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Background: Most existing prognostic models of COVID-19 require imaging

manifestations and laboratory results as predictors, which are only available in

the post-hospitalization period. Therefore, we aimed to develop and validate a

prognostic model to assess the in-hospital death risk in COVID-19 patients using

routinely available predictors at hospital admission.

Methods: We conducted a retrospective cohort study of patients with COVID-19

using the Healthcare Cost and Utilization Project State Inpatient Database in

2020. Patients hospitalized in Eastern United States (Florida, Michigan, Kentucky,

and Maryland) were included in the training set, and those hospitalized in

Western United States (Nevada) were included in the validation set. Discrimination,

calibration, and clinical utility were evaluated to assess the model’s performance.

Results: A total of 17 954 in-hospital deaths occurred in the training set (n = 168

137), and 1,352 in-hospital deaths occurred in the validation set (n = 12 577). The

final prediction model included 15 variables readily available at hospital admission,

including age, sex, and 13 comorbidities. This prediction model showedmoderate

discrimination with an area under the curve (AUC) of 0.726 (95% confidence

interval [CI]: 0.722—0.729) and good calibration (Brier score = 0.090, slope = 1,

intercept = 0) in the training set; a similar predictive ability was observed in the

validation set.

Conclusion: An easy-to-use prognostic model based on predictors readily

available at hospital admission was developed and validated for the early

identification of COVID-19 patients with a high risk of in-hospital death. This

model can be a clinical decision-support tool to triage patients and optimize

resource allocation.
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Introduction

Since the first report of COVID-19 in late 2019, there have been approximately 756

million confirmed cases and over 6 million deaths worldwide (1). Surging COVID-19

hospital admissions pose enormous challenges for healthcare systems. To optimize limited

resource allocation and prevent disease deterioration, clinicians need to identify patients
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with COVID-19 who are at high risk of death. Recent

evidence has confirmed the association between abnormal

imaging manifestations, biochemical results, demographic

parameters, comorbidities, and adverse outcomes in patients with

COVID-19 (2–4).

Based on the growing knowledge of the risk factors for

severe COVID-19, risk stratificationmodels incorporatingmultiple

independent predictor variables have been developed to evaluate

the risk of adverse outcomes and support patient management

(5, 6). It is worth noting that unreliable prediction might do

more harm than good in guiding medical decision-making (7). A

systematic review found that most prognostic models for COVID-

19 have a high risk of bias owing to inadequate sample sizes

and unclear reports on model development and validation (8).

Therefore, a prognostic model with a large representative dataset of

hospitalized patients with COVID-19 is required for the complete

evaluation of model performance.

Most COVID-19 patients have a mild clinical course, while

some experienced rapid deterioration from the onset of symptoms

into severe illness requiring hospital admission (3, 9). Within

patients in need of escalated clinical care, rapid identification of

those with high risk of poor outcomes at hospital admission will

facilitate appropriate supportive care, avoid disease progression,

and alleviate the burden on the health system. However, existing

models often include predictor variables, such as imaging

manifestations and laboratory results (10, 11), which cannot be

acquired at hospital admission. These clinical parameters limit the

application of prognostic models for the early identification of

high-risk patients, especially when hospitals face a massive influx

of patients with COVID-19.

We aimed to develop and validate an easy-to-use prognostic

model that uses demographic and comorbidity data routinely

available at hospital admission to predict in-hospital death in

hospitalized patients with COVID-19.

Methods

Study design and participants

In this retrospective cohort study, we included hospitalized

patients admitted for the diagnosis of COVID-19 using the

Healthcare Cost and Utilization Project (HCUP) State Inpatients

Database (SID) of Nevada, Florida, Michigan, Maryland, and

Kentucky in 2020. The HCUP SID is a longitudinal database

containing the inpatient discharge records of state hospitals.

The requirement for informed consent was waived because the

HCUP SID was de-identified. All HCUP data users completed

an HCUP Data Use Agreement. Model development, validation

and reporting followed the guidelines of the Transparent

Reporting of a Multivariable Prediction Model for Individual

Prediction or Diagnosis (TRIPOD) (12). This study was approved

by the Ethics Committee of the Naval Medical University

(No. 2021LL024).

