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The COVID-19 pandemic altered everyday life starting in March 2020. These 
alterations extended to the lives of children as their normal routines were 
disrupted by community lockdowns, online learning, limited in-person social 
contact, increased screen time, and reduced physical activity. Considerable 
research has investigated the physical health impact of COVID-19 infection, 
but far fewer studies have investigated the physiological impact of stressful 
pandemic-related changes to daily life, especially in children. The purpose of 
this study was to leverage an ongoing clinical trial to investigate physiological 
consequences associated with chronic stress of pandemic community lockdown 
on children. As a part of the clinical trial, children provided saliva samples. Saliva 
samples were analyzed for cortisol and salivary alpha amylase (sAA) content. This 
secondary cross-sectional analysis included 94 preadolescent children located 
within the Greater Boston, Massachusetts community. Children participated in 
the study either before, during, or following the pandemic community lockdown 
to form three groups for comparison. In response to chronic stress caused by 
the pandemic community lockdown, participants demonstrated dysregulation 
of fast-acting catecholamine response of the locus-coeruleus-norepinephrine 
system and slower-acting glucocorticoid response, resulting in an asymmetrical 
relationship of hypocortisolism (M  =  0.78  ±  0.19  μg/mL, p  <  0.001) paired with 
higher sAA (M  =  12.73  ±  4.06  U/mL, p  =  0.01). Results suggest that the abrupt 
COVID-19 disruption to daily life, including the stressful experience of community 
lockdown, had physiological effects on typically developing children. Further 
research is required to investigate mental health outcomes of children following 
the chronic stress of the pandemic community lockdown.
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Introduction

The World Health Organization declared COVID-19 a pandemic 
in March 2020, after 110 countries and territories reported cases of the 
illness (1). In the United States, community lockdowns mandated 
nonessential activities be cancelled, physical distancing be employed, 
and travel postponed. This allowed the government to detect, isolate, 
test, and care for cases, and to trace and quarantine contacts with the 
infected. However, these drastic measures altered the landscape of 
individuals’ daily lives, especially for children (2).

On March 13th, 2020, the State of Massachusetts suspended 
in-person schooling. By April 8th, 2020, 188 countries globally 
suspended in-person schooling (3). While some children may have 
benefitted from increased parental interaction and less school bullying 
(4), many children experienced heightened levels of emotional distress 
(5). Children were socially and physically isolated for months during 
prolonged school closures without connection to friends, teachers, 
extended family, or community support (6). Many parents lost their 
jobs, leading to financial stress in the family (7). Virtual learning was 
inaccessible for many children with inadequate technology at home 
(8) and difficult for students with learning disabilities and special 
needs (9). Less exercise, more screen time, and increased snacking 
lead to increased body mass index, reduced cardiorespiratory fitness, 
and poorer sleep quality in children (4, 10–12). In addition, for 
low-income children, prolonged school closures also resulted in food 
insecurity without easy access to meals at school (13). Lastly, children 
experienced COVID-related illness in their families and grieved 
deaths (14). These stressors compounded over time and resulted in a 
long-term chronic stress event for many people, especially children.

We are only just beginning to understand the long-term 
psychological effects of community lockdown. While children are 
resilient to adversity, they are not immune to it (15). Childhood is a 
vulnerable window of cognitive development, during which sustained 
and augmented stressors, particularly social isolation, can affect 
mental health long-term (16–18). For example, a study in 2020 
evaluated 1,036 quarantined children and adolescents in China ages 
6–15 years old, and found that 11.78% of children had depression, 
18.92% had anxiety, and 6.56% presented with both depression and 
anxiety (19). A study in India revealed that 66.11% of their sample of 
121 quarantined children experienced helplessness, 68.59% worry, 
and 61.98% fear (20). In addition, several key meta-analyses and 
systematic reviews have concluded that children and adolescents 
showed increased depression, anxiety, sleep disorders, post-traumatic 
stress symptoms, poor appetite, inattentiveness, and significant 
separation anxiety as a result of the pandemic and community 
lockdown measures (4, 21–24). Most severely, the mental health crisis 
stemming from the pandemic and community lockdown measures 
has resulted in increased suicide (25), suicidal ideation (26), and a 
50.6% increase in mean emergency department visits for suspected 
suicide attempts among girls aged 12–17 years old (27). Most large 
reviews on the psychological and behavioral outcomes of children 
during the community lockdown use self-reported data, and we have 
yet to link a mechanistic cause to the observed pandemic-related 
changes in mental health.

