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Purpose: The incidence of primary liver cancer is increasing year by year, with 
environmental factors playing a non-negligible role. At present, many studies are 
still disputing whether air pollution is associated with primary liver cancer incidence, 
and it is difficult to draw causal inferences. Therefore, in this study, we used two-
sample Mendelian randomization (MR) to assess the causal relationship between 
air pollution (including PM2.5, PM2.5–10, PM10, nitrogen dioxide and nitrogen 
oxides) and primary liver cancer risk and its related biomarkers (Alpha-fetoprotein, 
Osteopontin, Glypican-3 and Arginase-1).

Patients and methods: We used large-scale publicly available genome-wide 
association studies (GWAS) summary data to conduct MR analyses of European 
and East Asian populations. Inverse variance weighted (IVW) method was used as 
the main analysis method, and weighted median model, MR-Egger, simple model 
and weighted model methods were selected for quality control. Heterogeneity 
was checked by the Cochran’s Q test. The MR-Egger regression and the MR-
PRESSO global test detect pleiotropy. The sensitivity analysis was performed 
using the leave-one-out method.

Results: Between air pollution and primary liver cancer in either European 
(PM2.5: p  =  0.993; PM2.5–10: p  =  0.833; PM10: p  =  0.257; nitrogen dioxide: 
p  =  0.215; nitrogen oxides: p  =  0.614) or East Asian (PM2.5: p  =  0.718; PM2.5–10: 
p  =  0.362; PM10: p  =  0.720; nitrogen dioxide: p  =  0.101; nitrogen oxides: p  =  0.760) 
populations were found no statistical association. Notably, there was a causal 
relationship between nitrogen oxides and Arginase-1, a biomarker associated 
with hepatocellular differentiation, statistically significant associations remained 
after deletion for single nucleotide polymorphisms (SNPs) associated with alcohol 
intake frequency, Body mass index (BMI) and cancers (Beta: 4.46; 95%CI: 0.83–
8.08; p  =  0.015). There was no heterogeneity or pleiotropy in the results.

Conclusion: This MR study found no evidence to support a causality between air 
pollution and primary liver cancer in European and East Asian populations, but 
nitrogen oxides may affect hepatocellular differentiation.
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1. Introduction

Primary liver cancer is a malignant tumor originating from liver 
cells or intrahepatic bile duct epithelial cells, which is composed of 
hepatocellular carcinoma, cholangiocarcinoma, and mixed 
carcinoma (1). The estimated global cancer incidence rate for 
primary liver cancer in 2018 was 9.3 per 100,000 person-years, with 
a corresponding mortality rate of 8.5, making it the sixth most 
common cancer and the fourth leading cause of cancer death 
globally (2, 3). Currently, the region with the highest rates and 
prevalence of primary liver cancer is East Asia. However, from 1978 
to 2012, the incidence of primary liver cancer has also increased 
year-on-year in regions with low incidence rates, such as most 
European countries, India and the United States, placing a huge 
burden on individuals, families and society (4). Diagnosis of primary 
liver cancer relies on pathological biopsies, and the detection of 
tumor biomarkers also plays an important role in early screening, 
diagnosis, treatment assessment, recurrence and prognosis 
prediction of tumors (1). Alpha-fetoprotein (AFP), Osteopontin 
(OPN), Glypican-3 (GPC-3) and Arginase-1 (Arg-1) are common 
primary liver cancer related biomarkers. AFP, derived from fetal 
hepatocytes and yolk sacs, has been widely used as a useful cancer 
biomarker in the diagnosis of liver cancers (5). OPN is a highly 
modified, phosphorylated and glycosylated extracellular matrix 
protein that binds to integrins and is expressed in a variety of cells. 
When combined with AFP, the sensitivity of OPN in the diagnosis 
of liver cancers increases to 65% (6). GPC-3, a membrane-bound 
heparin sulfate proteoglycan belonging to the glycoprotein family, is 
over-expressed in up to 80% of patients with hepatocellular 
carcinoma and can distinguish liver cancer from other malignancies 
(7). Arg-1, an enzyme associated with the hydrolysis of arginine to 
ornithine and urea, is highly sensitive and specific for the detection 
of malignant hepatocytes and is considered a useful biomarker of 
hepatocellular differentiation (8, 9). Hepatitis B virus (HBV) 
infection is the most important driver of primary liver cancer, but 
with the increase of HBV vaccination coverage, HBV infection has 
been effectively controlled, and the increase in incidence and 
mortality from primary liver cancer may be more attributable to 
other factors such as smoking, alcohol consumption and dietary 
habits (10, 11). In addition, the impact of environmental factors 
cannot be ignored as industrialization and associated pollution from 
burning fossil fuels, or coal, oil and gas, and vehicle 
emissions increase.