Patients hospitalized with an admitting diagnosis of COVID-

19 were included in this study. The COVID-19 diagnosis was

identified according to the International Classification of Disease

10th revision (ICD-10) code (U071) (13). Patients aged < 18 years

or those with a length of stay < 48 h, were excluded. Missing data

were observed for three variables: age (2 patients), sex (7 patients),

and clinical outcome (109 patients) (Figure 1). These records were

excluded because the percentage of missing values was < 0.06%

(117/199 056).

Outcomes

The primary outcome was in-hospital death of patients with

COVID-19. This outcome was selected because early identification

of patients at a high risk of adverse outcomes can support clinical

decision-making to decrease COVID-19-related mortality.

Predictor variables

Based on a review of the existing literature to identify factors

associated with COVID-19 mortality, the following predictors

available at hospital admission were selected to predict in-hospital

mortality: age, sex, and Elixhauser Comorbidity Index (ECI) (14,

15). The ECI identified a set of preexisting conditions that were

unrelated to the principal diagnosis and significantly impacted

resource allocation and in-hospital mortality (16). A total of 38

comorbidities were included in the HCUP Elixhauser Comorbidity

Software tool (version 2022.1), which was originally developed

using the International Classification of Diseases, Tenth Revision,

Clinical Modification (ICD-10-CM). As the primary intention was

to develop an easy-to-use prediction model for bedside use, age was

converted into four categories (≤ 60, 60–69, 70–79, or ≥ 80 years)

in the final model.

Model development

Patients hospitalized in Eastern United States (Florida,

Michigan, Kentucky, and Maryland) in 2020 were included in

the training set. Considering the rule of at least 10 events per

candidate predictor parameter (10 EPP) (17), a sample size of

17,954 in-hospital deaths in the training set was sufficient for 40

predictor variables.

Using 10-fold cross validation, we performed a least absolute

shrinkage and selection operator (LASSO) logistic regression

for predictor selection to minimize overfitting and potential

collinearity of variables (18). LASSO logistic regression was

conducted to fit the prediction model for all lambda and to use

the one standard error (1SE) rule to select the lambda, which

can reduce dimensionality and optimize the prediction model.

Variables selected by LASSO logistic regression were subsequently

assessed using a standard binary logistic regression (enter method).

Finally, a prognostic nomogram for predicting the risk of in-

hospital death in patients with COVID-19 was constructed based

standard binary logistic regression results.

Discrimination of the predictionmodel was evaluated using the

area under the curve (AUC) of the receiver operator characteristic

(ROC). The Youden index was used to determine the optimal cutoff

point that maximized sensitivity and specificity. Overall goodness
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FIGURE 1

Flow chart of study participants in the train and validation set.

of fit was assessed using the Brier score. A calibration curve was

used to examine the agreement between the predicted and observed

in-hospital deaths. Decision curve analysis (DCA) was performed

to validate clinical utility by calculating the net benefits at different

threshold probabilities.

To evaluate the discriminatory performance of the prediction

model in different settings, we conducted a sensitivity analysis

with complete data that included patients aged < 18 years old or

hospitalized for < 2 days. Given the reported association between

ethnicity and COVID-19-related death, further sensitivity analysis

was performed by stratifying the training and validation sets by

ethnicity (19).

Model validation

Patients hospitalized in Western United States (Nevada) in

2020 were included in the validation set. The prediction model’s

performance was assessed based on discrimination, calibration, and

clinical utility. A sensitivity analysis was also performed with the

complete data and stratification by ethnicity of the validation set.

Statistical analysis

Continuous variables were presented as mean (standard

deviation, SD) or median (interquartile range, IQR), and

categorical variables as frequencies (%). The demographic and

clinical characteristics of the patients were analyzed using the

Kruskal–Wallis test, Chi-square test, or Fisher’s exact test, as

appropriate. The standard binary logistic regression results are

reported as coefficients and odds ratios (OR) with 95% confidence

intervals (CI). All tests were two-sided, and statistical significance

was set at p < 0.05. All statistical analyses were performed using R

software (version 4.0.3). The packages used in this study included

“glmnet”, “rms”, “pROC”, “calibrate”, “dca.R”, and “lrm”.

Results

Baseline characteristics

A total of 199 056 patients with COVID-19 were screened for

eligibility, and 180 714 patients were assigned to the training set (n

= 168 137) and validation set (n = 12 577) (Figure 1). The median

age was 67 years (IQR, 55—78), ranging from 18 to 109 years old.

