
Frontiers in Public Health 01 frontiersin.org

Urinary polycyclic aromatic 
hydrocarbon metabolites were 
associated with short sleep 
duration and self-reported trouble 
sleeping in US adults: data from 
NHANES 2005–2016 study 
population
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Background: The aim of the current study was to investigate the link between 
human exposure to PAHs with short sleep duration (SSD) and self-reported 
trouble sleeping.

Methods: A total of 9,754 participants and 9,777 participants obtained from 
NHANES 2005–2016 were included in this cross-sectional study about SSD and 
self-reported trouble sleeping, respectively. The association between urinary 
PAHs metabolites with the prevalence of SSD and self-reported trouble sleeping 
by the weighted multivariate logistic regression model, restricted cubic spline 
(RCS) curves, and weighted quantile sum (WQS) regression.

Results: After adjusting for all covariates, 1-hydroxynapthalene, 
2-hydroxynapthalene, 3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphen 
anthrene, and 1-hydroxyphenanthrene demonstrated positive associations 
with SSD prevalence. Besides, 1-hydroxynapthalene, 2-hydroxynapthalene, 
3-hydroxyfluorene, 2-hydroxyfluorene, 1-hydroxyphenanthrene, and 1-hydroxy 
phenanthrene exhibited positive associations with the prevalence of self-reported 
trouble sleeping following the adjustment for all covariates. RCS curves confirmed 
the non-linear associations between 1-hydroxynapthalene, 2-hydroxynapthalene, 
3-hydroxyfluorene, 2-hydroxyfluorene, and 1-hydroxyphenanthrene with the 
prevalence of SSD, and 1-hydroxynapthalene, 3-hydroxyfluorene, and 2-hydroxy 
fluorene with the prevalence of self-reported trouble sleeping. The WQS results 
showed that mixed exposure to PAH metabolites had a significant positive 
association with the prevalence of SSD (OR: 1.087, 95% CI: 1.026, 1.152, p = 0.004) 
and self-reported trouble sleeping (OR: 1.190, 95% CI: 1.108, 1.278, p < 0.001).

Conclusion: Urinary concentrations of PAH metabolites exhibited a close 
association with the prevalence of SSD and self-reported trouble sleeping in US 
adults. More emphasis should be  placed on the importance of environmental 
effects on sleep health.
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Introduction

Sleeping is an active process that restores vitality and minimizes 
fatigue. One-third of the life of an individual is spent sleeping. Healthy 
sleep is important for physical and mental development, work 
effectiveness, cognitive status, and even mortality (1). Over the past 
40 years, the duration Americans spend sleeping has been reduced by 
1.5 to 2 h. According to the National Sleep Foundation, American 
adults slept an average of 6.9 h on workdays and 7.6 h on weekends in 
2015 (2), compared to an average of 8.5 h in 1960 (3). Short sleep 
duration (SSD) and poor sleep quality have been linked to numerous 
adverse health outcomes, including obesity (4, 5), diabetes mellitus (6, 
7), dementia (8, 9), asthma (10, 11), cardiovascular disorders (12, 13), 
metabolic syndrome (14, 15), among others. Several factors may 
impact the sleep, including age, psychological and physiological 
conditions, culture and environmental factors (16). Environmental 
pollution emerges as a new research orientation on factors affecting 
sleep status. For example, antimony (17), arsenic (18), pesticides (19), 
fluoride (20), and phthalates (21) all have been demonstrated to plays 
a negative role in sleep health.

Polycyclic aromatic hydrocarbons (PAHs), produced by the 
incomplete combustion of organic materials like tobacco, waste, fossil 
fuels, wood, and others, are the major constituents of air pollution 
(22). The general population might be subjected to PAHs in various 
potential ways such as inhalation (e.g., contaminated air from vehicle 
emissions, farm explosions, coke plants, power plants, and steel 
plants), ingestion (e.g., grilling, roasting, frying, or smoking foods, 
and contaminated water or milk), and skin contact (e.g., dust and soil) 
(23). With a half-life duration of shorter than 30 h, PAHs are processed 
by the liver in the human body and eliminated through urine and 
feces (24). Owing to the short half-life of PAHs, several metabolites in 
urine samples have been found to be effective biomarkers of PAH 
exposure (25). Accumulating evidence suggests that being exposed to 
PAH may have adverse impacts such as immunotoxicity (26, 27), 
carcinogenicity (28, 29), genotoxicity (30, 31), and teratogenicity (27).