As a long-standing and widespread industrial pollutant, air 
pollution poses a worrying health hazard. Air pollutants are usually 

classified as particulate matter (PM), or as gases such as nitrogen 
dioxide (NO2), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon 
monoxide (CO), and ozone (O3), etc. (12). PM2.5 is the most 
frequently inspected pollutant, followed by NO2 and NOx, with few 
studies focusing on other pollutants. From 1990 to 2015, the death rate 
attributable to PM2.5 increased from 3.5 to 4.2 million, accounting for 
7.6 percent of the total global deaths (13). The high health hazard of 
PM2.5 is the main reason for its widespread concern. The International 
Agency for Research on Cancer (IARC) classifies air pollutants as 
Group I human carcinogens, and numerous studies have shown a 
positive association between air pollution and some cancers, such as 
lung, kidney and breast cancer (14–16).

There is no consensus on the association between air pollution 
and the risk of primary liver cancer. Although a study involving 20,221 
participants in the United States found a positive association between 
PM2.5 and liver cancer mortality (HR was 1.18 by 5 μg/m3 increase in 
PM2.5; 95% CI: 1.16–1.20) (17), among the 8 studies on PM2.5 and 
the risk of primary liver cancer, only three studies (Coleman et al., Pan 
et al. and Vo Pham et al.) showed significant association between 
PM2.5 and primary liver cancer risk, while the other five studies did 
not (18–22). However, in five studies on the association between NO2 
and liver cancer incidence, only So et al. found that an increase of NO2 
concentration of 10 μg/m3 would affect the risk of liver cancer 
(HR = 1.17, 95%CI:1.02–1.35) (16, 20, 21). Therefore, to further 
explore whether there is an association between air pollution and the 
risk of primary liver cancer, we conducted a Mendelian randomization 
(MR) study using large-scale publicly available genome-wide 
association studies (GWAS) data with PM2.5, PM2.5–10, PM10, 
nitrogen dioxide and nitrogen oxides as exposures and primary liver 
cancer and its related biomarkers (Alpha-fetoprotein, Osteopontin, 
Glypican-3, and Arginase-1) as outcome to assess the causal 
relationship between air pollution and the risk of primary liver cancer.

2. Materials and methods

2.1. Study design

Our study is based on the Mendelian randomization design, 
which depends on three core assumptions that instrumental variants 
(1) are associated with the exposure, (2) are not associated with the 
outcome via a confounding pathway, and (3) do not affect the outcome 
directly, only possibly indirectly via the exposure. In this study, air 
pollution (PM2.5, PM2.5–10, PM10, nitrogen dioxide and nitrogen 
oxides) was used as the exposure factor, single nucleotide 
polymorphisms (SNPs) significantly related to air pollution were used 
as instrumental variables (IVs), and primary liver cancer and its 
related biomarkers (Alpha-fetoprotein, Osteopontin, Glypican-3, and 
Arginase-1) were the outcome variable. Here, we  conducted a 
two-sample MR analysis to estimate the causal effects of air pollution 
and primary liver cancer. The flowchart of this Mendelian 
randomization study is presented in Supplementary Figure 1.

Abbreviations: PM, particulate matter; NO2, nitrogen dioxide; NOx, nitrogen oxides; 

IVs, instrumental variables; MR, Mendelian randomization; GWAS, genome-wide 

association studies; IVW, inverse variance weighted; SNPs, single nucleotide 

polymorphisms; BMI, body mass index; AFP, alpha-fetoprotein; OPN, osteopontin; 

GPC-3, Glypican-3; Arg-1, Arginase-1; CI, confidence interval; HR, hazard ratio.
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2.2. Data sources

The data sources are detailed in Table 1. We selected air pollution 
(including PM2.5, PM2.5–10, PM10, nitrogen dioxide and nitrogen 
oxides) as exposures, with data on all air pollution obtained from UK 
Biobank, a large prospective study with more than half a million 
United Kingdom participants for which data on phenotypes, genetic 
details, and genome-wide genotyping have been published (23, 24). 
We  used the GWAS summary databases of air pollution for 
populations in Europe and East Asia. In European populations, the 
PM2.5 (GWAS ID: ukb-b-10,817), PM2.5–10 (GWAS ID: ukb-b-
12,963), PM10 (GWAS ID: ukb-b-589), nitrogen dioxide (GWAS ID: 
ukb-b-2,618) and nitrogen oxides (GWAS ID: ukb-b-12,417) GWAS 
summary datasets included 423,796, 423,796, 455,314, 456,380, 
456,380 participants, respectively. Among East Asian populations, the 
PM2.5 (GWAS ID: ukb-e-24006_EAS), PM2.5–10 (GWAS ID: ukb-e-
24008_EAS), PM10 (GWAS ID: ukb-e-24005_EAS), nitrogen dioxide 
(GWAS ID: ukb-e-24016_EAS) and nitrogen oxides (GWAS ID: 
ukb-e-24004_EAS) GWAS summary datasets included 2,505, 2,505, 
2,505, 2,625, 2,625 participants, respectively. Air pollution-related 
indicators were measured by land use regression (LUR) models (25).