One such mechanistic cause may be  physiological changes in 
response to chronic stress. The typical stress response involves a fast-
acting catecholamine response by activation of the locus coeruleus-
norepinephrine (LC-NE) system. The LC-NE system controls arousal, 

alertness, and vigilance by supplying norepinephrine to the amygdala, 
hippocampus, prefrontal cortex, and cerebellum (28–30). LC-NE 
activity can be  quantified using a salivary biomarker called alpha 
amylase produced by acinar cells which are innervated by the 
sympathetic nervous system (31). In addition to the fast-acting 
catecholamine response, the hypothalamic–pituitary–adrenal (HPA) 
axis activates a slower-acting glucocorticoid response returns the body 
to a state of physiological equilibrium (32). HPA activity can 
be quantified by analyzing the hormone cortisol in saliva. Although 
unique, the LC-NE system and HPA axis share rich intercommunication, 
as they are structurally and functionally related (33). Similarly, during 
typical stress response, salivary alpha amylase (sAA) and cortisol are 
correlated with one another when the lag time following the onset of the 
stressor is accounted for. However, during a period of severe, chronic 
stress, these responses can become dysregulated and the coordination 
between the pathways can deteriorate (33, 34), resulting in atypical 
stress response. For example, atypical stress response may result in 
hypocortisolism, which is unexpectedly low cortisol and blunted 
cortisol release. In adults, hypocortisolism has been linked to feelings of 
depression, apathy, irritability, difficulty concentrating, confusion, stress 
sensitivity, and poorer memory that can begin in childhood and 
continue into adulthood (35). In extreme cases of traumatic early life 
experiences, higher sAA and hypocortisolism have been observed in 
tandem in individuals, further highlighting dysregulation and 
deterioration in communication between pathways in response to 
chronic stress (36). Therefore, both the faster and slower-acting stress 
responses are important to include in analysis for a complete picture 
into typical and atypical stress response.

Given the chronic stress associated with the COVID-19 pandemic, 
the isolation related to community lockdowns, and observed decrease in 
mental health and behavior in children, we aimed to investigate whether 
the chronic stress of the pandemic community lockdown affected 
physiological outcomes in preadolescent children. We hypothesized that 
the largest observable differences in physiological changes would 
be found for cortisol compared to sAA, as the HPA-axis responds more 
slowly to stressors and would better represent typical stress for 
participants. We  hypothesized that the slower-acting glucocorticoid 
response would be  dysregulated during the isolation and extreme 
chronic stress of the pandemic community lockdown, manifesting as 
hypocortisolism in children. We  also hypothesized that we  would 
observe an asymmetrical stress response with higher sAA coupled with 
lower cortisol during the lockdown, signaling a breakdown in the 
communication between the LC-NE and HPA mechanistic pathways. By 
understanding the physiological changes associated with the chronic 
stress of the pandemic community lockdown, we  can begin to 
understand a potential mechanistic cause of COVID-19 pandemic-
related changes in mental health, and prompt social and mental support 
for children following the community lockdown.

Materials and methods

Participants

This cross-sectional investigation was a secondary analysis of a 
larger clinical trial (ClinicalTrials.gov Identifier: NCT03592238). The 
inclusion criteria for participants included: parental/guardian consent 
and participant assent, between the 9–10 years of age, capable of 
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performing exercise, normal/average intelligence quotient (IQ) or 
above (i.e., >85), classified as pre-pubescent or in the earliest stages of 
puberty (37), no prior diagnosis of cognitive or physical disability, not 
taking any anti-psychotic, anti-depressant, anti-anxiety, or attention 
deficit disorder (ADD)/ attention deficit hyperactivity disorder 
(ADHD) medications, normal or corrected-to-normal vision, and able 
to speak and read English (38). The detailed methodology is provided 
in a recent publication (38). In brief, healthy, typically developing 
children from the Greater Boston, Massachusetts community were 
included in the study. One hundred and three participants provided 
written informed assent and their legal guardians provided written 
informed consent in accordance with the Northeastern University 
Institutional Review Board, the University of Ottawa Research Ethics 
Board, and the Declaration of Helsinki for human studies. Ninety-four 
participants were included in analysis (38% female), and 9 participants 
were not included in analysis due to unique, extenuating circumstances 
that resulted in long-term disruptions to their study timeline (i.e., 
started participation in before the community lockdown and ended 
following the community lockdown). Table  1 provides the 
demographic information for all participants included in analysis.