Moreover, several recent reports have highlighted that exposure 
to PAH has a significant link to changes in brain structure (32–34), 
neurodegeneration, and neurodevelopmental inhibition (35, 36). 
Besides, exposure to PAH was confirmed to be associated with various 
brain diseases, including adverse cognitive function (37, 38), 
attention-deficit/hyperactivity disorder symptoms (39), conduct 
disorder (40), children’s intelligence quotient (41–43), and depression 
(44–46). Although numerous researchers have demonstrated that 
various PAH metabolites influence health status, there has not been 
much focus on the association of PAH exposure with SSD and self-
reported trouble sleeping. Therefore, our research is a cross-sectional 
study that aimed at investigating the link between human exposure to 
PAHs with SSD and self-reported trouble sleeping based on 2005–
2016 National Health and Nutrition Examination Survey 
(NHANES) data.

Methods

Study subjects

The NHANES program was performed to evaluate the nutritional 
and health status of American civilians using a complex, multistage 

sampling methodology. A substantial amount of data (including 
demographics, socioeconomic status, questions on diet and health, 
and medical history) were gathered via household interviews and 
biochemical evaluations of blood and urine samples at specific 
examination centers. The Centers for Disease Control and Prevention 
(CDC) provided details on the procedures, research design, and 
NHANES enrollment. Moreover, the National Center for Health 
Statistics Research Board reviewed and approved the NHANES 
protocol, followed by ensuring the consent of all the participants.

Six NHANES waves, completed in succession between 2005 and 
2016, were used to select the study sample. A total of 26,649 participants 
under 18 years of age and 25,574 individuals without PAH data were 
initially excluded from this study. The sample included 9,754 participants 
who met the eligibility criteria for the study on SSD after excluding 31 
subjects without sleep duration data, 8 participants without education 
level data, 915 subjects lacking poverty income ratio (PIR) data, and 5 
individuals without general health data. Additionally, 9,777 participants 
met the eligibility criteria for the study on self-reported trouble sleeping 
after excluding 4 subjects without sleep duration data, 9 participants 
without data on education level, 918 subjects lacking PIR data, and 5 
individuals without general health data (Figure 1).

Measurements of urinary PAH metabolites

The NHANES measured urinary mono-hydroxylated PAH 
metabolites across six NHANES cycles in a one-third subsample of 
participants aged 6 and above. The urinary mono-hydroxylated 
metabolites of PAHs were identified as stable biomarkers for multi-
pathway exposure to PAHs. Several analytical techniques across different 
cycles were used to detect urine PAH metabolites. Specifically, capillary 
gas chromatography in combination with high-resolution mass 
spectrometry (GC–HRMS) was used in the 2005–2008 cycle, while 
isotope dilution capillary gas chromatography-tandem mass spectrometry 
(GC–MS/MS) was used in the 2009–2012 cycle. In the 2013–2016 cycle, 
isotope dilution high-performance liquid chromatography-MS/MS 
(online SPE-HPLC-MS/MS) was used in the detection process. Notably, 
there were variations in the urine PAH metabolites measured during the 
various cycles. However, six PAH metabolites, namely 
1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene, 
2-hydroxyfluorene, 1-hydroxyphenanthrene, and 1-hydroxypyrene were 
measured across all cycles and included in this study.

Definition of short sleep duration and 
self-reported trouble sleeping

This study employed questions from the NHANES to record the 
duration of sleep of participants. Specifically, from 2005 to 2014, 
participants were asked about the duration that they sleep (in hours), 
while from 2015 to 2016, they were asked about how much they 
usually sleep at night on weekdays or workdays. Moreover, the expert 
consensus of the American Academy of Sleep Medicine and the Sleep 
Research Society defined SSD as a sleep duration of fewer than 7 h in 
an average 24-h period (47, 48). In addition, self-reported trouble 
sleeping was assessed by asking the participants “Have you ever told a 
doctor or other health professional that you have trouble sleeping?” 
Both yes and no were accepted as possible answers to this query.
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Covariates

A directed acyclic graph (DAG) drawn in DAGitty3.0 was used 
for the identification the minimum adjustment required for the 
confounder control (Supplementary Figure S1). This study considered 
several potential covariates, including age (years), gender (male or 
female), race/ethnicity (non-Hispanic White, non-Hispanic Black, 
Mexican Americans, other Hispanics, or other races), education 
(below high school, high school, or above high school), PIR (≤1.3, 
1.3–3.5, or ≥ 3.5), and general health status. The PIR was derived by 
dividing household income by the poverty threshold and was 
categorized as low income (PIR <1.3), middle income (1.3 ≤ PIR <3.5), 
and high income (PIR ≥3.5) (49). General health status was assessed 
through the question “Would you say your health, in general, is …” 
and was divided into two categories: excellent, very good, or good 
versus fair or poor, as used in earlier studies (50, 51).