We used primary liver cancer and its related biomarkers (Alpha-
fetoprotein, Osteopontin, Glypican-3 and Arginase-1) as the outcome, 
and all GWAS data for primary liver cancer were obtained from 
FinnGen (European population) and Biobank Japan (East Asian 
population). The four biomarkers (only European population) Alpha-
fetoprotein, Osteopontin, Glypican-3 and Arginase-1 were derived 
from the prot-a-53 (26), ebi-a-GCST90010244 (27), prot-c-4842_62_2 
(28) and ebi-a-GCST90010286 (27) GWAS summary data. FinnGen 
is a large public-private research project that combines imputed 
genotype data generated from newly collected and legacy samples 

from the Finnish biobank and digital health record data from the 
Finnish Health Registry1 to provide new insights into disease genetics. 
As of August 2020, samples from 412,000 people have been collected 
and 224,737 have been analyzed, with 500,000 participants expected 
by the end of 20,232 (29, 30). Biobank Japan is a large patient-based 
biobank consisting of 200,000 patients. As a basic biobank for 
common disease gene research, the project has conducted genome-
wide association studies for various diseases and identified many 
genetic variants associated with disease susceptibility and drug 
response. All publications are in this project from the project web site2 
and open to the public (31). GWAS summary dataset of primary liver 
cancer in European populations (GWAS ID: finn-b-C3_LIVER_
INTRAHEPATIC_BILE_DUCTS) contained 218,752 individuals 
(including 304 cases and 218,448controls). GWAS summary dataset 
of primary liver cancer in East Asian populations (GWAS ID: bbj-a-
158) contained 197,611 individuals (including 1,866 cases and 
195,745controls). Primary liver cancer cases were identified according 
to clinical diagnosis and conformed to the International Classification 
of Diseases, 8th Revision and 10th Revision codes.

2.3. Selection of instrumental variables

As shown in Supplementary Figure 1, in order to satisfy 
assumption 1, p < 5 × 10−8 was used as the genome-wide significance 
threshold for exposure, but only PM2.5 (European, ukb-b-10,817), 

1 https://www.FinnGen.fi\/en

2 https://biobankjp.org//work\/public.html

TABLE 1 Summary of the genome-wide association studies (GWAS) included in this two-sample MR study.

Exposures/
outcomes

Dataset
Sample 

size
Number of 

SNPs
Population Consortium Sex Year

Particulate 

matter (PM)

PM2.5 um ukb-b-10,817 423,796 9,851,867 European MRC-IEU Males and Females 2018

PM2.5 um ukb-e-24006_EAS 2,505 8,268,350 Asian (East Asia) NA Males and Females 2020

PM2.5–10 um ukb-b-12,963 423,796 9,851,867 European MRC-IEU Males and Females 2018

PM2.5–10 um ukb-e-24008_EAS 2,505 8,268,350 Asian (East Asia) NA Males and Females 2020

PM10 um ukb-b-589 455,314 9,851,867 European MRC-IEU Males and Females 2018

PM10 um ukb-e-24005_EAS 2,505 8,268,350 Asian (East Asia) NA Males and Females 2020

Nitrogen dioxide ukb-b-2,618 456,380 9,851,867 European MRC-IEU Males and Females 2018

Nitrogen dioxide ukb-e-24016_EAS 2,625 8,260,777 Asian (East Asia) NA Males and Females 2020

Nitrogen oxides ukb-b-12,417 456,380 9,851,867 European MRC-IEU Males and Females 2018

Nitrogen oxides ukb-e-24004_EAS 2,625 8,260,777 Asian (East Asia) NA Males and Females 2020

Primary liver cancer finn-b-C3_LIVER_

INTRAHEPATIC_

BILE_DUCTS

218,752 16,380,466 European NA Males and Females 2021

Primary liver cancer bbj-a-158 197,611 8,885,115 Asian (East Asia) NA Males and Females 2019

Alpha-fetoprotein prot-a-53 3,301 10,534,735 European NA Males and Females 2018

Osteopontin ebi-a-GCST90010244 1,322 18,221,494 European NA Males and Females 2020

Glypican-3 prot-c-4842_62_2 3,301 501,428 European NA Males and Females 2019

Arginase-1 ebi-a-GCST90010286 1,072 17,593,887 European NA Males and Females 2020

PM: Particulate matter; MR: Mendelian randomization; GWAS: Genome-wide association studies; SNPs: Single nucleotide polymorphisms; NA: No data.

https://doi.org/10.3389/fpubh.2023.1212301
https://www.frontiersin.org/journals/public-health
https://www.FinnGen.fi\/en
https://biobankjp.org//work\/public.html


Sun et al. 10.3389/fpubh.2023.1212301

Frontiers in Public Health 04 frontiersin.org

TABLE 2 Mendelian randomization (MR) analysis of air pollution (particulate matter, nitrogen dioxide and nitrogen oxides, exposure) with primary liver 
cancer outcome in European population.