Procedure

Children practiced passive saliva collection on their screening 
visit to ensure that they could provide adequate sample volume (≥ 
2 mL). Participants were not instructed to fast for the screening visit, 
so the practice sample saliva collection was discarded and not 
analyzed. In this study, unstimulated salivary sampling was used. 
Once seated comfortably, the participant leaned forward, put their 
elbows on their knees, tucked their chin to their chest to put pressure 
on their salivary glands, and collected saliva in their mouth for 2 min. 
At the end of the 2 min, the child raised a funneled collection tube to 
their lips and used their tongue to gently guide the saliva into the tube.

Following the screening visit, participants returned to the lab for 
three more testing days (see Figure 1). Testing days were scheduled at 
least a week apart at the same time of day to account for diurnal 
variation. Testing days were also scheduled for when children did not 
have structured physical education or sports planned prior to testing. 
Children provided 4 saliva samples throughout each testing day, but 
only the first collection was used for analysis, as it was collected prior 
to testing procedures. All saliva collections occurred in the lab, and all 
collections had to fall into the predetermined time frames of before, 
during, or after the community lockdown. Children were asked not to 
consume any food or beverages besides water for at least 1 h prior to 
visiting the laboratory. Further, they were asked to discontinue 
consumption of foods high in caffeine, sugar, or acidity 6 h prior to 
arrival, and not to brush their teeth less than 1 h prior to arrival. 
Participants were also asked to report any canker sores, oral diseases, 
oral injuries, or medication consumption within the last 12 h. 
Collection tubes were weighed before and after collection with the cap 
on. Samples were aliquoted and stored in −80°C freezer until analysis.

sAA and cortisol samples were shipped on dry ice and were 
analyzed at University of Ottawa using α-amylase Saliva Enzymatic 
Assay and Cortisol Saliva ELISA (Hamburg, Germany). Upon arrival 
at the University of Ottawa, samples were thawed, centrifuged at 3000 
x g for 15 min at room temperature. sAA was analyzed according to 
manufacturer’s instructions (IBL International, Hamburg, Germany, 

RE80111). Briefly, diluted samples (1:301) were mixed with substrate 
solution in duplicate. Readings were conducted using a microplate 
reader (POLARstar Omega, BMG Labtech, Guelph, Canada) at 22°C 
at a wavelength of 405 nm at 3 and 8 min after incubation at room 
temperature. Cortisol was analyzed according to manufacturer’s 
instructions (IBL International, Hamburg, Germany, RE852611). 
Briefly, duplicate samples were incubated with enzyme conjugate 
solution at room temperature for 2 h, washed, and incubated with 
enzyme substrate solution at room temperature for 30 min. “Stop 
Solution” was applied to end the enzyme/substrate reaction, and the 
samples were read in a microplate reader (POLARstar Omega, BMG 

TABLE 1 Participant demographics.

