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Background: Emerging infectious diseases are a class of diseases that are

spreading rapidly and are highly contagious. It seriously a�ects social stability

and poses a significant threat to human health, requiring urgent measures to

deal with them. Its outbreak will very easily lead to the large-scale spread of

the virus, causing social problems such as work stoppages and tra�c control,

thereby causing social panic and psychological unrest, a�ecting human activities

and social stability, and even endangering lives. It is essential to prevent and control

the spread of infectious diseases e�ectively.

Purpose:We aim to propose an e�ective method to classify the risk level of a new

epidemic region by using graph theory and risk classification methods to provide

a theoretical reference for the comprehensive evaluation and determination of

epidemic prevention and control, as well as risk level classification.

Methods:Using the graph theory method, we first define the network structure of

social groups and construct the risk transmission network of the new epidemic

region. Then, combined with the risk classification method, the classification

of high, medium, and low risk levels of the new epidemic region is discussed

from two cases with common and looped graph nodes, respectively. Finally, the

reasonableness of the classification method is verified by simulation data.

Results: The directed weighted scale-free network can better describe the

transmission law of an epidemic. Moreover, the proposed method of classifying

the risk level of a region by using the correlation function between two regions and

the risk value of the regional nodes can e�ectively evaluate the risk level of di�erent

regions in the new epidemic region. The experiments show that the number of

medium and high risk nodes shows no increasing trend. The number of high-risk

regions is relatively small compared to medium-risk regions, and the number of

low-risk regions is the largest.

Conclusions: It is necessary to distinguish scientifically between the risk level of

the epidemic area and the neighboring regions so that the constructed social

network model of the epidemic region’s spread risk can better describe the spread

of the epidemic risk in the social network relations.
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scale-free network, emerging infectious diseases, graph theory, grading and zoning,

epidemic
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1. Introduction

Emerging infectious diseases (EIDs) are a class of diseases with

a wide range of transmission, multiple modes of transmission,

incidence rates much higher than the annual incidence level,

difficulty of control, ease of infection of the population, lack

of specific treatment and prevention methods (1) and other

characteristics. Once an EIDs occurs, it will spread faster and cover

a wider area than traditional infectious diseases, causing social

problems, affecting the global economy, and even endangering

human lives. However, we note that the risk of an epidemic varies

from region to region, and people’s concerns and social sentiments

in different regions also differ. Therefore, a practical classification

of the risk level of an epidemic area and the implementation of

targeted prevention and control measures according to the risk

level are effective means of controlling the rapid spread of the

epidemic.

There is a wealth of literature on analyzing the transmission

patterns of infectious disease outbreaks and preventative and

control measures from various perspectives. On the one hand,

studies focus on analyzing and grasping the causes of the

occurrence and spread of emerging infectious diseases. For

example, Lashley (2) analyzed the factors influencing the

occurrence of common emerging infectious diseases (EIDs) and

concluded that microbial characteristics are essential in the

emergence of infectious diseases. However, humans’ behaviors and

lifestyle choices are major factors in the emergence and spread

of many EIDs. Sabin et al. (3) show how several factors related

to human activities play a role in spreading infectious diseases

and discuss the main factors contributing to the global spread of

the COVID-19 pandemic. Yang and Zhang (4) summarized the

uncertainty and complexity of EID and provided the preventive

measures for dealing with EIDs.

On the other hand, the model is an effective mathematical tool

to analyze and predict infectious disease transmission modes and

laws. For example, Chu et al. (5) studied the epidemic spreading

in weighted scale-free networks with community structure based

on the SI disease model and showed the hierarchical dynamics of

the epidemic spreading in the weighted scale-free networks with

communities. Sun et al. (6) introduced three modified SIS models

on scale-free networks that take into account variable population

size, non-linear infectivity, adaptive weights, behavior inertia, and

time delay, which could better characterize the actual spread of

epidemics. Li et al. (7) using China’s prefecture-level high-speed

rail network and based on a probabilistic risk model, assessed

the risk of COVID-19 infection in 19 provincial-level regions

from Wuhan to the whole country in the early stage of domestic

transmission, and found that the probability and impact could play

different roles in the risk ranking of different regions. Shi et al. (8)

developed a comprehensive model for simulating and predicting

emerging infectious diseases, based on transmission dynamics and

a statistical model driven by public health data. Chowell et al.