Exposures Methods Beta p
Number 
of SNPs

R2 F
P (Cochran’s Q 
heterogeneity 

test)

P (MR-
Egger 

intercept 
test)

P (MR-
PRESSO 
global 
test)

PM2.5 IVW −0.014 0.993 8 0.069% 292.604 0.078 0.411 0.326

Weighted median 0.285 0.846

MR-Egger 1.315 0.596

Simple mode 0.191 0.955

Weighted mode 0.435 0.770

PM2.5–10 IVW 0.313 0.833 23 0.130% 534.813 0.057 0.720 0.081

Weighted median 1.250 0.422

MR-Egger 0.879 0.691

Simple mode −1.000 0.776

Weighted mode 0.990 0.522

PM10 IVW −1.698 0.257 22 0.159% 810.361 0.593 0.609 0.578

Weighted median −3.305 0.107

MR-Egger 0.173 0.965

Simple mode −4.763 0.182

Weighted mode −4.506 0.171

Nitrogen dioxide IVW 6.478 0.215 4 0.032% 158.579 0.079 0.888 0.219

Weighted median 3.917 0.458

MR-Egger −3.456 0.966

Simple mode 2.864 0.641

Weighted mode 3.270 0.594

Nitrogen oxides IVW 3.337 0.614 8 0.060% 283.730 0.204 0.198 0.271

Weighted median 1.283 0.720

MR-Egger 28.909 0.180

Simple mode 4.573 0.786

Weighted mode 4.237 0.730

PM, Particulate matter; MR, Mendelian randomization; IVW, Inverse variance weighted; SNPs, Single nucleotide polymorphisms. 
R2: the percentage of iron status variability explained by each SNP; F statistic to assess the presence of a weak instrumental variable bias.

PM10 (European, ukb-b-589), nitrogen dioxide (European, ukb-b-
2,618) and nitrogen oxides (European, ukb-b-12,417) were able to 
pick out enough SNPs. Previous studies have shown that linear 
regression of each genetic variant on the risk factor with p < 5 × 10−6 
as the screening criterion results in a low probability of weak 
instrumental variable bias in the MR Analysis (32, 33), so 
we  lowered the genome-wide significance threshold of the 
remaining exposure (ukb-b-12,963, ukb-e-24006_EAS, ukb-e-
24008_EAS, ukb-e-24005_EAS, ukb-e-24016_EAS and ukb-e-
24004_EAS) to p < 5 × 10−6 to select enough SNPs as IVs associated 
with this significance level.

In order to remove SNPs with linkage disequilibrium (LD), 
r2 < 0.001 and kb > 10,000 was set when extracting IVs. If the 
selected SNP was not collected in the resulting GWAS, the proxy 
SNP in linkage disequilibrium (r2 > 0.8) was used. Palindromic 
SNPs were then removed to ensure that the effect of these SNPs on 
exposure corresponded to the same allele as the effect on outcome. 
Finally, we calculated the R2 (R2 = 2◊EAF◊(1–EAF)◊β2) (34) and 

F-statistic (F = β2/SE2) (35) for each SNP. R2 is the percentage of 
iron status variability explained by each SNP and F statistic to 
assess the presence of a weak IV bias. The F-statistic of each SNP 
we  selected was > 10, suggesting that the genetic instruments 
selected strongly predicted the exposure (36). For specific SNP 
information and corresponding R2 and F-statistic, shown in 
Supplementary Tables 1–7.

2.4. Mendelian randomization analysis

To assess the causal relationship between air pollution and primary 
liver cancer and its related biomarkers, we used the inverse variance 
weighted (IVW) method to predict the genetic predictive value of the 
exposure factor for the outcome variable with an effect value of β. IVW 
can obtain an estimate of causal effect based on a single genetic IV 
through Wald ratio, and then select a fixed effect model to perform a 
meta-analysis of multiple estimates of causal effect based on a single 

https://doi.org/10.3389/fpubh.2023.1212301
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gene IV, which can provide a reliable estimate of causal effect and is 
widely used in MR Analysis (32, 37). In order to further improve the 
reliability and accuracy of the study results, weighted median model, 
MR-Egger, simple model and weighted model methods were further 
used to verify the causal relationship between exposure factors and 
results, and were verified in both European and Asian populations (38). 
Biomarkers were only analyzed in European populations due to lack of 
GWAS data in East Asian populations.

2.5. Sensitivity analysis

First of all, we used leave-one-out method to test the sensitivity 
of the remaining SNPs after deleting SNPs one by one. If the results 
changed significantly, it indicated that the removed SNPs might 
be directly related to the results, which violated assumption 3 (39). 
Then, for the IVW method, Cochran’s Q test was used to evaluate 
the heterogeneity, and p > 0.05 indicated that there was no significant 

heterogeneity in the selected IVs (40). Finally, we need to perform 
pleiotropic tests using MR-Egger regression and MR-PRESSO global 
testing to ensure that IV does not influence the risk of primary liver 
cancer through other confounding factors or other biological 
pathways unrelated to air pollution exposure. The MR Egger 
regression effect model allows for causal estimation of pleiotropic 
effect corrections, evaluating instrumental intensity under the direct 
effect assumption independently of the null causality assumption, 
and MR-PRESSO enables a systematic assessment of the role of 
pleiotropy (41). The statistical threshold for IVs without pleiotropy 
was p > 0.05.

2.6. Statistical analysis

All analyses were performed using the packages “TwoSampleMR” 
(42) and “MR-PRESSO” (41) in R version 4.2.2. The threshold of 
statistical significance for evidence is p < 0.05.

TABLE 3 Mendelian randomization (MR) analysis of air pollution (particulate matter, nitrogen dioxide and nitrogen oxides, exposure) with primary liver 
cancer outcome in Asian population (East Asia).