Statistical analysis

Mean and standard deviation were used to report continuous 
variables with a normal distribution, whereas median and interquartile 
range were used to report skewed data. Categorical variables were 
reported as frequency and proportion. For categorical variables, the 
Chi-square test was utilized, while the t-test or Mann–Whitney U test 
was utilized for continuous variables, based on whether the data were 
normally distributed or not, to compare group differences between 
participants with SSD or self-reported trouble sleeping and the 
control group.

The odds ratios (ORs) and 95% confidence intervals (CIs) for 
PAHs associated with SSD or self-reported trouble sleeping were 
evaluated by employing the weighted multivariate logistic regression 
model. The statistical model comprised creatinine-adjusted PAHs as 
both a continuous variable (with log-transformation for non-normal 
distribution) and a categorical variable having the lowermost quartile 
as the reference group. The crude model was not adjusted, while 
Model I was adjusted for age and gender, along with adjusting Model 

II for age, gender, ethnic background, educational status, family PIR, 
and general health.

Furthermore, the current study utilized restricted cubic spline 
(RCS) curves with four knots to depict the dose–response relationship 
between PAHs and the prevalence of SSD and self-reported trouble 
sleeping following the adjustment for model variables (52). 
Additionally, the combined associations of all six PAH metabolites 
with SSD or self-reported trouble sleeping were assessed, and the 
relative contribution of each component in the mixture was 
determined for the positive association using weighted quantile sum 
(WQS) regression, a novel statistical method in environmental 
epidemiology (53). The WQS regression model was created to assess 
how mixed exposure affected health outcomes. All PAH metabolite 
concentrations were initially ranked in quartiles, and all data were 
then randomly divided into training and validation sets. The weighted 
index of each PAH metabolite represented its contribution to the 
positive association and was constrained to a range of 0–1, summing 
up to 1. A total of 1,000 bootstrap replicates were performed to 
estimate the effect size and 95% CIs based on previously published 
studies, followed by the random distribution of data into a 60% 
validation set and a 40% test set.

Sensitivity analysis was further performed to evaluate the 
robustness of our results. Adults with chronic conditions including 
(hypertension, cardiovascular disease, diabetes mellitus, and chronic 
obstructive pulmonary disease) were excluded to explore the 
associations. Participants were diagnosed as hypertension by: average 
systolic pressure ≥ 140 mmHg or average diastolic pressure ≥ 90 mmHg; 
or self-reported hypertension; or taking anti-hypertension drugs. 
Participants were diagnosed as diabetes mellitus by: doctor told 
you  have diabetes; or glycohemoglobin HbA1() > 6.5%; or fasting 
glucose ≥7.0 mmoL/L; or random blood glucose ≥11.1 mmoL/L; or 
two-hour OGTT blood glucose ≥11.1 mmoL/L; or use of diabetes 
drugs or insulins. Participants were diagnosed as cardiovascular 
disease by doctor r told congestive heart failure, coronary heart disease, 
or angina pectoris, or heart attack, or stroke. Participants were 
diagnosed as COPD by: FEV1/FVC < 0.7; or ever told have emphysema; 
or use drugs including selective phosphodiesterase-4 inhibitors, mast 

FIGURE 1

Flow chart of the participants’ selection.
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TABLE 1 Weighted characteristics of the study participants with and without short sleep duration.

Variable Overall (n = 9,754) No-SSD (n = 6,173) SSD (n = 3,581) p-value

Age [years, mean (SD)] 45.71(0.30) 45.99 (0.34) 45.19 (0.37) 0.03

Gender (%) <0.0001

Female 4,910 (50.34) 3,175 (53.13) 1735 (48.07)

Male 4,844 (49.66) 2,998 (46.87) 1846 (51.93)

Race/ethnicity (%) <0.0001

Mexican American 1,536 (15.75) 1,031 (8.47) 505 (8.01)

Non-Hispanic Black 2,118 (21.71) 1,073 (8.69) 1,045 (16.70)

Non-Hispanic White 4,181 (42.86) 2,841(70.82) 1,340 (62.13)

Other Hispanic 905 (9.28) 570 (4.99) 335 (5.72)

Other Racer 1,014 (10.4) 658 (7.03) 356 (7.44)

Educational status (%) 0.01

Below high school 2,446 (25.08) 1,557 (16.82) 889 (17.11)

High school 2,319 (23.77) 1,432 (21.93) 887 (25.08)

Above high school 4,989 (51.15) 3,184 (61.25) 1805 (57.81)

PIR (%) < 0.001

≤1.3 3,224 (33.05) 1964 (20.74) 1,260 (24.80)

1.3–3.5 3,575 (36.65) 2,252 (35.08) 1,323 (35.99)

≥3.5 2,955 (30.3) 1957 (44.18) 998 (39.20)

General health (%) < 0.0001

Good/Very good/Excellent 7,573 (77.64) 4,921 (85.26) 2,652 (80.51)

