). The risk-based approach targets pregnant 
women that have selected clinical risk factors (premature labour, 
PROM, maternal fever or previous child with GBS). Both strategies 
have limitations; microbiological screening is insensitive and 
colonisation status changes during pregnancy. Clinical risk factors 
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are non-specific, and only identified with close monitoring and 
comprehensive assessments, otherwise sensitivity is low. 
Microbiological screening also requires processing of specimens, 
logistical support and timely feedback of results. Microbiolgical 
screening is likely more effective at reducing EOD than risk-based 
approaches (38), but implementation challenges make either 
strategy challenging to implement in resource limited African 
settings. In African countries, IAP is not provided due to an absence 
of microbiological screening, and (i) a large proportion of home 
deliveries, (ii) no intravenous treatment available at primary health 
care facilities where a large proportion of women deliver, (iii) 
inability to administer antibiotics 4 h before delivery because of late 
presentations to labour ward, or staff shortages that delay medical 
interventions, and (iv) failure to recognise pregnant women with 
risk factors when they are present (39). Importantly, the risk of 
EOD to a neonate born to GBS colonized pregnant women is 1.1% 
with no IAP compared to 0.3% where IAP coverage is high (34).

Point of care / real-time molecular PCR testing in labour wards 
with IAP to colonized women has also been associated with a 
reduction in EOD (40). The sensitivity and specificity of PCR testing 
to detect GBS colonization in pregnant women has been reported as 
93 and 97%, respectively (41). The advantages of these point of care 
testing would be  a non-reliance on laboratory service and the 
immendiate availability of results to the midwife / obstetrician, but 
this will need to be offset by the high cost of these tests.

Recent studies have investigated the role of probiotics, garlic and 
zinc in the prevention of GBS colization but results are inconclusive 
(42–44).

Maternal GBS vaccination

Maternal vaccination is now recognized as the optimal strategy to 
reduce disease in pregnant women, and foetus or young infant. There 
is considerable precedent for vaccines in pregnancy providing 
protection at the most critical time after birth, and WHO has 
recommended tetanus, pertussis, influenza and Covid-19 vaccinations 
during pregnancy (45). Vaccinating pregnant women against pertussis 
and influenza has been shown reduce disease in infants of vaccinated 
mothers, and has been associated with a 75% reduction in stillbirths 
and a 30% reduction in preterm birth (46–48). Other vaccines such as 
those for Cholera and Typhoid are recommended in specific situations, 
and a number of maternal vaccines are currently under 
development (45).

Vaccination of pregnant women to prevent invasive GBS disease 
in infancy is an important, pragmatic, future preventative strategy 
for Africa and other low- and middle-income countries (LMICs). 
The WHO has provided a comprehensive value assessment for a 
GBS vaccine (49–51). A GBS vaccine would also likely prevent 
stillbirths and LOD (51), and may reduce GBS-associated preterm 

FIGURE 1

Perinatal and birth outcomes of newborns with invasive group B streptococcal (GBS) disease. GBS colonisation can lead to invasive early-onset 
neonatal disease (pneumonia, sepsis, meningitis, neonatal encephalopathy), and can also result in maternal infection (chorioamnionitis and invasive 
maternal disease), preterm birth and stillbirth. In sub-Saharan Africa, 23% will demise and 38% of survivors from low- and middle-income countries 
have neurodevelopmental impairment.
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birth. A maternal GBS vaccine would need to be  safe, effective, 
affordable, and accepted by policymakers as important, with 
demand from pregnant women and their partners. Studies from 
high-income countries suggest there is likely to be demand, but 
studies from countries in Africa are needed; in a study from the 
United Kingdom, after receiving information about GBS, two thirds 
of women reported that they would consider taking a GBS vaccine 
during pregnancy, underpinning the need for interventions to 
support uptake (52).

In terms of health impact and cost-effectiveness, a maternal 
GBS vaccine with 80% efficacy could prevent, worldwide, 127,000 
(uncertainty range (UR): 63,300 – 248,000) EOD cases, 87,300 
(UR: 38,100 – 209,000) LOD cases, 31,100 (UR: 14,400 – 66,400) 
deaths, 17,900 (UR: 6,380 – 49,900) cases of moderate and severe 
NDI, 185,000 (UR: 13,500 – 407,000) preterm births, and 23,000 
(UR: 10,000 – 56,400) stillbirths per year (53). The effect will 
be  greatest in sub-Saharan where two-fifths of the above will 
be prevented by vaccinating a fifth of women (53). A GBS vaccine 
is likely to be cost effective in most settings, including African 
countries (54–56). Asssuming the cost of the vaccine was $50, $15 
and $3.50  in high, upper-middle, and in low/lower-middle-
income countries, respectively, a single dose of the vaccine would 
cost $1.7 billion but save $385 million in healthcare costs 
worldwide (53).