Before 
lockdown 

(n =  40)

During 
lockdown 

(n =  25)

After 
lockdown 

(n =  29)

Age (years) 9.91 ± 0.56 10.40 ± 0.64 10.10 ± 0.59

Sex 

(%Female)

42.5% 32.0% 37.9%

Race 60% White or 

Caucasian

10% African 

American

7.5% Asian

22.5% Mixed or 

other

72% White or 

Caucasian

8% African 

American

7.5% Asian

16% Mixed or 

other

51.7% White or 

Caucasian

13.8% African 

American

13.8% Asian

17.2% Mixed or 

other

Ethnicity 

(%Hispanic)

15% 4% 10.3%

Pubertal 

status

1.36 ± 0.57 1.72 ± 0.76 1.38 ± 0.48

Mother’s 

education

2.5% High school 

graduate

12.5% Some 

college

40% Bachelor’s 

degree

45% Advanced 

degree

0% High school 

graduate

16% Some college

20% Bachelor’s 

degree

60% Advanced 

degree

4% abstained from 

answering

0% High school 

graduate

3.4% Some college

31% Bachelor’s 

degree

62.1% Advanced 

degree

3.4% abstained 

from answering

Household 

income

2.5% $21,000–

$30,000

2.5% $31,000–

$40,000

5.0% $41,000–

$50,000

5.0% $51,000–

$60,000

10.0% $61,000–

$70,000

5.0% $71,000–

$80,000

2.5% $91,000–

$100,000

67.5% > $100,000

4.0% $21,000–

$30,000

4.0% $31,000–

$40,000

4.0% $41,000–

$50,000

4.0% $51,000–

$60,000

8.0% $61,000–

$70,000

12.0% $71,000–

$80,000

4.0% $91,000–

$100,000

60.0% > $100,000

3.4% $5,000-

11,999

3.4% $50,000-

74,999

6.9% $75,000–

$99,000

65.5% $100,000–

$199,999

13.8% > $200,000

3.4% abstained 

from answering

The values reflect mean ± SD. An updated scale was used for household income for After 
Lockdown participants, and thus, statistical differences between groups could not 
be observed.
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Labtech, Guelph, Canada) at 450 nm within 15 min. Sample results 
were averaged across three testing days. All data were normalized to 
standard curves prior to statistical analysis. To reduce positive skew, 
cortisol data were subject to log transformation and sAA data were 
subject to square root transformation (39, 40).

Statistical analysis

Analyses were conducted using SPSS (v25) and RStudio 
(v2021.09.0) with p = 0.05. Children were compared by lockdown 
status: Before (n = 40), During (n = 25), and After (n = 29) Lockdown. 
We defined lockdown start date as March 13th, 2020 (when schools 
closed in Massachusetts), and end date as April 26th, 2021 (when 
in-person schooling resumed). Chi-square tests of independence and 
ANOVAs were performed to determine if groups differed between 
age, race, sex, ethnicity, pubertal status, or mother’s education. A 
t-test was performed to determine if more males were included in 
analysis compared to females.

To ensure transformed data passed the normality assumption, a 
Shapiro–Wilk test was performed for sAA and cortisol. For salivary 
outcomes, age, sex, and time of day the samples were used as 
covariates in analyses due to their known influence on sAA and 
cortisol (41, 42). ANCOVAs were performed to determine if sAA or 
cortisol differed based on lockdown status. Post-hoc t-tests with 
Bonferroni correction for multiple comparisons were conducted to 
determine significant contrasts. To provide additional context to the 
salivary outcomes, additional ANCOVAs and correlations were 
performed to determine if physiological changes in stress response 
were related to demographic variables.

Results

Table  1 describes participant demographics of the sample. The 
groups based on lockdown status did not differ based on race [X2 (8, 
N = 94) = 5.62, p = 0.69], sex [X2 (2, N = 94) = 0.72, p = 0.70], ethnicity [X2 
(4, N = 94) = 4.47, p = 0.35], pubertal status [F (2, 86) = 2.88, p = 0.06, 