Fair/Poor 2,181 (22.36) 1,252 (14.74) 929 (19.49)

Country of birth (%) 0.63

Born in 50 US states or Washington, DC 7,187 (73.7) 4,467 (83.35) 2,720 (83.77)

Others 2,565 (26.3) 1705 (16.65) 860 (16.23)

Citizenship status (%) 0.01

Citizen by birth or naturalization 8,414 (86.37) 5,225 (90.74) 3,189 (92.44)

Not a citizen of the US 1,328 (13.63) 939 (9.26) 389 (7.56)

Exposures [μg/L, median (IQR)]

1-Hydroxynapthalene 1664.90 (688.00, 5976.00) 1559.00 (650.00, 5112.00) 1907.00 (771.00, 7506.00) < 0.0001

2-Hydroxynapthalene 4128.30 (1802.00, 9740.00) 3911.00 (1639.00, 9246.00) 4845.00 (2092.00, 10882.50) < 0.0001

3-Hydroxyfluorene 81.20 (38.00, 247.00) 75.00 (35.90, 208.00) 94.00 (43.00, 335.00) < 0.0001

2-Hydroxyfluorene 221.20 (104.00, 559.00) 203.80 (97.00, 480.00) 260.00 (120.70, 694.00) < 0.0001

1-Hydroxyphenanthrene 127.00 (68.00, 232.00) 119.60 (64.00, 222.00) 139.00 (74.00, 250.00) < 0.0001

1-Hydroxypyrene 108.60 (49.50, 218.50) 103.00 (49.50, 206.10) 118.00 (54.80, 240.00) < 0.0001

SSD, short sleep duration; PIR, family poverty income ratio; IQR, interquartile range.

cell stabilizers, leukotriene modifiers, inhaled corticosteroids. Besides, 
we  conducted a primary study using train datasets (2005–2010 
NHANES waves) for discovery of associations between urinary PAH 
metabolites with the prevalence of SSD and self-reported trouble 
sleeping, and used test datasets (2011–2016 NHANES waves) to 
replicate analysis.

The R software (version 4.1.3) was utilized for conducting all 
statistical analyses in the current study. The significance level for all 
statistical tests was set at two-tailed p < 0.05.

Results

General characteristics

This study focused on the link between urinary PAH metabolites 
and SSD. A total of 9,754 participants (represented 199.1 million 

non-institutionalized residents of United States) over 18 years of age 
were chosen for the current research, with 3,581 cases reporting SSD 
and 6,173 cases without SDD. The mean age was 45.71 ± 0.30 years, 
and females represented 50.34% of the sample. The majority of the 
participants were non-Hispanic white (42.86%), had at least high 
school education (51.15%), middle income (36.65%), and exhibited 
good, very good, or excellent general health status (77.64%). 
Participants with and without SSD differed significantly in terms of 
age, gender, ethnicity, education level, family PIR, and general health. 
Participants with SSD exhibited significantly higher concentrations of 
1-hydroxynapthalene, 1-hydroxyphenanthrene, 1-hydroxypyrene, 
2-hydroxynapthalene, 3-hydroxyfluorene, and 2-hydroxyfluorene 
compared to those without SSD (Table 1).

Additionally, the study focused on the association of urinary PAH 
metabolites with self-reported trouble sleeping. This study comprised 
9,777 participants (represented 199.5 million non-institutionalized 
residents of United States), with 2,322 cases of self-reported trouble 
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sleeping and 7,455 cases with no self-reported trouble sleeping. The 
mean age was 54.72 ± 0.30 years, and females accounted for 50.36%. 
Most of the subjects were non-Hispanic white (42.88%), had an 
education above high school (51.11%), middle income (36.61%), and 
presented good, very good, or excellent general health status (77.53%). 
Individuals with and without self-reported trouble sleeping differed 
considerably in terms of age, gender, ethnicity, educational attainment, 
family PIR, and general health. Participants with self-reported trouble 
sleeping exhibited significantly higher concentrations of 
1-hydroxynapthalene, 2-hydroxynapthalene, 3-hydroxyfluorene, 
2-hydroxyfluorene, 1-hydroxyphenanthrene, and 1-hydroxypyrene 
compared to those without self-reported trouble sleeping (Table 2). 

Moreover, the percentiles of the urinary PAHs in both creatinine 
adjusted and unadjusted in study about SSD and self-reported trouble 
sleeping were represented in Supplementary Tables S1, S2.

Measurements of PAH metabolites and 
their correlations

Pearson correlation findings revealed a close association of 
3-hydroxyfluorene with 2-hydroxyfluorene (r = 0.96), followed by 
2-hydroxyfluorene and 1-hydroxyphenanthrene with a correlation 
coefficient of 0.79 (Figure 2).

TABLE 2 Weighted characteristics of the study participants with and without self-reported trouble sleeping.