The mechanism of protection against invasive disease through 
maternal vaccination is from an increase in type-specific antibody 
levels in the vaccinated pregnant women that can be transplacentally 
transferred to the foetus over the weeks (most tranfer occurs in the 
last trimester) until delivery. The transplacental transfer of type-
specific maternal IgG antibodies (IgG1 > IgG4 > IgG3 > IgG2) is an 
active process from the maternal to foetal circulation using the 
neonatal Fc receptor (FcRn) (45). Protein based vaccines induce 
mostly IgG1 and IgG3 responses, whereas capsular polysaccharide 
vaccines induce IgG2. The rate of IgG transfer is negatively affected 
by infections such as malaria and HIV, which are common in some 
areas of African countries. For a maternal GBS vaccine to 
be effective, the vaccine would need to be: (i) immunogenic and 
elicit functional responses, and (ii) administered at the appropriate 
gestational age for optimal concentrations of IgG to be transported 
across the placenta to the foetus (this is dependant on IgG subclass, 
transfer rate and gestational time to birth). Importantly, a vaccine 
to prevent invasive GBS disease can reduce the emergence of 
antimicrobial resistance; recent data from the US shows a low but 
increasing proportion of isolates with reduced beta-lactam 
susceptibility (57).

Vaccine licensure pathway and current 
landscape

In 1976, Baker and Kasper reported that low levels of maternal 
antibody titer was associated with invasive GBS disease (58). Both the 
GBS capsular polysaccharide (CPS) and many surface proteins have 
antigenic properties. Many studies have reported the association 
between higher levels of natural acquired maternal antibodies against 
GBS CPS and surface protein, and decreased acquisition of GBS 
colonization or a decreased risk of invasive GBS disease (59–64). 
Using Bayesian analysis, varying thresholds (“correlates of protection”) 

have been proposed (62). A maternal IgG antibody concentration of 
≥1 μg/mL for serotypes Ia, III and V was proposed as a threshold of 
protection amongst pregnant women in the US by Baker and 
colleagues in 2014 (65). This same threshold reduced the risk of 
disease by 80% for serotypes Ia and III from eight European countries 
(66). In South Africa, however, a higher threshold of protection was 
proposed (≥2.3 μg/mL and ≥ 3.4 μg/mL for serotypes Ia and III was 
associated with a 90% risk reduction in disease) (63). Importantly, 
benchmarking a correlate of protection to infant antibody levels, and 
supplementing that with maternal levels and transplcental tranfer 
ratios may be  necessary because of the unpredictability of 
transplacental transfer. An infant antibody level between 1 and 3 μg/
mL protected 90% of infants from invasive GBS disease caused by 
serotype Ia and III in South Africa (63, 67). Determination of single 
protective threshold for all GBS serotypes would be ideal.

There have been a number of monovalent, bivalent, trivalent (Ia, 
Ib, III) and hexavalent (Ia, Ib, II, III, IV and V) CPS phase I and II 
vaccine trials over the past few decades, some of which were 
undertaken in pregnant women (68–70). These trials showed higher 
IgG antibody reponses with CPS protein conjugate vaccines compared 
to CPS only vaccines. Investigators also explored using the tetanus 
toxoid versus CRM197, a non-toxic mutant of diphtheria toxin, as 
carrier protein – findings were similar (68). Furthermore, CPS protein 
conjugate vaccines induced peak responses 4–8 weeks after vaccination 
and began to wane 6 months after vaccination (68). The first GBS 
vaccine trial undertaken in pregnant women was conducted in the 
United States in 1988 using an unconjugated monovalent serotype III 
CPS vaccine, and then followed this up with a serotype-III CPS 
protein conjugate vaccine in 2003 (71, 72). Subsequently, phase Ib/II 
trivalent CPS protein conjugate vaccine trials have explored safety, 
different dosing schedules, a second dose, and immunogenicity in 
HIV-infected compared to uninfected pregnant women (73–77). 
These GBS CPS conjugate vaccines were safe in pregnancy. In 
South  Africa, a trivalent GBS vaccine administered to pregnant 
women showed higher geometric mean concentrations (GMCs) than 
placebo for serotypes Ia, Ib and III, and a significant difference was 
noted with higher vaccine doses for serotype Ia, but not for Ib and 
III. Cord-maternal antibody ratios were 49–79% (74). Similarly, 
infants of vaccinated mothers had higher serotype-specific GMCs 
than placebo, and serotypes Ia and III levels decreased to 26–35% 
from birth to 3 months of age (78). Therefore, a GBS polysaccharide 
conjugate vaccine is likely to protect young infants from invasive GBS 
disease. Additionally, a phase II, GBS serotype III conjugate vaccine 
administered to nonpregnant women was 36–43% effective at 
reducing first acquisition of GBS vaginal/rectal colonization (79). 
Furthermore, the vaccine is likely to increase sIgA breastmilk antibody 
concentrations; serotype-specific natural sIgA antibody was 
independently associated with protection against LOD (80).