Exposures Methods Beta p
Number 
of SNPs

R2 F
P (Cochran’s Q 
heterogeneity 

test)

P (MR-
Egger 

intercept 
test)

P (MR-
PRESSO 
global 
test)

PM2.5 IVW 0.074 0.718 4 3.527% 87.086 0.057 0.714 0.133

Weighted median −0.050 0.769

MR-Egger 0.300 0.660

Simple mode −0.086 0.706

Weighted mode −0.097 0.622

PM2.5–10 IVW −0.131 0.362 3 3.371% 72.691 0.740 0.675 NA

Weighted median −0.116 0.490

MR-Egger 0.070 0.885

Simple mode −0.040 0.865

Weighted mode −0.063 0.783

PM10 IVW −0.026 0.720 5 4.933% 112.709 0.512 0.936 0.984

Weighted median −0.033 0.701

MR-Egger −0.037 0.814

Simple mode −0.037 0.783

Weighted mode −0.033 0.735

Nitrogen dioxide IVW −0.186 0.101 6 5.536% 126.644 0.308 0.337 0.368

Weighted median −0.194 0.171

MR-Egger 0.569 0.463

Simple mode −0.204 0.385

Weighted mode −0.218 0.351

Nitrogen oxides IVW 0.038 0.760 4 4.014% 95.452 0.613 0.412 0.652

Weighted median −0.014 0.921

MR-Egger −2.936 0.417

Simple mode −0.040 0.857

Weighted mode −0.038 0.853

PM, Particulate matter; MR: Mendelian randomization; IVW, Inverse variance weighted; SNPs, Single nucleotide polymorphisms. 
R2: the percentage of iron status variability explained by each SNP; F statistic to assess the presence of a weak instrumental variable bias.
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FIGURE 1

Scatter plots for causal single nucleotide polymorphism (SNP) effect of air pollution (particulate matter, nitrogen dioxide and nitrogen oxides) on 
primary liver cancer in European population. Each black point representing each SNP on the exposure (horizontal-axis) and on the outcome (vertical-
axis) is plotted with error bars corresponding to each standard error (SE). The slope of each line corresponds to the combined estimate using each 
method of the inverse variance weighted (light blue line), the MR-Egger (blue line), the simple mode (light green line), the weighted median (green line), 
and the weighted mode (pink line). (A) PM2.5; (B) PM2.5–10; (C) PM10; (D) Nitrogen dioxide; (E) Nitrogen oxides.

3. Results

3.1. Air pollution and primary liver cancer

The MR results are shown in Table 2 (European population) and 
Table  3 (Asian population), as well as in Figure  1 (Scatter plots, 
European population), Figure  2 (Scatter plots, Asian population), 
Figure 3 (Forest plots, European population) and Figure 4 (Forest 
plots, Asian population).

To assess the causal effect of air pollution (including PM2.5, 
PM2.5–10, PM10, nitrogen dioxide, and nitrogen oxides) on 
primary liver cancer, we  first performed MR Analysis in a 
European population. 8, 23, 22, 4, and 8 SNPs for PM2.5, PM2.5–
10, PM10, nitrogen dioxide, and nitrogen oxides were identified 
after removal of chained unbalanced IVs (Supplementary Table 1). 
Using IVW, weighted median model, MR-Egger, simple model and 
weighted model methods, we  found no evidence of a causal 
relationship between air pollution and primary liver cancer risk 
(IVW method, PM2.5: p = 0.993; PM2.5–10: p = 0.833; PM10: 
p = 0.257; nitrogen dioxide: p = 0.215; nitrogen oxides: p = 0.614), 
and there was no evidence of significant heterogeneity or 
horizontal pleiotropy (Table  2). The scatter plots of the causal 
relationships between air pollution and the risk of primary liver 

cancer are shown in Figure 1. Leave-one-out analyses (Figure 3) 
showed that removing each SNP in turn had little effect on the 
results, suggesting that no single SNP had a significant effect on the 
overall causal effect estimates.

The MR analysis was repeated in the East Asian population to 
enhance the confidence of the above results. 4, 3, 5, 6, and 4 SNPs for 
PM2.5, PM2.5–10, PM10, nitrogen dioxide, and nitrogen oxides were 
identified after removal of chained unbalanced IVs 
(Supplementary Table 2). Consistent with the findings in the European 
population, we found no causal relationship between air pollution and 
primary liver cancer risk in the East Asian population using the above 
five methods (IVW method, PM2.5: p = 0.718; PM2.5–10: p = 0.362; 
PM10: p = 0.720; nitrogen dioxide: p = 0.101; nitrogen oxides: 
p = 0.760), and no significant heterogeneity and pleiotropy were found 
(Table  3). The scatter plots are shown in Figure  2. Leave-one-out 
analyses also did not identify abnormal SNPs (Figure 4).

