AUTHOR=Stefanis Christos , Giorgi Elpida , Kalentzis Konstantinos , Tselemponis Athanasios , Nena Evangelia , Tsigalou Christina , Kontogiorgis Christos , Kourkoutas Yiannis , Chatzak Ekaterini , Dokas Ioannis , Constantinidis Theodoros , Bezirtzoglou Eugenia TITLE=Sentiment analysis of epidemiological surveillance reports on COVID-19 in Greece using machine learning models JOURNAL=Frontiers in Public Health VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2023.1191730 DOI=10.3389/fpubh.2023.1191730 ISSN=2296-2565 ABSTRACT=

The present research deals with sentiment analysis performed with Microsoft Azure Machine Learning Studio to classify Facebook posts on the Greek National Public Health Organization (EODY) from November 2021 to January 2022 during the pandemic. Positive, negative and neutral sentiments were included after processing 300 reviews. This approach involved analyzing the words appearing in the comments and exploring the sentiments related to daily surveillance reports of COVID-19 published on the EODY Facebook page. Moreover, machine learning algorithms were implemented to predict the classification of sentiments. This research assesses the efficiency of a few popular machine learning models, which is one of the initial efforts in Greece in this domain. People have negative sentiments toward COVID surveillance reports. Words with the highest frequency of occurrence include government, vaccinated people, unvaccinated, telephone communication, health measures, virus, COVID-19 rapid/molecular tests, and of course, COVID-19. The experimental results disclose additionally that two classifiers, namely two class Neural Network and two class Bayes Point Machine, achieved high sentiment analysis accuracy and F1 score, particularly 87% and over 35%. A significant limitation of this study may be the need for more comparison with other research attempts that identified the sentiments of the EODY surveillance reports of COVID in Greece. Machine learning models can provide critical information combating public health hazards and enrich communication strategies and proactive actions in public health issues and opinion management during the COVID-19 pandemic.