η2 = 0.06], or mother’s education [X2 (8, N = 94) = 8.11, p = 0.42]. Cortisol 
did not differ based on race [F (4, 85) = 2.19, p = 0.08, η2 = 0.09], ethnicity 
[F (4, 85) = 2.19, p  = 0.08, η2  = 0.09], or mother’s education [F (4, 
86) = 1.52, p = 0.21, η2 = 0.07]. Similarly, sAA did not differ based on race 
[F (4, 86) = 0.89, p = 0.47, η2 = 0.04], ethnicity [F (2, 88) = 0.35, p = 0.71, 
η2 = 0.01], or mother’s education [F (4, 86) = 0.23, p = 0.92, η2 = 0.01]. In 
this study, more males (n = 58) were included in analysis compared to 
females (n = 36) [t (93) = 27.44, p < 0.001, d = 2.83, 95% CI (2.37, 3.28)]. 
Neither sAA [t (92) = 0.57, p = 0.57, d = 0.12, 95% CI (−0.54, 0.30)] nor 
cortisol [t (92) = 1.00, p  = 0.32, d  = 0.21, 95% CI (−0.63, 0.21)] 
significantly differed between males and females in the sample. Age 
significantly differed by lockdown status [F (2, 90) = 5.45, p  = 0.01, 
η2  = 0.11, 95% CI (0.01, 0.23)]. Post-hoc comparisons revealed 
significantly lower age in the before lockdown group 
(M =  9.91 ± 0.56 years) compared to during lockdown group 
(M = 10.40 ± 0.64 years). Age was not significantly correlated with sAA 
[r (93) = 0.15, p = 0.15] or cortisol [r (93) = −0.22, p = 0.84]. Pubertal 
status was not significantly correlated with sAA [r (89) = 0.09, p = 0.41] 
or cortisol [r (89) = −0.02, p  = 0.83]. Specifically, no significant 
correlation was observed for male pubertal status for sAA [r (55) = 0.14, 
p = 0.32] or cortisol [r (55) = −0.15, p = 0.26], or female pubertal status 
for sAA [r (34) = 0.01, p = 0.97] or cortisol [r (34) = 0.05, p = 0.78].

The Shapiro Wilk tests revealed that sAA [W (94) = 0.98, p = 0.15] 
and cortisol [W (94) = 0.99, p  = 0.58] had normal distributions 
following transformation. A significant difference in cortisol based on 
community lockdown status was observed [F (2, 87) = 22.53, p < 0.001, 
η2 = 0.33] (see Figure 2). Post-hoc comparisons revealed significantly 
lower cortisol During Lockdown (M = 0.78 ± 0.19 μg/mL) compared 
to Before (M = 1.05 ± 0.24 μg/mL) and After (M = 1.19 ± 0.23 μg/mL) 
Lockdown. Before Lockdown (M = 1.05 ± 0.24 μg/mL) children also 
exhibited lower cortisol compared to After Lockdown 
(M = 1.19 ± 0.23 μg/mL). A significant difference in sAA based on 
lockdown status was also observed [F (2, 87) = 4.67, p = 0.01, η2 = 0.10] 
(see Figure 3). Post-hoc comparisons revealed significantly higher 
sAA During Lockdown (M = 12.73 ± 4.06 U/mL) compared to Before 
Lockdown (M  = 10.12 ± 3.88 U/mL). After Lockdown 
(M = 13.05 ± 3.38 U/mL) children also exhibited higher sAA compared 
to Before Lockdown (M = 10.12 ± 3.88 U/mL).

FIGURE 1

Timeline of Saliva Collections.
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Discussion

The main findings from this study suggest that the abrupt 
COVID-19 disruption to daily life, including the stressful 

experience of community lockdown, had physiological effects on 
developing children. We  observed that during the pandemic 
community lockdown, preadolescent children presented with 
hypocortisolism. Sustained stress over a long period of time or an 
intensely stressful situation can drive the HPA axis to elevate 

FIGURE 2

Salivary Cortisol by Lockdown Status (Untransformed Data Shown).