There were 61 795 (34.19%) patients aged < 60 years old, 40 024

(22.15%) patients aged 60—69 years old, 40 260 (22.28%) patients

aged 70—79 years old, and 38 635 (21.38%) patients aged≥ 80 years

old. Of these patients, 84 970 (47.02%) were female, 89 052 (49.28%)

were of white ethnicity, and 87 235 (48.27%) were of non-white

ethnicity. There were 73 076 (40.44%) patients with over three

comorbidities and 19 306 (10.68%) deaths during hospitalization.

In the training set, the mortality was 11.06% (8683/78 498) in the

white ethnic group and 10.17% (8667/85 212) in the non-white

ethnic group. Similar results were observed in the validation set,

with 11.24% (1186/10 554) mortality in the white ethnic group and

8.21% (166/2023) mortality in the non-white ethnic group.

The most common comorbidity was uncomplicated

hypertension (77 656, 42.97%). Other comorbidities such

as obesity, complicated hypertension, diabetes with chronic
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TABLE 1 Demographic and clinical characteristics for training and validation set of patients admitted to hospital with COVID-19.

Training set Validation set

Characteristics Overall
(n=168,137)

Survived

(n=150,183)

Died
(n=17,954)

P-value Overall
(n=12,577)

Survived

(n=11,225)

Died
(n=1,352)

P-value

Age (median, IQR) 66 (54–78) 65 (53–77) 76 (66–84) <0.001 69 (58–78) 67 (57–77) 76 (68–84) <0.001

<60 y 58,265 (34.65) 55,914 (37.23) 2,351 (13.09) 3,530 (28.07) 3,412 (30.40) 118 (8.73)

60–69 y 37,022 (22.02) 33,458 (22.28) 3,564 (19.85) 3,002 (23.87) 2,731 (24.33) 271 (20.04)

70–79 y 36,988 (22.00) 31,636 (21.06) 5,352 (29.81) 3,272 (26.02) 2,836 (25.27) 436 (32.25)

≥80 y 35,862 (21.33) 29,175 (19.43) 6,687 (37.25) 2,773 (22.05) 2,246 (20.01) 527 (38.98)

Female 78,627 (46.76) 71,327 (47.49) 7,300 (40.66) <0.001 6,343 (50.43) 5,718 (50.94) 625 (46.23) 0.001

Ethnicity <0.001 <0.001

White 78,498 (46.69) 69,815 (46.49) 8,683 (48.36) 10,554 (83.92) 9,368 (83.46) 1,186 (87.72)

Non-white 85,212 (50.68) 7,6545 (50.97) 8,667 (48.27) 2,023 (16.08) 1,857 (16.54) 166 (12.28)

Not recorded 4,427 (2.63) 3,823 (2.55) 604 (3.36) – – –

Number of comorbidities <0.001 <0.001

≤ 3 100,800 (59.95) 93,949 (62.56) 6,851 (38.16) 6,838 (54.37) 6,354 (56.61) 484 (35.80)

> 3 67,337 (40.05) 56,234 (37.44) 11,103 (61.84) 5,739 (45.63) 4,871 (43.39) 868 (64.20)

AIDS 1,354 (0.81) 1,227 (0.82) 127 (0.71) 0.131 34 (0.27) 33 (0.29) 1 (0.07) 0.232

Alcohol abuse 2,843 (1.69) 2,543 (1.69) 300 (1.67) 0.85 133 (1.06) 119 (1.06) 14 (1.04) 1

Deficiency anemias 33,480 (19.91) 28,081 (18.70) 5,399 (30.07) <0.001 1,921 (15.27) 1,647 (14.67) 274 (20.27) <0.001

Arthropathies 5,078 (3.02) 4,470 (2.98) 608 (3.39) 0.003 459 (3.65) 410 (3.65) 49 (3.62) 1

Chronic blood loss anemia 558 (0.33) 462 (0.31) 96 (0.53) <0.001 31 (0.25) 25 (0.22) 6 (0.44) 0.208

Leukemia 1,006 (0.60) 825 (0.55) 181 (1.01) <0.001 91 (0.72) 71 (0.63) 20 (1.48) 0.001

Lymphoma 1,153 (0.69) 929 (0.62) 224 (1.25) <0.001 88 (0.70) 76 (0.68) 12 (0.89) 0.481

Metastatic cancer 1,379 (0.82) 1,100 (0.73) 279 (1.55) <0.001 101 (0.80) 77 (0.69) 24 (1.78) <0.001