(9) used the early exponential growth rate method to propose a

simple susceptibility-exposure-infection-recovery (SEIR) model, a

more complex SEIR model with asymptomatic and hospitalized

cases and a stochastic susceptibility-infection-removal (SIR) model

with Bayesian estimation to estimate the reproduction number of

Spanish influenza, respectively. Bentout et al. (10) predict the peak

time and the number of infectious cases at the peak before and

after the implementation of non-pharmaceutical interventions for

the COVID-19 based on an age-structured model. Reema et al.

(11) compares the effectiveness of the SIR and SEIR models in

analyzing epidemic data and also discusses how measures such as

social distance and vaccination affect virus transmission in the SIR

model.

Mathematical models based on differential equations provide

statistical results consistent with the situation in practice, which

is an effective tool for studying EIDs. However, as mentioned

by Yu and Xue (12), most of the models based on differential

dynamical systems are generally computationally cumbersome, and

the solutions of the equations are extremely sensitive to the initial

conditions, so they cannot deal with the unexpected and random

events in the actual process well. In addition, the system formed

by the communication, contact, and linkage between people is

complex, which leads to the complexity of the transmission process

of infectious diseases.

Graph theory is an ideal tool for analyzing, modeling,

predicting and forming opinions to formulate strategies to rapidly

contain the epidemic and minimize the devastating effects of

viral infections (13). Baagyere et al. (14) characterized several

complex networks from different domains using concepts from

graph theory, and the node degrees, graph spectral radius, degree

assortativity, and the entire topological structure of selected

complex networks are studied on the SIR epidemic model. It is

a fact that graph theory and complex networks are inevitably

related. For a complex network, if not considering its dynamic

features, the complex network is a graph, and the relevant features

of the graph, such as subgraph and complementary graph features,

have great significance for the modeling of complex networks

(15). In addition, the classical infectious disease model combined

with the complex network structure is important for investigating

and analyzing the EIDs. Note that a social network (16, 17) is

a complex network system based on the relationship between

people and established according to certain rules. Zhang et al. (18)

constructed an interpersonal network model, and the experimental

results indicate that it is feasible and valuable to study virtual social

simulation. Moore and Newman (19) studied the transmission

characteristics of infectious diseases through the small-world

network model and found that the nature of the small world

would accelerate the transmission of infectious diseases. Huang

et al. (20) found that the scale-free network nodes (21–25) in the

complex network satisfy the power law distribution, which is more

consistent with the real social network and the transmission law of

infectious diseases in the entire society.

In addition, the effective division of regional risk levels is

significant for preventing and controlling the rapid spread of EIDs.

At present, relevant research has focused on studying regional risk

classification methods. For example, Jia et al. (26) constructed an

epidemic risk assessment model based on the analysis of population

flow data and evaluated the degree of risk for each city using the

collected population flow data related to Wuhan, China. Li et al.

(27) evaluated the risk level of 38 districts in Chongqing, China,

using the single index evaluation method, the analytical hierarchy

process, and the systematic clustering method, respectively. Based
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on the population migration during COVID-19, Feng et al. (28)

constructed a migratory imported risk index by using the number

of accumulated cases and the number of new cases and showed that

the index could better evaluate the epidemic risk in different places.

Tu et al. (29) designed the scoring system with expert consultation

and calculated the import, spread, and combined risk scores of

regions using quantitative analysis methods to determine the risk

level. Using unsupervised machine learning techniques, Fidan et

al. (30) applied two clustering methods to classify COVID-19 risk

degree.