FIGURE 3

Salivary sAA by Lockdown Status (Untransformed Data Shown).
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levels of cortisol continuously, resulting in an adaptation in which 
less cortisol is released by the hypothalamus and pituitary. 
Hypocortisolism is meant to be protective to ensure long-term 
survival by preventing chronically high cortisol levels from 
suppressing immune function and increasing catabolic pathways 
(35). The magnitude of the HPA axis response to stressor is 
determined by (1) the novelty to the individual, (2) unpredictable 
nature, (3) threat to their person or ego, and (4) sense of loss of 
control (35). Blunted cortisol response as a result of chronic stress 
has negative consequences on other physiological systems and 
can damage mental and physical health. For example, animal 
studies investigating early-life adversity on the development of 
the stress response has been well-documented. Rodent pups 
separated from their mother have shown heightened anxiety, 
fearful behaviors, and hypervigilance across the rodent lifespan 
(43–47). Similarly, rhesus (48), marmoset (49), and squirrel 
monkeys (50) exposed to early-life adversity and isolation have 
also demonstrated hypocortisolism. In addition to animal 
research, dysregulated cortisol and sAA have been observed in 
children with early-life adversity including adoption (51), poverty 
(52), and sexual abuse (53). Asymmetry of lower cortisol coupled 
with higher sAA observed during lockdown has also been 
observed in the context of children experiencing extended marital 
conflict (36) and maltreatment (54). Critically, physiological 
changes in response to chronic stress in children has been linked 
to fatigue, depression, apathy, sleep disturbances, stress 
sensitivity, difficulty with memory, and other negative health 
outcomes that can continue into adulthood (35) and potentially 
result in later-life mental disorders, aggression, substance use, 
and attention problems (55, 56). Encouragingly, animal and 
human research has shown that negative outcomes caused by 
early-life adversity can be partially ameliorated by placement in 
enriched (57) and supportive (e.g., learning and educational 
supports, childcare, emotional support, specialized therapy, 
healthcare, etc.) environments (58).

This study’s limitations are rooted in the unpredictability of the 
pandemic community lockdown – we did not know a lockdown 
would occur, how long it would last, or what variables would 
be important to collect during this time. Should another pandemic 
community lockdown occur again to prevent the spread of disease, 
future research should adhere to the following recommendations. 
A limitation of this study is that due to the community lockdown, 
a considerable gap in data collection, lasting more than several 
months, exists in our dataset between when salivary measures and 
mental health measures were collected. As such, we were unable to 
assess participants’ salivary measures when the mental health 
measures were collected. Therefore, for future research, 
we  recommend synchronous collection of salivary and mental 
health measures to better investigate potential relationships. 
Extending our promising preliminary cross-sectional results, 
we recommend longitudinal research with repeated salivary and 
mental health measures with a control group, if possible. In future 
research, age must be considered, as human studies have shown 
that basal sAA and cortisol increase significantly throughout 
puberty into adolescence (59–61). And, once puberty begins, there 
are clear sex differences in stress response (62–64). We also 

recommend recruiting more participants for analysis – we included 
94 participants but required 102 to be adequately powered for large 
effect sizes (η2 ≥ 0.14). We also recommend collecting information 
regarding vaccination, contraction of COVID-19, if parents 
worked from home or were essential workers, if any family 
members or friends passed away from the disease, and asking 
children to rate how stressful lockdown was for them and 
their family.

Our results suggested physiological changes in response to 
chronic stress, but future research should attempt to tie 
physiological changes to observed changes in mental health. 
Research has only just begun to explore the relationship between 
hypocortisolism, mental health, and the COVID-19 pandemic. 
Previous COVID-19 research has explored hypocortisolism using 
hair cortisol samples and observed relationships with child 
emotional-behavioral health (65). Further, loneliness in children 
during the COVID-19 pandemic was related to blunted cortisol 
awakening responses (66). The COVID-19 pandemic-related 
chronic stress has resulted in long-term impacts on mental health 
(67), and our results suggest a candidate mechanism, HPA 
dysregulation, for these changes in mental health.

We aimed to investigate how the chronic stress of the 
pandemic community locked affected physiological outcomes in 
preadolescent children. This is the first study to compare salivary 
biomarkers in children before, during, and following the 
COVID-19 community lockdown. While this secondary analysis 
faced data collection limitations, we were clearly able to observe 
clear dysregulated cortisol and sAA during the community 
lockdown. This cross-sectional research provides an important 
window into the lives of preadolescent children during a time of 
chronic stress. Previous literature has connected similar 
physiological changes to early life adversity and poorer mental 
health, prompting the need for future research to connect changes 
in these biomarkers to changes in mental health. These findings 
suggest a potential mechanistic cause for the COVID-19 
pandemic-related changes in mental health, emphasizing the need 
for social and mental support for children following the 
COVID-19 pandemic.
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