Solid tumor without metastasis, in situ 20 (0.01) 18 (0.01) 2 (0.01) 1 2 (0.02) 1 (0.01) 1 (0.07) 0.515

Solid tumor without metastasis,

malignant

2,910 (1.73) 2,470 (1.64) 440 (2.45) <0.001 201 (1.60) 165 (1.47) 36 (2.66) 0.001

Cerebrovascular disease 6,061 (3.60) 5,060 (3.37) 1,001 (5.58) <0.001 454 (3.61) 384 (3.42) 70 (5.18) 0.001

Congestive heart failure 25,195 (14.98) 20,236 (13.47) 4,959 (27.62) <0.001 2,548 (20.26) 2,106 (18.76) 442 (32.69) <0.001

Coagulopathy 16,285 (9.69) 13,459 (8.96) 2,826 (15.74) <0.001 957 (7.61) 776 (6.91) 181 (13.39) <0.001

(Continued)
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TABLE 1 (Continued)

Training set Validation set

Characteristics Overall
(n=168,137)

Survived

(n=150,183)

Died
(n=17,954)

P-value Overall
(n=12,577)

Survived

(n=11,225)

Died
(n=1,352)

P-value

Dementia 22,382 (13.31) 18,401 (12.25) 3,981 (22.17) <0.001 1,701 (13.52) 1,360 (12.12) 341 (25.22) <0.001

Depression 17,361 (10.33) 15,487 (10.31) 1,874 (10.44) 0.61 1,967 (15.64) 1,782 (15.88) 185 (13.68) 0.04

Diabetes with chronic complications 43,005 (25.58) 36,357 (24.21) 6,648 (37.03) <0.001 3,535 (28.11) 3,080 (27.44) 455 (33.65) <0.001

Diabetes without chronic complications 23,676 (14.08) 21,586 (14.37) 2,090 (11.64) <0.001 1,909 (15.18) 1,743 (15.53) 166 (12.28) 0.002

Drug abuse 2,434 (1.45) 2,267 (1.51) 167 (0.93) <0.001 201 (1.60) 188 (1.67) 13 (0.96) 0.063

Hypertension, complicated 44,913 (26.71) 36,747 (24.47) 8,166 (45.48) <0.001 3,902 (31.02) 3,288 (29.29) 614 (45.41) <0.001

Hypertension, uncomplicated 72,260 (42.98) 65,921 (43.89) 6,339 (35.31) <0.001 5,396 (42.90) 4,930 (43.92) 466 (34.47) <0.001

Liver disease, mild 7,077 (4.21) 6,395 (4.26) 682 (3.80) 0.004 487 (3.87) 443 (3.95) 44 (3.25) 0.241

Liver disease, moderate to severe 886 (0.53) 707 (0.47) 179 (1.00) <0.001 63 (0.50) 45 (0.40) 18 (1.33) <0.001

Chronic pulmonary disease 39,610 (23.56) 34,645 (23.07) 4,965 (27.65) <0.001 3,828 (30.44) 3,363 (29.96) 465 (34.39) 0.001

Neurological disorders affecting

movement

4,437 (2.64) 3,825 (2.55) 612 (3.41) <0.001 541 (4.30) 468 (4.17) 73 (5.40) 0.042

Neurological disorders unaffecting

movement

14,308 (8.51) 11,372 (7.57) 2,936 (16.35) <0.001 1,093 (8.69) 859 (7.65) 234 (17.31) <0.001

Seizures and epilepsy 6,103 (3.63) 5,332 (3.55) 771 (4.29) <0.001 512 (4.07) 447 (3.98) 65 (4.81) 0.168

Obesity 47,591 (28.30) 42,797 (28.50) 4,794 (26.70) <0.001 3,453 (27.45) 3,133 (27.91) 320 (23.67) 0.001

Paralysis 5,337 (3.17) 4,504 (3.00) 833 (4.64) <0.001 448 (3.56) 376 (3.35) 72 (5.33) <0.001

Peripheral vascular disease 6,926 (4.12) 5,662 (3.77) 1,264 (7.04) <0.001 515 (4.09) 415 (3.70) 100 (7.40) <0.001

Psychoses 7,432 (4.42) 6,714 (4.47) 718 (4.00) 0.004 502 (3.99) 450 (4.01) 52 (3.85) 0.83