In this paper, we consider the whole epidemic area as a scale-

free network and classify the risk level for each area according

to the association between regions. Meanwhile, combining the

complex networks with risk assessment models to analyze the

risk transmission of infectious diseases process and provide a

theoretical basis for evaluating the prevention and control of

epidemics and the risk classification of the region. The paper is

organized as follows. Section 2 presents the steps for constructing

social networks in new epidemic regions. Section 3 presents the

method for building the epidemic classification model. Section 4

Simulation of the effectiveness of the method. Section 5 concludes

with a brief discussion.

2. Construction of the directed
weighted scale-free networks in new
epidemic regions

Since infectious disease transmission has been oriented, the

directed weighted scale-free networks (31) are more suitable to

describe the spread of epidemic risk in real social networks. In the

following, we introduce the method of defining the social network

as scale-free one and provide the main step for constructing the

directed weighted scale-free networks in new epidemic regions.

Let E ⊆ V×V be the edge set, as introduced by Pastor-Satorras

et al. (32), if V = {1, 2, · · · ,N} is the node set, then the directed

weighted network constructed byN nodes is denoted asG = (V ,E).

Now, we introduce the necessary notions as follows. Let km be

the number of edges connected to the node m. It can be divided

into in-degree kinm and out-degree koutm for a directed graph, where

kinm is the number of directed edges ending at nodem and koutm is the

number of directed edges starting from nodem.

In addition, suppose that sm is the strength of node m, and it

can be divided into vertex in weight sinm and vertex out weight soutm

for a directed graph, where sinm is the sum of the weights of all edges

reaching nodem, soutm is the sum of the weights of all edges starting

from nodem.

Moreover, let wm,s be the weight of the connection between the

node m and s, then the weight of a weighted network is divided

into edge weight wm,s and point weight ws,m, and the wm,s 6= ws,m,

wm,s 6= 0 ifm → s are connected.

In the following, under the necessary notions above, we will

introduce the main steps of the directed weighted scale-free

network construction method provided by Barabási et al. (33).

Step 1 Starting from a network with only two nodes, a new node

is added each time and connected to existing ones.

Step 2 Assuming that the node m is an existing node, the node

with the higher degree is preferentially connected when a new node is

added. Suppose that the node s is a new node, the probability of node

s connecting to node m is

P(ks) =
ks

∑

m
km

,

where ks and km represent the degree of node s andm, respectively.

Step 3 Repeat steps 1 and 2 above until the target number of

points and edges is reached and the directed weighted scale-free

network is constructed.

3. Method for determining the risk
level of epidemic regions

In this section, we will present the methodology for

determining the risk level of the epidemic regions.

Now, we assume that the division of regional units is consistent

and relatively independent. Let vm be a node of a new epidemic

region. The edge of the network represents the social connection

between the two regions, and the weight of the edge represents the

correlation between the two regions m and s, usually represented

by the correlation function denoted by Lm,s. Note that an outbreak

in one region will affect all connected regions, and the size of Lm,s

directly determines the size of the epidemic in the region.

3.1. Determination of risk correlation
function

To determine the correlation strength Lm,s between two

regions, we will choose t indicators that affect the Lm,s based on the

security principle of each region and the relevant personnel and the

minimum impact on the economy. In this paper, the five indicators

chosen are the distance between two regions, personnel flow,

economic traffic, transport convenience, and logistics intensity.

Here we consider the importance of the criteria through the

intercriteria correlation (CRITIC) method (34) to determine the

weight of the indicators t and the correlation function Lm,s between

the two regions m and s, which the CRITIC measures the objective

weight of the indicators based on the comparative strength of the

evaluation indicators and the conflict between indicators, and the

main steps of the method as follows:

Step 1 Assuming that there are h regions of interest and t

indicators that influence the correlation strength, let the matrix

consisting of the data of the i(i = 1, 2, · · · , t)th indicator be

Bi =













bi(11) bi(12) · · · bi(1h)
bi(21) bi(22) · · · bi(2h)
...

...
...

...

bi(h1) bi(h2) · · · bi(hh)













,

where bi(ms) is the original data of the indicator i between regions

m and s.
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Step 2 Denote

Si =













si(11) si(12) · · · si(1h)
si(21) si(22) · · · si(2h)
...