Variable Overall (n = 9,777)
No-trouble sleeping 

(n = 7,455)
Trouble sleeping 

(n = 2,322)
p-value

Age [years, mean (SD)] 45.72 (0.30) 44.50 (0.34) 49.22 (0.46) < 0.0001

Gender (%) <0.0001

Female 4,924 (50.36) 3,605 (49.28) 1,319 (57.51)

Male 4,853 (49.64) 3,850 (50.72) 1,003 (42.49)

Race/ethnicity (%) <0.0001

Mexican American 1,540 (15.75) 1,271 (9.42) 269 (5.19)

Non-Hispanic Black 2,121 (21.69) 1,665 (11.94) 456 (10.04)

Non-Hispanic White 4,192 (42.88) 2,966 (64.85) 1,226 (76.28)

Other Hispanic 907 (9.28) 719 (5.86) 188 (3.46)

Other Racer 1,017 (10.4) 834 (7.94) 183 (5.03)

Educational status (%) 0.02

Below high school 2,458 (25.14) 1933 (17.83) 525 (14.50)

High school 4,997 (51.11) 3,768 (59.53) 1,229 (61.50)

Above high school 2,322 (23.75) 1754 (22.64) 568 (24.00)

PIR (%) 0.02

≤1.3 3,240 (33.14) 2,424 (22.02) 816 (22.79)

1.3–3.5 3,579 (36.61) 2,793 (36.28) 786 (32.78)

≥3.5 2,958 (30.25) 2,238 (41.70) 720 (44.44)

General Health (%) < 0.0001

Good/Very good/Excellent 7,580 (77.53) 6,049 (86.55) 1,531 (74.83)

Fair/Poor 2,197 (22.47) 1,406 (13.45) 791 (25.17)

Country of birth (%) < 0.0001

Born in 50 US states or Washington, DC 7,205 (73.71) 5,281 (81.14) 1924 (90.20)

Others 2,570 (26.29) 2,172 (18.86) 398 (9.80)

Citizenship status (%) < 0.0001

Citizen by birth or naturalization 8,435 (86.38) 6,257 (89.58) 2,178 (96.36)

Not a citizen of the US 1,330 (13.62) 1,187 (10.42) 143 (3.64)

Exposures [μg/L, median (IQR)]

1-Hydroxynapthalene 1666.50 (690.00, 5986.00) 1600.00 (665.20, 5311.20) 1976.90 (764.00, 7760.70) < 0.0001

2-Hydroxynapthalene 4135.0 0 (1805.00, 9750.00) 3996.00 (1730.00, 9463.00) 4734.00 (1970.00, 10657.00) 0.005

3-Hydroxyfluorene 81.20 (38.00, 247.70) 80.30 (38.00, 223.00) 83.50 (38.40, 340.00) 0.02

2-Hydroxyfluorene 221.20 (104.10, 561.00) 218.50 (104.00, 509.60) 230.50 (106.00, 675.80) 0.01

1-Hydroxyphenanthrene 127.00 (68.00, 233.00) 126.00 (67.00, 228.00) 129.00 (69.00, 245.00) 0.08

1-Hydroxypyrene 108.80 (49.50, 218.50) 108.00 (49.50, 213.00) 110.00 (49.50, 233.30) 0.38
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Association between single PAH 
metabolites with sleep health

Table 2 presents the outcomes of weighted generalized logistic 
regression models adjusting for various covariates to evaluate the 

association of single PAH metabolites (continuous) with SSD 
prevalence. For the crude model, the current investigation observed 
substantial correlations among all PAH metabolites except 
1-hydroxyphenanthrene and SSD. Following adjustment for age and 
gender, 1-hydroxyphenanthrene was also significantly linked to the 
prevalence of SSD (p = 0.02). After further adjusting for race/
ethnicity, educational status, family PIR, and general health, 
1-hydroxynapthalene (OR: 1.08; 95% CI: 1.04, 1.11, p < 0.0001), 
2-hydroxynapthalene (OR: 1.14; 95% CI: 1.06, 1.21, p < 0.001), 
3-hydroxyfluorene (OR: 1.11; 95% CI: 1.06, 1.17, p < 0.0001), 
2-hydroxyfluorene (OR: 1.16; 95% CI: 1.10, 1.23, p < 0.0001), 
1-hydroxyphenanthrene (OR: 1.14; 95% CI: 1.06, 1.24, p < 0.001), 
and 1-hydroxyphenanthrene (OR: 1.08; 95% CI: 1.01, 1.16, p < 0.001) 
demonstrated positive associations with SSD prevalence (Table 3). 
When the corresponding PAH metabolites were further divided into 
quantile groups, and the lowest quantile was set as a reference, 
significant positive associations were observed between 
1-hydroxynapthalene (OR: 1.33; 95% CI: 1.16, 1.52, p for trend 
<0.001), 2-hydroxynapthalene (OR: 1.38; 95% CI: 1.14, 1.65, p for 
trend = 0.002), 3-hydroxyfluorene (OR: 1.24; 95% CI: 1.05, 1.47, p 
for trend = 0.028), 2-hydroxyfluorene (OR: 1.41; 95% CI: 1.21, 1.16, 
p for trend <0.001), 1-hydroxyphenanthrene (OR: 1.37; 95% CI: 
1.17, 1.60, p for trend <0.0001), and 1-hydroxyphenanthrene (OR: 
1.24; 95% CI: 1.06, 1.47, p for trend = 0.011) in the highest quartile 
with the prevalence of SSD (Table  4). RCS curves were used to 
model the connection between log-transformed concentrations of 
PAH metabolites and SSD and to detect any potential nonlinearity. 
The results confirmed the non-linear associations between 
1-hydroxynapthalene (p for nonlinear <0.001), 2-hydroxynapthalene 
(p for nonlinear = 0.002), 3-hydroxyfluorene (p for nonlinear 