Pulmonary circulation disease 4,470 (2.66) 3,587 (2.39) 883 (4.92) <0.001 323 (2.57) 273 (2.43) 50 (3.70) 0.007

Renal failure, moderate 21,291 (12.66) 17,299 (11.52) 3,992 (22.23) <0.001 2,040 (16.22) 1,735 (15.46) 305 (22.56) <0.001

Renal failure, severe 10,230 (6.08) 8,167 (5.44) 2,063 (11.49) <0.001 714 (5.68) 579 (5.16) 135 (9.99) <0.001

Hypothyroidism 23,093 (13.73) 20,171 (13.43) 2,922 (16.27) <0.001 2,346 (18.65) 2,064 (18.39) 282 (20.86) 0.03

Other thyroid disorders 2,124 (1.26) 1,942 (1.29) 182 (1.01) 0.002 127 (1.01) 116 (1.03) 11 (0.81) 0.535

Peptic ulcer with bleeding 790 (0.47) 673 (0.45) 117 (0.65) <0.001 50 (0.40) 38 (0.34) 12 (0.89) 0.005

Valvular disease 7,708 (4.58) 6,416 (4.27) 1,292 (7.20) <0.001 558 (4.44) 484 (4.31) 74 (5.47) 0.059

Weight loss 9,629 (5.73) 7,500 (4.99) 2,129 (11.86) <0.001 658 (5.23) 506 (4.51) 152 (11.24) <0.001

IQR, interquartile range; AIDS, Acquired immune deficiency syndrome.
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FIGURE 2

LASSO coe�cient profiles of 40 candidate predictors (A) and 15

predictors selected using LASSO regression (B).

complications, and chronic pulmonary disease, also affected

more than 20% patients with COVID-19. Compared to surviving

patients, those who died in the hospital were more likely to be

male, older adults, and have more comorbidities. The baseline

characteristics of the training and validation sets were presented in

Table 1.

Model construction and performance
assessment

The prediction model was developed using a training set of

168 137 patients, of which 17 954 in-hospital deaths occurred. In

total, 40 candidate variables were screened using LASSO regression,

and 15 independent variables were selected for multivariate

logistic regression (Figure 2). In-hospital deaths increased with age,

male sex, and 13 comorbidities: deficiency anemias, metastatic

cancer, congestive heart failure, coagulopathy, diabetes with

chronic complications, complicated hypertension, neurological

disorders unaffecting movement, obesity, peripheral vascular

TABLE 2 Multivariable logistic regression of risk factors for in-hospital

death in patients with COVID-19 in the training set.

β OR 95% CI P-value

Intercept −3.4

Age (years) <0.001

<60 Reference Reference Reference

60–69 0.82 2.26 2.14–2.39

70–79 1.21 3.34 3.17–3.52

≥80 1.49 4.44 4.2–4.69

Female −0.38 0.69 0.66–0.71 <0.001

Deficiency anemias 0.19 1.21 1.17–1.26 <0.001

Metastatic cancer 0.53 1.7 1.48–1.95 <0.001

Congestive heart

failure

0.26 1.3 1.24–1.37 <0.001

Coagulopathy 0.36 1.43 1.37–1.5 <0.001

Diabetes with

chronic

complications

0.32 1.38 1.33–1.43 <0.001

Hypertension,

complicated

0.13 1.13 1.07–1.2 <0.001

Neurological

disorders

unaffecting

movement

0.44 1.56 1.48–1.63 <0.001

Obesity 0.25 1.28 1.23–1.33 <0.001

Peripheral vascular

disease

0.22 1.24 1.16–1.33 <0.001

Pulmonary

circulation disease

0.21 1.24 1.14–1.34 <0.001

Renal failure,

moderate

0.15 1.17 1.1–1.23 <0.001

Renal failure, severe 0.35 1.42 1.33–1.52 <0.001

Weight loss 0.56 1.75 1.66–1.84 <0.001

OR, odds ratio; CI, confidence interval.

disease, pulmonary circulation disease, moderate renal failure,

severe renal failure, and weight loss. Among these predictors,

ORs were highest for those 60—69 years old (OR 2.26, 95% CI:

2.14—2.39), 70—79 years old (OR 3.34, 95% CI: 3.17—3.53), and

≥ 80 years old (OR 4.44, 95% CI: 4.2—4.69) (Table 2). Finally,

a nomogram was generated by assigning a weighted score to

each selected variable (Figure 3). The calculation of risk score

was as follows: risk score = 55 (60–69 years old) + 81 (70—

79 years old) + 100 (≥ 80 years old) + 25 (male) + 13

(deficiency anemias) + 36 (metastatic cancer) + 18 (congestive

heart failure) + 24 (coagulopathy) + 21 (diabetes with chronic

complications)+ 8 (hypertension, complicated)+ 30 (neurological

disorders unaffecting movement) + 16 (obesity) + 15 (peripheral

vascular disease) + 14 (pulmonary circulation disease) + 10 (renal

failure, moderate) + 23 (renal failure, severe) + 37 (weight loss).