...
...

...

si(h1) si(h2) · · · si(hh)













,

where si(ms) is the index value of bi(ms) by dimensionless (35). If the

size of bi(ms) is proportional to the risk, we have

si(ms) =
bi(ms) −min(bi(ms))

max(bi(ms))−min(bi(ms))
,

otherwise,

si(ms) =
max(bi(ms))− bi(ms)

max(bi(ms))−min(bi(ms))
.

Step 3 Let

si(ms) =
1

hh
hh
∑

s=1
si(ms)

.

Then, the standard deviation of the i-th index is given by

Pi =

√

√

√

√

√

√

hh
∑

s=1

(

si(ms) − si(ms)

)

2

hh− 1
.

Step 4 Let Ri be a measure of the conflict created by the j-th

indicator with respect to the i-th indicator, we have

Ri =

t
∑

j=1

(

1− rij
)

, (1)

where rij represents the correlation coefficient between the

evaluation index i and j.

Step 5 Denote

Ci = Pi

t
∑

j=1

(

1− rij
)

= PiRi.

Then, the objective weight is defined as

wi =
Ci

t
∑

i=1
Ci

.

Step 6 The weighted standardized matrix R =
(

ri(ms)

)

t(hh)
is

obtained, where ri(ms) = wisi(ms), wi is the index weight determined

by the above steps.

Following the above steps, the correlation function Lm,s

between the two regionsm and s is

Lm,s =

t
∑

i=1

wi ∗ si(ms) (2)

3.2. Calculation of node risk function and
risk value

Let p be the value of the risk of the epidemic occurring in a

region of the social network. If the epidemic occurs in this region,

p = 1, while for other regions (nodes), p = 0. We first define the

nodes that are connected to the nodes in layer 1 (in addition to the

defined nodes) as layer 2 nodes, and so on until we have defined all

the nodes in the network. Note that if an infectious disease occurs

in a node (region), another node directly connected to that node

will be the first affected node, i.e., a layer 1 node. In particular, if the

node is the first node in the scale-free network, the risk value is 1.

Furthermore, we define the direction of the edges as the

direction of the epidemic spread and construct a weighted scale-

free network for the spread of risk across the epidemic region.

Since scale-free networks have cyclic graphs (36) and are calculated

differently from ordinary nodes. In the following, we focus on two

different node cases to provide methods for computing the risk

function and risk value, respectively.

Case 1: Calculation of risk value of common node

Now, starting from the node whose risk value is 1 (the initial

node), we calculate the risk value of the first layer node connected

to it. According to the direction of risk transmission, if the in-

degree of node s is 1, it shows that node s is influenced by a node.

Assuming that node s is influenced by node m, the risk value of

node s can be defined as the product of the risk value of nodem and

the association function between two nodes as follows:

ps = pmLm,s, (3)

where ps is the risk value of the node s and pm is the risk value of

the nodem.

Let the set π(sn) represents the set of all other nodes that affect

the node s, then the risk value can be defined as the sum of the risk

value and the correlation function product of the node s and all the

nodes sn on π(sn), that is

ps =
∑

sn∈π(sn)

psn lsn ,sLsn ,s, (4)

where

lsn ,s =
Lsn ,s

∑

sn∈π(sn)

Lsn ,s
.

Therefore, starting from each node where we have obtained the

risk value, we find the nodes connected to it and then calculate the

risk value of all nodes in the obtained scale-free network according

to Equations (3) and (4).

Case 2: Calculation of risk value of the loop graph node

Note that the risk transmission direction of nodes at different

levels is transferred from the upper node to the lower node, the risk

TABLE 1 Risk classification criteria.