FIGURE 2

Pearson correlations between log-transformed concentrations of six 
urinary creatinine-corrected PAH metabolites. Hydroxynapthalene1, 
1-Hydroxynapthalene; Hydroxynapthalene2, 2-Hydroxynapthalene; 
Hydroxyfluorene3, 3-Hydroxyfluorene, Hydroxyfluorene2, 
2-Hydroxyfluorene; Hydroxyphenanthrene1, 
1-Hydroxyphenanthrene; Hydroxypyrene1, 1-Hydroxypyrene.

TABLE 3 Comparison between different models of the weighted relationship between log-transformed urinary PAH metabolites and prevalence of 
short sleep duration.

Chemicals (μg/mg 
creatinine)

Crude model 
OR (95%CI) p-value

Model I OR 
(95%CI) p-value

Model II OR 
(95%CI) p-value

1-Hydroxynapthalene 1.07 (1.04, 1.11) <0.0001 1.08 (1.05, 1.12) <0.0001 1.08 (1.04, 1.11) <0.0001

2-Hydroxynapthalene 1.15 (1.08, 1.21) <0.0001 1.16 (1.10, 1.23) <0.0001 1.14 (1.06, 1.21) <0.001

3-Hydroxyfluorene 1.14 (1.08, 1.19) <0.0001 1.13 (1.08, 1.19) <0.0001 1.11 (1.06, 1.17) <0.0001

2-Hydroxyfluorene 1.18 (1.11, 1.24) <0.0001 1.18 (1.11, 1.24) <0.0001 1.16 (1.10, 1.23) <0.0001

1-Hydroxyphenanthrene 1.07 (0.99, 1.15) 0.08 1.09 (1.01, 1.18) 0.02 1.14 (1.06, 1.24) <0.001

1-Hydroxypyrene 1.07 (1.00, 1.14) 0.03 1.08 (1.01, 1.15) 0.02 1.08 (1.01, 1.16) 0.02

Crude model: no adjustment; Model I: only adjusted for age and gender; Model II: adjusted for age, gender, race/ethnicity, educational status, family poverty income ratio, and general health; 
OR, odds ratio; CI, confidence interval. The bold indicates p - value less than 0.05.

TABLE 4 Comparison between different models of the weighted relationship between log-transformed urinary PAH metabolites and prevalence of 
self-reported trouble sleeping.

Chemicals (μg/mg 
creatinine)

Crude model 
OR (95%CI)

p-value
Model I OR 

(95%CI)
p-value

Model II OR 
(95%CI)

p-value

1-Hydroxynapthalene 1.17 (1.13, 1.21) <0.0001 1.15 (1.11, 1.18) <0.0001 1.12 (1.08, 1.16) <0.0001

2-Hydroxynapthalene 1.19 (1.11, 1.27) <0.0001 1.20 (1.13, 1.28) <0.0001 1.20 (1.12, 1.28) <0.001

3-Hydroxyfluorene 1.12 (1.08, 1.17) <0.0001 1.15 (1.11, 1.20) <0.0001 1.12 (1.07, 1.17) <0.0001

2-Hydroxyfluorene 1.17 (1.11, 1.22) <0.0001 1.19 (1.13, 1.25) <0.0001 1.14 (1.08, 1.21) <0.0001

1-Hydroxyphenanthrene 1.21 (1.13, 1.30) <0.0001 1.16 (1.08, 1.24) <0.0001 1.09 (1.02, 1.18) 0.02

1-Hydroxypyrene 1.12 (1.05, 1.20) 0.001 1.16 (1.08, 1.25) <0.0001 1.13 (1.04, 1.22) 0.003

Crude model: no adjustment; Model I: only adjusted for age and gender; Model II: adjusted for age, gender, race/ethnicity, educational status, family poverty income ratio, and general health; 
OR: odds ratio; CI, confidence interval. The bold indicates p - value less than 0.05.
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<0.001), 2-hydroxyfluorene (p for nonlinear = 0.009), and 
1-hydroxyphenanthrene (p for nonlinear <0.001) with the 
prevalence of SSD (Figure 3).