The optimal cut-point was 107 (corresponding to a threshold
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FIGURE 3

Nomogram for predicting in-hospital death in patients with COVID-19. Di�erent values of each variable correspond to di�erent positions in the

nomogram. Draw a line from the position of each variable to the points axis for acquiring points of this variable. Points of di�erent variables are

calculated and summed to yield a total score that can be converted into predicted probability of in-hospital death.

probability 0.102), which divided patients into low-risk group

(score ≤ 107) and high-risk group (score > 107).

The prediction model showed moderate discrimination for in-

hospital deaths with an AUC of 0.726 (95% CI: 0.722—0.729)

in the training set. Maximal discrimination was achieved at a

cutoff value of 0.102 which provided a sensitivity of 0.642 and a

specificity of 0.697 (Figure 4A). The calibration curve showed a

slightly overestimated risk of in-hospital death in the training set

(Brier score = 0.090, slope = 1, intercept = 0) (Figure 5A). DCA

was conducted to assess the clinical utility of the present model

(Figure 6A). When the threshold probability ranged between 3%

and 29%, applying the nomogram to determine whether to add an

intervention obtained a greater net benefit than treating no patients

or all patients.

Validation of the nomogram

The validation set consisted of 12 577 patients with 1352

in-hospital deaths. The AUC of the prediction model in the

validation set was 0.708 (95% CI: 0.694—0.721), indicating

moderate discrimination (Figure 4B). A cutoff value of 0.107

(sensitivity= 0.614, specificity= 0.703) was found to be the optimal

level for discriminating in-hospital deaths in the validation set. The

calibration curve also demonstrated a slightly overestimated risk

in the validation set (Brier score = 0.091, slope = 0.98, intercept

= −0.078) (Figure 5B). The DCA showed that when the net

benefit of the nomogram was higher than the strategy of “treat

all” and “treat none”, the threshold probability ranged between 3%

and 26% (Figure 6B).

Sensitivity analysis

Sensitivity analysis was conducted using complete case data,

which included patients aged < 18 years old or hospitalized for <

2 days. The prediction model showed similar discrimination with

an AUC of 0.733 (95% CI: 0.729–0.736) in the training set (n= 185

325) and an AUC of 0.711 (95% CI: 0.699–0.724) in the validation

set (n = 13 614). Additionally, the prediction model showed better

discrimination in the non-white ethnic group (AUC 0.774, 95%

CI: 0.743–0.805) than the white ethnic group (AUC 0.697, 95% CI:

0.683–0.711) in the validation set. Similar results were observed in

the training set: an AUC of 0.746 (95% CI: 0.740–0.751) in the non-

white ethnic group and 0.708 (95% CI: 0.702–0.713) in the white

ethnic group.

Discussion

We developed and validated a prognostic model with

15 variables to predict in-hospital mortality in hospitalized

patients with COVID-19 (n = 180,714). This prognostic model,

based on age, sex, and comorbidities commonly available at

hospital admission, performed well in terms of discrimination,

calibration, and clinical utility. Moreover, sensitivity analyses
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FIGURE 4

Discrimination of the nomogram for predicting in-hospital death in

patients with COVID-19. Receiver operator characteristic curves of

the nomogram in the training set (A) and validation set (B).

showed moderate-to-good discrimination in different settings,

confirming the robustness of our findings.

The present prediction model included predictors reflecting

the patients’ demographics and preexisting conditions, which are

common components of other risk stratification models (20, 21).

In our study, the in-hospital death risk showed a significant age

gradient, supporting age as a strong predictor of mortality in

hospitalized patients with COVID-19 (22). The increasing trend

in mortality risk with age also suggested the necessity for early

treatment intervention and priority resource allocation for older

patients (23).