Risk level High-risk Medium-risk Low-risk

Value at risk p ≥ ps1 ps2 ≤ p < ps1 p < ps2
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transmission is unidirectional. If all the nodes are only influenced

by their upper-layer nodes, the risk value of the node is only related

to the upper-layer nodes, and the node does not influence the risk

value of the upper-layer nodes.Therefore, the method of calculating

the risk value of each node is the same as that of the common nodes,

and the Equations (3) and (4) can be used directly to calculate

the risk values of nodes in different layers. However, it should be

noted that for a loop graph node there is no order between them

that can influence each other, and the risk transmission direction is

bidirectional when the nodes of the same layer are connected, and

Equations (3) and (4) cannot be used.

3.2.1. Classification of risk levels
Using the same method of the three-level risk rating system, as

introduced in Tu et al. (37), we have the classification criteria as

shown in Table 1.

It follows that the risk classification criteria given in Table 1, we

need to calculate the risk value of each node to accurately classify

the risk level of the area represented by all nodes. Then, according

to Table 1, the whole area can be classified into high risk, medium

risk and low risk, and the corresponding precise prevention and

control measures can be taken for the different risk level of each

region.

TABLE 2 The correlation function for group 1.

L1,2 = 0.7117 L1,3 = 0.3215 L1,4 = 0.4431 L1,5 = 0.6580

L2,22 = 0.8179 L2,23 = 0.3893 L2,24 = 0.2132 L2,25 = 0.8065

L3,16 = 0.4333 L3,17 = 0.8896 L3,18 = 0.7086 L3,19 = 0.0171 L3,20 = 0.1932 L3,21 = 0.8897

L4,6 = 0.9380 L4,7 = 0.6014

L5,11 = 0.1752 L5,12 = 0.1096 L5,13 = 0.7432 L5,14 = 0.2404 L5,15 = 0.6849

L8,22 = 0.8328 L8,47 = 0.1397 L8,48 = 0.7896 L8,49 = 0.1932 L8,50 = 0.4378

L9,22 = 0.7266

L10,22 = 0.3939

L13,14 = 0.9448

L23,35 = 0.7992 L23,36 = 0.6164 L23,37 = 0.2802 L23,38 = 0.0652 L23,39 = 0.8393 L23,40 = 0.5297

L24,31 = 0.9806 L24,32 = 0.0496 L24,33 = 0.9852 L24,34 = 0.3359

L25,26 = 0.9701 L25,27 = 0.8291 L25,28 = 0.6448 L25,29 = 0.2832 L25,30 = 0.5597

L38,41 = 0.6088 L38,42 = 0.0043 L38,43 = 0.2152 L38,44 = 0.5119 L38,45 = 0.8964 L38,46 = 0.6535

L42,43 = 0.2537

L48,49 = 0.8281

TABLE 3 The correlation function for group 2.

L1,2 = 0.8147 L1,3 = 0.2760 L1,4 = 0.1622 L1,5 = 0.4173

L2,22 = 0.6433 L2,23 = 0.9361 L2,24 = 0.0596 L2,25 = 0.3015

L3,16 = 0.4299 L3,17 = 0.9160 L3,18 = 0.5822 L3,19 = 0.7363 L3,20 = 0.8507 L3,21 =0.6797

L4,6 = 0.7943 L4,7 = 0.0479

L5,11 = 0.3789 L5,12 = 0.5468 L5,13 = 0.6802 L5,14 = 0.7011 L5,15 = 0.0942

L8,22 = 0.5407 L8,47 = 0.3947 L8,48 = 0.5606 L8,49 = 0.9448 L8,50 = 0.3112

L9,22 = 0.9027

L10,22 = 0.0714

L13,14 = 0.9448

L23,35 = 0.6433 L23,36 = 0.0376 L23,37 = 0.8116 L23,38 = 0.6663 L23,39 = 0.5985 L23,40 = 0.4624

L24,31 = 0.8699 L24,32 = 0.6834 L24,33 = 0.9296 L24,34 = 0.9457

L25,26 = 0.5328 L25,27 = 0.2316 L25,28 = 0.0714 L25,29 = 0.52391 L25,30 = 0.4709

L38,41 = 0.4243 L38,42 = 0.2684 L38,43 = 0.7040 L38,44 = 0.6967 L38,45 = 0.3507 L38,46 = 0.4889

L42,43 = 0.0516

L48,49 = 0.6981
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4. Experiments and simulation