3.2. Air pollution and biomarkers

The MR results are shown in Table  4, as well as in 
Supplementary Figures 2–5 (Scatter plots), and 
Supplementary Figures 6–9 (Forest plots).
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In order to further verify the causal relationship between air 
pollution and primary liver cancer, we  selected four biomarkers 
(Alpha-fetoprotein, Osteopontin, Glypican-3 and Arginase-1) which 
are closely related to primary liver cancer as the outcome and 
conducted MR Analysis again. Consistent with the above results, 
we  did not find any causal association between air pollution and 
Alpha-fetoprotein (PM2.5: p = 0.370; PM2.5–10: p = 0.405; PM10: 
p = 0.842; nitrogen dioxide: p = 0.585; nitrogen oxides: p = 0.652), 
Osteopontin (PM2.5: p = 0.695; PM2.5–10: p = 0.780; PM10: p = 0.517; 
nitrogen dioxide: p = 0.615; nitrogen oxides: p = 0.271) and Glypican-3 
(PM2.5: p = 0.228; PM2.5–10: p = 0.058; PM10: p = 0.814; nitrogen 
dioxide: p = 0.388; nitrogen oxides: p = 0.405) through IVW method. 
The results showed no heterogeneity or pleiotropy (Table 4).

It is worth mentioning that we  initially extracted 8 SNPs 
(rs1217106, rs12203592, rs1318845, rs6749467, rs72808024, 
rs7514956, rs77205736, and rs77255816) that were strongly 
associated with nitrogen oxides as instrumental variables and found 
a significant association between nitrogen oxides and Arginase-1 
using IVW method (Beta: 3.56; 95%CI: 0.63–6.49; p = 0.017). 
Subsequently, we searched these 8 SNPs for possible confounding 
related to primary liver cancer through the PhenoScanner database 
(http://www.Phenoscanner.medschl.Cam.ac.uk/ accessed on March 
12, 2023) one by one, and found 3 SNPs (rs1217106, rs12203592 and 
rs77205736) related to alcohol intake frequency, cancers (breast 

cancer, nonmelanoma skin cancer, cutaneous squamous cell 
carcinoma, and basal cell carcinoma) and Body mass index (BMI). 
After deleting them, we analyzed again and found that the results 
were still statistically significant (Beta: 4.46; 95%CI: 0.83–8.08; 
p = 0.015), and there was no heterogeneity or pleiotropy. The specific 
SNP information, corresponding R2 and F-statistic are shown in 
Supplementary Tables 3–7.

4. Discussion

This study is the first to evaluate the causal relationship between 
air pollution (including PM2.5, PM2.5–10, PM10, nitrogen dioxide 
and nitrogen oxides) and primary liver cancer using MR methods. 
We found no genetic evidence of an association between air pollution 
and primary liver cancer risk in either the European or East Asian 
populations. However, in a further MR analysis of air pollution and 
biomarkers associated with primary liver cancer (Alpha-fetoprotein, 
Osteopontin, Glypican-3 and Arginase-1), we  found a significant 
association between nitrogen oxides and biomarker Arginase-1 related 
to hepatocellular differentiation (Beta: 3.56; 95%CI: 0.63–6.49; 
p = 0.017), which remained statistically significant after adjustment 
(Beta: 4.46; 95%CI: 0.83–8.08; p = 0.015) for possible confounding 
alcohol intake frequency, body mass index (BMI) and cancers (breast 

FIGURE 2

Scatter plots for causal SNP effect of air pollution (particulate matter, nitrogen dioxide and nitrogen oxides) on primary liver cancer in Asian population. 
Each black point representing each SNP on the exposure (horizontal-axis) and on the outcome (vertical-axis) is plotted with error bars corresponding 
to each standard error (SE). The slope of each line corresponds to the combined estimate using each method of the inverse variance weighted (light 
blue line), the MR-Egger (blue line), the simple mode (light green line), the weighted median (green line), and the weighted mode (pink line). (A) PM2.5; 
(B) PM2.5–10; (C) PM10; (D) Nitrogen dioxide; (E) Nitrogen oxides.
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FIGURE 3

Forest plots of Leave-one-out analyses for causal SNP effect of air pollution (particulate matter, nitrogen dioxide and nitrogen oxides) on primary liver 
cancer in European population. The error bars indicate the 95% confidence interval (CI). (A) PM2.5; (B) PM2.5–10; (C) PM10; (D) Nitrogen dioxide; 
(E) Nitrogen oxides.

cancer, nonmelanoma skin cancer, cutaneous squamous cell 
carcinoma, and basal cell carcinoma).

Our findings further confirm several population-based cohort 
studies. Marie Pedersen et  al. (20) pooled data from 174,770 
participants in four cohorts [Diet, Cancer and Health study (43), 
Vorarlberg Health Monitoring and Promotion Program (44), European 
Prospective Investigation into Cancer and Nutrition (EPIC)-Varese 
(45) and EPIC-Turin (46)] from European Study of Cohorts for Air 
Pollution Effects (ESCAPE) in Denmark, Austria, and Italy to examine 
the association between air pollution (including PM2.5, PM2.5–10, 
PM10, nitrogen dioxide and nitrogen oxides) and the risk of primary 
liver cancer, and land-use regression models were used to measure 
PM2.5, PM2.5–10, PM10, nitrogen dioxide and nitrogen oxides. 
During an average follow-up period of 17 years, 279 patients with liver 
cancer were diagnosed, and the meta-analysis found that PM2.5, 
PM2.5–10, PM10, nitrogen dioxide and nitrogen oxides were all 
associated with an increased incidence of primary liver cancer, with 
Hazard ratios (HRs) greater than 1 for all exposures, but none of the 
associations were statistically significant. After adjusting for age, sex, 
smoking, drinking, high-risk occupations and other confounding 
factors that might be associated with primary liver cancer, no statistical 
association was found between air pollution and primary liver cancer. 
Unlike our findings, another prospective cohort study in Taiwan (19) 
followed 23,820 participants without a history of liver cancer for an 
average of 16.9 years suggested that every 0.73 μg/m3 increase in PM 
2.5 increased the risk of hepatocellular carcinoma incidence by 22% in 