Comorbidities are usually presented in two forms in COVID-

19 prognostic models: individual comorbidity indicators (24, 25)

and an unweighted count of comorbidities (26, 27). In this

study, the two most significant predictors of mortality among

comorbidities were metastatic cancer and weight loss. They had

significantly higher ORs than the other comorbidities. Therefore,

FIGURE 5

Calibration of the nomogram for predicting in-hospital death in

patients with COVID-19. Calibration curves of the nomogram in the

training set (A) and validation set (B).

these comorbidities were presented as individual features in the

final prediction model. A previous study also confirmed that

the prediction model for in-hospital mortality using individual

comorbidity indicators had better discrimination than that

including comorbidities given an equal weight (16).

The mortality rate for hospitalized patients in white ethnic

group was higher than its non-white counterpart, and it was

consistent with the results of a previous study (28). The disparity

in COVID-19 mortality between different ethnic groups may

result from the higher prevalence of most comorbidities in white

hospitalized patients (29). Besides, white hospitalized patients

(median age 72 years, IQR: 60–81) were significantly older

than non-white patients (median age 62 years, IQR: 50–73).

Comorbidities and disease severity tended to be associated with

older age, and thus the white ethnic group with more older patients

was more likely to develop comorbidities and have poor outcomes

(30, 31).

A living systematic review identified 606 prognostic models of

COVID-19 with a median C index of 0.81. However, a high risk

of bias was observed in the majority (545/606) of these existing
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FIGURE 6

Decision curve analyses depicting the net benefits of the

nomogram. The decision curve analyses of the nomogram in the

training set (A) and validation set (B).

models (8). An unreliable prognostic prediction could be more

harmful than beneficial in guiding clinical practice. The most

common reason for the risk of bias was problematic methodology.

Insufficient sample size and the number of events increased the

risk of overfitting, and poor reports of model derivation and

validation might lead to optimistic performance statistics (32). This

study was conducted with a large sample size and strictly followed

the recommendations of TRIPOD during all stages of design,

implementation, and reporting, which was beneficial to reduce risk

of bias.

The present prognostic model showed a moderate

discriminatory performance, which was lower than that of

another prognostic model (AUC 0.89) with a relatively small

sample size (384 deaths in 2,492 patients) based on age, sex, and

comorbidities (lymphoma/leukemia, liver disease, ischemic heart

disease, dementia, chronic obstructive pulmonary disease, diabetes,

and chronic kidney disease) (33). However, we could not to validate

its performance in our cohort because ischemic heart disease was

not included in the 38 comorbidity measures of the HCUP SID.

This study had several strengths. Using a large inpatient

database with an event-to-parameter ratio >400 reduced the risk

of overfitting in the prediction model (34). As a large number

of candidate risk predictors might cause inaccurate estimations

with multicollinearity, we performed LASSO regression to

minimize potential multicollinearity. In addition, using predictor

variables commonly available at the time of hospital admission

strengthened its clinical applicability for the early identification

of high-risk patients, avoiding the requirement for imaging

manifestations and laboratory results that were only available in

the post-hospitalization period. Moreover, sensitivity analyses were

conducted to confirm the robustness of the model performance.

Our study had some limitations. First, records with missing

values were excluded, and complete data analysis may have

caused a loss of precision and power (35). Considering the

substantially small proportion of missing values that mainly

existed in the outcome variable (109/117), we excluded missing

data instead of applying multiple imputation methods. Second,

some rare comorbidities were not recorded in the HCUP SID

group; including these comorbidities might have improved our

prognostic model’s performance. However, the large number of

comorbidities identified by the ECI made it impossible to neglect

important comorbidities with large effects on in-hospital mortality.

Finally, the present model derived from a database only including

patients limited to a certain area in the USA in 2020 might

limit its generalization in the current clinical practice as the

performance of our model was likely to vary over time and differ

between regions with the emergence of new COVID-19 variants

and imbalanced regional vaccination (36–38). Further validation

using large representative datasets from different time periods and

geographical regions is required to confirm the applicability of the

prognostic model.

Conclusion

An easy-to-use prediction model incorporating age, sex,

and comorbidities was developed to evaluate the risk of in-

hospital death in patients with COVID-19. Using predictors

routinely acquired at hospital admission enables early identification

of high-risk patients. This simple risk-stratification model can

support clinical decision-making to guide patient management

and optimize resource allocation when facing a surging number

of infections.
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