In this section, we aim to verify the feasibility of the

regional risk classification method proposed in this paper by

simulation. Firstly, we use MATLAB software to construct a scale-

free network with nodes that follow a power law distribution

and have the characteristics of a real network. Secondly, we

consider five necessary indicators that influence the correlation

intensity of regional risk, namely the distance between two regions,

personnel flows, economic traffic, transport convenience and

logistics intensity, and use the MATLAB software to generate two

sets of original data for each of the above five indicators, as shown

in the Supplementary material. Moreover, using Equation (2), we

calculate the correlation intensity of two sets of original data for

FIGURE 1

Scale-free social networks.

FIGURE 2

Directed scale-free social network during v1 outbreak.
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FIGURE 3

Risk value of each node i, i = 1, 2, · · · , 50 for data 1 for case 1.

TABLE 4 The risk grade classification of each node for data 1 for case 1.

Risk levels High-risk Medium-risk Low-risk

Region v1 , v2 v4 , v5 , v6 , v3 , v7 , v10 , v11 , v12 ,

v13 ,

v8 , v9 , v14 , v16 , v17 , v18 , v19 , v20 ,

v21 ,

v15 , v22 , v25 , v23 , v24 , v28 , v29 , v30 ,

v31 ,

v26 , v27 v32 , v33 , v34 , v35 , v36 ,

v37 ,

v38 , v39 , v40 , v41 , v42 ,

v43 ,

v44 , v45 , v46 , v47 , v48 ,

v49 , v50

these five indicators as shown in Tables 2, 3 below. Finally, we

analyzed the two sets of experimental data using the presented

classification method of regional risk levels.

4.1. Construction of a scale-free social
network

Using the MATLAB software, we construct the scale-free

network as shown in Figure 1. There are 50 nodes, whose node

distribution corresponds to the characteristics of the scale-free

network and the actual new epidemic regions.

4.2. Experimental analysis

Due to the scale-free social network constructed in the

simulation, there is more than one node in the new outbreak

area. Therefore, we will discuss the proposed method in the whole

network with epidemics at one and two nodes respectively. At

the same time, two sets of correlation strength data are used for

experimental comparison and analysis, whichmakes the simulation

experiment more effective.

• Experiment 1

Experiment 1 focuses on Group 1 data and discusses the

construction of a regional outbreak risk transmission network

when an outbreak occurs at one node and two nodes in a

scale-free network, and the risk level of the whole region

is classified using the proposed risk level classification

method.

Case 1: An outbreak has occurred in a region.

Assuming the epidemic occurs in v1, the risk value of the v1
node is 1, and the resulting directed scale-free network is shown in

Figure 2.

Next, starting from the node v1 whose risk value is 1,

and using the correlation strength in Table 2, we can calculate

the risk values for each node i, i = 1, 2, · · · , 50 as shown

in Figure 3.

Using the method that provided in Equations (3) and (4), the

risk classification values are ps1 = 0.7 and ps2 = 0.4. Then, we

can then obtain the risk level classification of each node from the

risk values and the risk class classification criterion (37). As shown

in Figure 3, it is easy to see that the risk level classification of each

node is as given in Table 4.

Case 2: Outbreaks occurred in two regions.

In the case 2, we focus on the data of Group 1 and discuss

the construction of a regional epidemic risk transmission network

when an epidemic occurs at two nodes in a scale-free network, and

the risk level of the whole region is classified using the proposed

risk level classification method.
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Suppose the epidemic occurs at node v1 and node v22, then the

risk value of node v1 and node v22 is 1, and the formed directed

scale-free network is shown in Figure 4. Starting from node v1 and

node v22 whose risk value is 1, we calculate the risk value of other

nodes by considering the correlation strength in data 1, which is

shown in Figure 5 below.

Then, according to the calculated risk values, we have the risk

grade classification of each node, which is shown in Table 5 below.