Penghu Islets (HR = 1.22, 95%CI: 1.02–1.47). However, PM2.5 levels in 
Taiwan and the Main Island of Taiwan (per 1 and 13.1 μg/m3) were not 
statistically associated with the risk of liver cancer. The reasons for the 
two conclusions may be related to the different levels of air pollution in 
different areas or the different susceptibility of people in different areas 
to air pollution, and genetic factors may also play a role. Therefore, 
we selected SNPs strongly associated with air pollution as instrumental 
variables, used two-sample Mendelian randomization to conduct 
causal analysis on air pollution and primary liver cancer at the genetic 
level, and verified them separately on European and East Asian 
populations, so as to improve the reliability and credibility of our 
research conclusions. Our study demonstrates the lack of statistical 
causality between air pollution and primary liver cancer, reduces the 
possibility of their clinical relevance, refutes the role of air pollution in 
the etiology of primary liver cancer, and complements and updates the 
methodology of several cohort studies that have reached similar 
conclusions as our study.

Alpha-fetoprotein (AFP), Osteopontin (OPN) and Glypican-3 
(GPC-3) are commonly used as tumor markers for primary liver 
cancer. AFP, a glycoprotein derived from embryonic endodermal cells, 
is an important cytokine closely related to the malignant growth of 
tumors, which can promote the malignant transformation of 
hepatocytes and the occurrence and development of liver cancer and 
up to 70% of patients with liver cancer have elevated serum AFP levels 
(47). AFP has been reported to be 52% sensitive to tumors larger than 
3 cm in diameter in hepatocellular carcinoma patients, and is the most 
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widely used tumor marker in clinical practice (48). OPN, a highly 
modified extracellular matrix protein, is found in 0% of serum in 
healthy people and increases in hepatitis, cirrhosis and liver cancer 
patients. OPN even outperforms AFP in distinguishing cirrhosis from 
liver cancer. When OPN and AFP are combined in the diagnosis of 
hepatocellular carcinoma, the sensitivity can increase to 65% (6, 49). 
GPC-3 is a hepatocellular carcinoma related biomarker with a 
specificity of up to 97%, which can detect hepatocellular carcinoma at 
an earlier stage than AFP and one study showed that serum GPC-3 
levels in 50% of patients with early hepatocellular carcinoma were 
> 300 ng/L, despite their serum AFP levels < 100 μg/L (50). MR 
Analysis of air pollution and primary liver cancer related tumor 
markers AFP, OPN and GPC-3 found no causal association, further 
confirming our previous conclusion that there was no statistical 
association between air pollution and primary liver cancer risk.

Arginase-1 (Arg-1), an enzyme that catalyzes the hydrolysis of 
arginine to ornithine and urea in the urea cycle, is mainly expressed in 
the cytoplasm of hepatocytes and is not expressed in bile duct epithelial 
cells, Kupffer cells, or vascular endothelial cells, and thus can be used 
in the differential diagnosis between hepatocellular carcinoma and 
other potentially confounding malignancies. Arg-1 is reported to be a 
highly specific biomarker for hepatocellular differentiation, with 
sensitivities of 100, 96.2 and 85.7% in highly differentiated, moderately 
differentiated and poorly differentiated hepatocellular carcinoma, 
respectively (51, 52). Our results found a significant association 
between nitrogen oxides and Arginase-1, a biomarker highly associated 

with hepatocellular differentiation, which remained statistically 
significant after adjusting for possible confounding factors such as 
alcohol intake frequency, body mass index (BMI) and cancers (breast 
cancer, nonmelanoma skin cancer, cutaneous squamous cell carcinoma, 
and basal cell carcinoma; Beta: 4.46; 95%CI: 0.83–8.08; p = 0.015). 
Currently, there is a lack of relevant research on the effects of nitrogen 
oxides on Arg-1, but it has been shown that nitric oxide can affect liver 
cell differentiation by affecting the tumor microenvironment. On the 
one hand, nitric oxide can play a role in tumor differentiation, growth 
progression and metastasis by modulating the expression of multiple 
inflammatory factors. On the other hand, it can affect and regulate 
anabolism and catabolism, including sugar, fatty acid and amino acid 
metabolism, to affect the tumor microenvironment, and which plays a 
very important role in the hepatocellular differentiation and the 
conversion of normal cells into tumor cells, and even determines to 
some extent the direction and type of differentiation of liver cancer 
(53–56). To some extent, this may explain our results that nitrogen 
oxides air pollution may affect hepatocellular differentiation by altering 
the hepatocyte microenvironment, but further in vivo and in vitro 
experiments are needed to confirm this hypothesis.