Table  5 depicts the findings of weighted generalized logistic 
regression models adjusting for various covariates to evaluate the 
association of a single PAH metabolite (continuous) with the 
prevalence of self-reported trouble sleeping. Following the adjustment 
for all covariates, 1-hydroxynapthalene (OR: 1.12; 95% CI: 1.08, 1.16, 
p < 0.0001), 2-hydroxynapthalene (OR: 1.20; 95% CI: 1.12, 1.28, 
p < 0.001), 3-hydroxyfluorene (OR: 1.12; 95% CI: 1.07, 1.17, 
p < 0.0001), 2-hydroxyfluorene (OR: 1.14; 95% CI: 1.08, 1.21, 
p < 0.0001), 1-hydroxyphenanthrene (OR: 1.09; 95% CI: 1.02, 1.18, 
p = 0.02), and 1-hydroxyphenanthrene (OR: 1.13; 95% CI: 1.04, 1.22, 
p = 0.003) exhibited positive associations with the prevalence of self-
reported trouble sleeping (Table  5). After further classifying 
corresponding PAH metabolites into quantile groups and using the 
lowest quantile as a reference, significant positive associations were 
observed between 1-hydroxynapthalene (OR: 1.44; 95% CI: 1.19, 
1.73, p for trend <0.0001), 2-hydroxynapthalene (OR: 1.50; 95% CI: 
1.24, 1.81, p for trend <0.0001), 3-hydroxyfluorene (OR: 1.34; 95% CI: 
1.12, 1.60, p for trend =0.001), 2-hydroxyfluorene (OR: 1.32; 95% CI: 
1.13, 1.54, p for trend <0.001), and 1-hydroxyphenanthrene (OR: 
1.36; 95% CI: 1.12, 1.65, p for trend =0.012) in the highest quartile 
with the prevalence of self-reported trouble sleeping (Table  6).  
RCS curves confirmed the non-linear associations between 
1-hydroxynapthalene (p for nonlinear =0.012), 3-hydroxyfluorene  
(p for nonlinear =0.007), and 2-hydroxyfluorene (p for nonlinear 
=0.007) with the prevalence of self-reported trouble sleeping 
(Supplementary Figure S2).

Sensitivity analysis

After excluding 3,792 participants with hypertension, 179 
participants without sufficient data to diagnose diabetes mellitus, 460 
participants with diabetes mellitus, 532 participants without sufficient 
data to diagnose cardiovascular disease, 142 participants with 
cardiovascular disease, 107 participants with COPD, 4542 participants 
without chronic conditions including (hypertension, cardiovascular 
disease, diabetes mellitus, and chronic obstructive pulmonary disease) 
were enrolled in this sensitivity analysis to explore the association 
between association between urinary PAH metabolites with prevalence 
of SSD. All log-transformed PAH metabolites are positively correlated 
with SSD using weighted logistic regression model analysis with 
confounding variables (Supplementary Table S3). After excluding 
(3,804 participants with hypertension, 180 participants without 
sufficient data to diagnose diabetes mellitus, 462 participants with 
diabetes mellitus), 532 participants without sufficient data to diagnose 
cardiovascular disease, 143 participants with cardiovascular disease, 107 
participants with COPD, 4549 participants without chronic conditions 
including (hypertension, cardiovascular disease, diabetes mellitus, and 
chronic obstructive pulmonary disease) were enrolled in this sensitivity 
analysis to explore the association between association between urinary 
PAH metabolites with prevalence of self-reported trouble sleeping. All 
log-transformed PAH metabolites are also positively correlated with 
self-reported trouble sleeping using weighted logistic regression model 
analysis with confounding variables (Supplementary Table S4). After 
cutting the enrolled participants as test and train datasets, the individual 
associations between prevalence of SSD with concentrations of urinary 
1-Hydroxynapthalene, 2-Hydroxynapthalene, 3-Hydroxyfluorene, and 

TABLE 5 Association between quartiles of single PAH metabolite and prevalence of short sleep duration.