Given the serotype diversity globally and the increased prevalence 
of serotype IV and V in some regions, a Pfizer hexavalent (Ia, Ib, II, 
III, IV, and V; referred to as GBS6) vaccine is undergoing clinical trials. 
The phase I/II, placebo-controlled, dose-escalation trial in 365 healthy 
men and non-pregnant women aged 18–49 years who received GBS6 
(5 μg, 10 μg, 20 μg) with aluminium phosphate (AlPO4) or placebo 
reported adverse events in 23–48% of participants depending on 
dosing and inclusion of AlPO4 (81). None of three serious adverse 
events reported during the study were considered to be related to the 
vaccine. Serotype-specific IgG GMCs peaked at 2 weeks after 
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vaccination and remained higher (10 to 56-fold rise) than placebo at 
six-months. Most (75%) vaccinated participants had an antibody 
concentration ≥ 1 μg/mL for serotypes Ia, II, III, IV, and V at 1 month 
after vaccination. A threshold of ≥1 μg/mL for serotype Ib was present 
in 40–57% of participants. GBS6 is being evaluated in an ongoing 
phase II, placebo-controlled, study in pregnant women assessing the 
safety, tolerability and immunogenicity (NCT03765073). Another 
hexavalent vaccine candidate developed by Inventprise is in the 
preclinical phase.

There are few reasons for the considerable delays in phase III trials 
of GBS conjugate vaccines. Firstly, the burden of invasive disease 
needed to be better established. A geographic diversity in the GBS 
capsular serotypes causing disease were observed, and vaccines were 
increased from trivalent to hexavalent, aiming to cover 98% of 
serotypes causing disease in young infants (16). Secondly, the full 
value proposition of vaccination that extends beyond invasive 
neonatal disease needed to be defined. This includes the potential 
impact of vaccination on all-cause neonatal sepsis, neonatal mortality 
and stillbirths. Thirdly, licensure of the vaccine through conventional 
phase III clinical trials with clinical outcomes of efficacy would mean 
that a sample of 30–180,000 pregnant women would be required in a 
setting with a high burden of disease (82, 83). Therefore, licensure of 
a GBS vaccine would be facilitated, if acceptable to regulators, through 
benchmarking the efficacy endpoint on a threshold of protection that 
is required to protect against invasive infant GBS disease, and 
following that with phase IV clinical effectiveness studies (83). This 
approach has been previously explored for meningocococcal and 
pneumococcal vaccines (84, 85).

Protein based vaccines that are highly conserved and provide a 
broad spectrum of protection against most serotype-causing disease 
strains are also under development. Amongst the leading candidates 
are antigens tartgetted at the Alpha family (Alp 1–4, Alpha C and Rib) 
of surface proteins. A protein based GBS vaccine that consists of the 
N-terminal domains of AlphaC and Rib (GBS-NN) is immunogenic 
and safe in non-pregnant adults (86). Similarly, a second generation 
vaccine (AlpN) that includes Rib, Alpha C, Alp1, Alp2 and Alp3 has 
been shown to be immunogenic and safe in non-pregnant adults (87). 
Currently, a phase 2 (NCT05154578) study evaluating the 
immunogenicity and safety of the AlpN vaccine in pregnant women 
is underway in South Africa, Denmark, Uganda and United Kingdom. 
Thresholds for protection have also been proposed for some of these 
surface protein vaccine candidates (64).