There were several limitations to our study. To begin with, 
although we conducted the MR Analysis on the causal relationship 
between air pollution and primary liver cancer in both European and 
East Asian populations, due to the limitation of data, we only analyzed 
the European population when we  analyzed the tumor markers 
(Alpha-fetoprotein, Osteopontin, Glypican-3 and Arginase-1) of liver 

FIGURE 4

Forest plots of Leave-one-out analyses for causal SNP effect of air pollution (particulate matter, nitrogen dioxide and nitrogen oxides) on primary liver 
cancer in Asian population. The error bars indicate the 95% confidence interval (CI). (A) PM2.5; (B) PM2.5–10; (C) PM10; (D) Nitrogen dioxide; 
(E) Nitrogen oxides.
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TABLE 4 Mendelian randomization (MR) analysis of air pollution (particulate matter, nitrogen dioxide and nitrogen oxides, exposure) with biomarkers in 
primary liver cancer in European population (IVW method).

Exposures
Outcomes 
(biomarkers)

Beta (95%CI) p
Number 
of SNPs

R2 F

P (Cochran’s 
Q 

heterogeneity 
test)

P (MR-
Egger 

intercept 
test)

P (MR-
PRESSO 
global 
test)

PM2.5 Alpha-fetoprotein −0.64 (−2.05, 0.76) 0.370 7 0.059% 257.485 0.871 0.287 0.884

Osteopontin −0.35 (−2.10, 1.40) 0.695 8 0.069% 292.604 0.684 0.177 0.671

Glypican-3 −2.12 (−5.58,1.33) 0.228 4 0.038% 166.694 0.691 0.464 0.725

Arginase-1 1.39 (−0.49, 3.29) 0.147 8 0.069% 292.604 0.631 0.360 0.663

PM2.5–10 Alpha-fetoprotein −0.50 (−1.82, 0.80) 0.405 21 0.117% 482.903 0.106 0.464 0.091

Osteopontin 0.20 (−1.26, 1.68) 0.780 23 0.129% 531.943 0.155 0.214 0.187

Glypican-3 −3.30 (−6.59, 0.02) 0.058 6 0.033% 136.070 0.575 0.790 0.592

Arginase-1 −0.41 (−1.80, 0.97) 0.559 23 0.129% 531.943 0.794 0.890 0.810

PM10 Alpha-fetoprotein 0.08 (−0.77, 0.95) 0.842 22 0.159% 810.360 0.506 0.955 0.515

Osteopontin 0.49 (−0.99, 1.98) 0.517 22 0.159% 810.360 0.882 0.656 0.887

Glypican-3 −0.39 (−3.69, 2.90) 0.814 6 0.052% 271.045 0.125 0.579 0.180

Arginase-1 1.78 (−0.08, 3.64) 0.061 22 0.159% 810.360 0.136 0.070 0.127

Nitrogen 

dioxide

Alpha-fetoprotein 0.51 (−1.33, 2.36) 0.585 5 0.039% 191.857 0.343 0.530 0.391

Osteopontin 0.86 (−2.50, 4.24) 0.615 5 0.039% 191.857 0.856 0.708 0.855

Glypican-3 −1.47 (−4.70, 1.75) 0.388 5 0.039% 191.857 0.625 0.398 0.654

Arginase-1 −0.44 (−4.10, 3.21) 0.812 5 0.039% 191.857 0.432 0.195 0.494

Nitrogen 

oxides

Alpha-fetoprotein 0.33 (−1.11, 1.78) 0.652 8 0.060% 283.730 0.394 0.527 0.430

Osteopontin −1.52 (−4.24, 1.19) 0.271 8 0.060% 283.730 0.833 0.286 0.819

Glypican-3 −1.56(−5.26, 2.12) 0.405 4 0.033% 160.302 0.682 0.458 0.702

Arginase-1 4.46 (0.83, 8.08) 0.015 5 0.033% 155.317 0.453 0.366 0.502

PM, Particulate matter; MR, Mendelian randomization; IVW, Inverse variance weighted; SNPs, Single nucleotide polymorphisms; CI, Confidence Interval. 
R2: the percentage of iron status variability explained by each SNP; F statistic to assess the presence of a weak instrumental variable bias; Genetic predictive value of the exposure factor for the 
outcome variable with an effect value of Beta.

cancer, and whether this relationship is also present in other 
populations needs more verification. Additionally, our results in East 
Asian populations were based on a 5 × 10−6 significance level, as there 
were not enough SNPs associated with a 5 × 10−8 genome-wide 
significance threshold, and this may require an expanded sample size 
to further validate our conclusions.

5. Conclusion

In conclusion, our results suggested that there is no causal 
association between air pollution (including PM2.5, PM2.5–10, 
PM10, nitrogen dioxide, and nitrogen oxides) and primary liver 
cancer. However, there was a statistical association between nitrogen 
oxides and Arg-1, further experimental and mechanistic studies are 
needed to verify the validity of the findings obtained in this study.
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