• Experiment 2

In Experiment 2, we consider the same method as in

Experiment 1. For the data in Group 2, the classification of the

regional risk level in the constructed scale-free social network is

considered for the cases where the outbreak occurs in one node and

in two nodes, respectively.

Case 1: An outbreak has occurred in one region.

FIGURE 4

Directed scale-free social network during v1 and v22 outbreaks.

FIGURE 5

Risk value of each node i, i = 1, 2, · · · , 50 for data 1 for case 2.
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Now, considering the scale-free network as shown in Figure 2

for case 1. Starting from the node v1 with risk value 1, we get the

risk values of other nodes by combining the association strength

calculation in Group 2. Then, we get the risk value of each node

i, i = 1, 2, · · · , 50 as shown in Figure 6.

Thus, based on the risk values obtained from the red dots in

Figure 6 and the risk level classification guidelines in Table 1, we

obtain the following risk level classification for each node.

• High-risk regions: v1, v2, v22, v23;

• Medium-risk regions: v5, v9, v37, v38, v39, v42, v49;

• Low-risk regions: v3, v4, v6, v7, v8, v10, v11, v12, v13, v14, v15,

v16, v17, v18, v19, v20, v21, v24, v25, v26, v27, v28, v29, v30, v31,

v32,v33, v34, v35, v36, v40, v41, v43, v44, v45, v46, v47, v48, v50.

Case 2: Outbreaks occurred in two regions

The situation is the same as shown in Figure 4. Next,

starting with node v1 and node v22, whose risk value

is 1, the risk value of other nodes is calculated for the

correlation strength in Group 2, as shown by the green dots

in Figure 6.

TABLE 5 The risk grade classification of each node for data 1 for case 2.

Risk levels High-risk Medium-risk Low-risk

Region v1 , v2 , v4 , v5 , v6 , v14 , v3 , v7 , v10 , v11 , v12 , v13 ,

v8 , v9 , v15 , v25 , v26 , v16 , v17 , v18 , v19 , v20 ,

v22 v27 , v28 , v49 v21 , v23 , v24 , v29 , v30 ,

v31 , v32 , v33 , v34 , v35 ,

v36 , v37 , v38 , v39 , v40 ,

v41 , v42 , v43 , v44 , v45 ,

v46 , v47 , v48 , v50

By considering the risk level classification guidelines in Table 1,

we have

• High-risk regions: v1, v2, v9, v22, v23;

• Medium-risk regions: v5, v8, v35, v37, v38, v39, v42, v49;

• Low-risk regions: v3, v4, v6, v7, v10, v11, v12, v13, v14, v15, v16,

v17, v18, v19, v20, v21, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33,

v34, v36, v40, v41, v43, v44, v45, v46, v47, v48,v50.

5. Conclusion

This paper uses graph theory and the risk assessment method to

construct the epidemic risk classification method. In addition, the

rationality and effectiveness of the classificationmethod are verified

by simulation. Furthermore, we use the MATLAB software to

construct a scale-free network and generate the original the original

data of the five required indicators. Then the risk classification

degree in each node for two cases of the epidemic occurring in

one node and two nodes are discussed. The experiment shows

that the number of medium and high risk nodes does not show a

significant increasing trend, and the number of high risk regions is

relatively small compared to the number of medium risk regions,

and the number of low risk regions is the largest, which is

consistent with the classification of regional risk levels in the real

society.

The construction of the social network of risk classification

in new epidemic regions by the directed weighted scale-

free network is more suitable for the transmission law of

epidemic occurrence risk. It describes the transmission status

of epidemic occurrence risk in social network relations.

Furthermore, the established regional risk classification

method can well classify the risk levels of different regions

in the new epidemic area by determining the correlation

function between the two regions and the risk value of the

regional node.The experiment verified the rationality of

FIGURE 6

Risk value of each node i, i = 1, 2, · · · , 50 for data 2 for case 1 and case 2.
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the method, and it can provide a theoretical basis for the

government to quickly judge the risk levels of different regions in

epidemic prevention.
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