The GBS vaccine pipeline has been recently described (70, 88); 
leading candidates are the Pfizer hexavalent CPS protein conjugate 
vaccine and the Minervax AlpN protein-based vaccine. Monovalent, 
bivalent or trivalent investigational CPS protein conjugate vaccine that 
reached phase II evaluation have been suspended. Notably, few CPS 
protein conjugate and protein-based vaccine are in pre-clinical trials.

Considerations for GBS vaccination in 
African populations

There are specific considerations for vaccines in African 
populations. The prevalence of HIV amongst pregnant women in 
some sub-Saharan African countries is high. In South Africa, the 
antenatal HIV prevalence rate has remained at 30% over the last two 

decades (89). Despite advancements in the prevention of mother to 
child programmes of HIV, HIV-infected pregnant women have an 
increased risk of having a baby with invasive GBS disease (90, 91). 
HIV-exposed neonates have lower serotype-specific and surface 
protein antibody levels at birth compared to HIV-unexposed neonates 
(92, 93). This may in part be from lower naturally acquired antibody 
levels in HIV-infected pregnant women and secondly, from inefficient 
transplacental transfer of antibody (92, 93). Notably, in Malawi and 
South Africa, a 5 μg trivalent (serotypes Ia, Ib, and III) GBS vaccine 
was found to be  less immunogenic in HIV-infected compared to 
HIV-uninfected pregnant women (75). Therefore, higher doses or 
alternative dosing schedules will need to be  considered in 
HIV-infected pregnant women to optimise antibody responses and 
tranplacental transfer.

The second concern in African populations is that malaria is 
endemic to many regions. Similar to HIV, malaria may affect the 
transplacental transfer of antibody from the pregnant women to the 
foetus, this needs to be evaluated in the context of a GBS vaccine (94).

Thirdly, prematurity is prevalent in Africa, and vaccinated 
pregnant women need an optimal gestational period after vaccination 
to achieve adequate antibody transfer to the foetus. Approximately 
half of maternal antibody levels are present in the foetus at the 
beginning of the third trimester (95). Therefore, early preterm 
neonates will be at increased risk of disease. This is a major challenge 
for most African countries where IAP for pregnant women presenting 
in preterm labour in not readily available.

Lastly, some of the highest burden of GBS disease is in sub-Saharan 
Africa and therefore ethical considerations to undertaking clinical 
trials in these settings need to consider implementation and 
sustainability of the vaccine after licensure (96).

Post GBS vaccine licensure

If licensure is based on a correlate of protection, this will need to 
be followed by vaccine effectiveness studies, vaccine probe studies or 
national / regional surveillance programmes to measure the impact of 
vaccination on culture-confirmed GBS disease and stillbirths, 
all-cause sepsis, all-cause meningitis, all neonatal deaths and all 
stillbirths, and the effect of the vaccine on preterm labour. In addition, 
safety monitoring; particularly foetal and birth outcomes will need to 
continue. For a successful GBS vaccine, health-care worker 
(obstetrician/midwife) engagement is crucial. To overcome vaccine 
hesitancy, public engagement and awareness programmes are required 
by governments and policymakers. Importantly, as more maternal 
vaccines are recommended, an antenatal extended programme of 
immunisation (EPI) for pregnant women needs to be developed and 
understanding vaccine interactions and timing during pregnancy 
needs to be clearly defined.

Conclusion

The burden of invasive GBS disease, the commonest cause of 
EOD in neonates, is high in Africa, where IAP preventative 
strategies are not feasible, although data gaps remain. However, 
after many decades of GBS vaccine development, maternal GBS 
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vaccines are moving into late stage clinical trials. If these vaccine 
candidates are successful and a GBS vaccine is licensed based on a 
correlate of protection, studies of effectiveness will need to follow 
to assess the burden of GBS vaccine preventable disease. These 
studies should be complemented by routine clinical surveillance 
(97). This will require sentinel surveillance sites with standardized 
laboratory methods and monitoring systems to investigate neonates 
with signs of infection and confirmation of GBS, similar to those 
used in the estimation of pneumococcal and rotavirus vaccination 
effectiveness (98). These WHO surveillance sites were designed to 
measure baseline burden of disease or cost-effectiveness, estimate 
VE after vaccine introduction, monitor trends in serotype/ genotype 
distribution and serotype replacement after vaccine introduction, 
and detect other infectious diseases. Such sites exist in African 
countries, but sustainability is challenging.
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