Chemicals (μg/mg 
creatinine)

Q1 OR (95%CI) Q2 OR (95%CI) Q3 OR (95%CI) Q4 OR (95%CI) p for trend

1-Hydroxynapthalene <0.001

SDD/non-SSD 911/1530 841/1596 841/1597 988/1450

Model 1.00 (reference) 0.92 (0.77, 1.10) 0.88 (0.75, 1.03) 1.33 (1.16, 1.52)

2-Hydroxynapthalene 0.002

SDD/non-SSD 872/1566 878/1559 870/1571 961/1477

Model 1.00 (reference) 1.07 (0.89, 1.28) 1.01 (0.86, 1.20) 1.38 (1.14, 1.65)

3-Hydroxyfluorene 0.028

SDD/non-SSD 873/1564 841/1599 854/1584 1013/1426

Model 1.00 (reference) 0.89 (0.75, 1.06) 0.87 (0.73, 1.04) 1.24 (1.05, 1.47)

2-Hydroxyfluorene <0.001

SDD/non-SSD 856/1582 841/1598 868/1570 1016/1423

Model 1.00 (reference) 0.99 (0.86, 1.13) 1.00 (0.84, 1.19) 1.41 (1.21, 1.66)

1-Hydroxyphenanthrene <0.0001

SDD/non-SSD 928/1511 817/1616 875/1568 961/6163

Model 1.00 (reference) 0.98 (0.85, 1.14) 1.08 (0.93, 1.24) 1.37 (1.17, 1.60)

1-Hydroxypyrene 0.011

SDD/non-SSD 913/1525 877/1526 821/1619 970/1467

Model 1.00 (reference) 0.99 (0.83, 1.18) 0.97 (0.82, 1.15) 1.24 (1.06, 1.47)

Model adjusted for age, gender, race/ethnicity, educational status, family poverty income ratio, and general health. 
Q1, Q2, Q3, and Q4 represented the first, the second, the third, and the fourth quartile of log-transformed urinary PAH metabolites. 
SSD, short sleep duration; OR, odds ratio; CI, confidence interval. The bold indicates p - value less than 0.05.
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TABLE 6 Association between quartiles of single PAH metabolite and prevalence of self-reported trouble sleeping.

Chemicals (μg/mg 
creatinine)

Q1 OR (95%CI) Q2 OR (95%CI) Q3 OR (95%CI) Q4 OR (95%CI) p for trend

1-Hydroxynapthalene <0.0001

STS/non-STS 491/1954 521/1920 571/1879 739/1702

Model 1.00 (reference) 1.03 (0.84, 1.26) 1.13 (0.91, 1.39) 1.44 (1.19, 1.73)

2-Hydroxynapthalene <0.0001

STS/non-STS 528/1915 536/1905 560/1889 698/1746

Model 1.00 (reference) 1.09 (0.90, 1.32) 1.24 (1.03, 1.50) 1.50 (1.24, 1.81)

3-Hydroxyfluorene 0.001

STS/non-STS 554/1892 510/1934 527/1915 731/1714

Model 1.00 (reference) 0.90 (0.74, 1.10) 0.96 (0.79, 1.16) 1.34 (1.12, 1.60)

2-Hydroxyfluorene <0.001

STS/non-STS 524/1901 513/1933 529/1914 738/1707

Model 1.00 (reference) 0.90 (0.74, 1.09) 0.95 (0.80, 1.13) 1.32 (1.13, 1.54)

1-Hydroxyphenanthrene 0.041

STS/non-STS 488/1954 549/1896 593/1851 692/1754

Model 1.00 (reference) 1.00 (0.82, 1.22) 1.05 (0.88, 1.26) 1.18 (0.98, 1.42)

1-Hydroxypyrene 0.012

STS/non-STS 539/1904 555/1891 538/1905 690/1755

Model 1.00 (reference) 1.16 (0.98, 1.39) 1.04 (0.86, 1.26) 1.36 (1.12, 1.65)

Self-reported trouble sleeping, STS. 
Model adjusted for age, gender, race/ethnicity, educational status, family poverty income ratio, and general health. 
Q1, Q2, Q3, and Q4 represented the first, the second, the third, and the fourth quartile of log-transformed urinary PAH metabolites. 
SSD, short sleep duration; OR, odds ratio; CI, confidence interval.

FIGURE 3

Cubic splines for the associations of urinary PAH metabolites with the prevalence of short sleep duration. Model adjusted for age, gender, race/
ethnicity, educational status, family poverty income ratio, and general health. (A) 1-Hydroxynapthalene; (B) 2-Hydroxynapthalene; 
(C) 3-Hydroxyfluorene; (D) 2-Hydroxyfluorene; (E) 1-Hydroxyphenanthrene; (F) 1-Hydroxypyrene.
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2-Hydroxyfluorene in 2005–2010 NHANES waves were also replicated 
in 2011–2016 NHANES waves (Supplementary Table S5). Besides, the 
individual associations between prevalence of self-reported trouble 
sleeping with concentrations of urinary 1-Hydroxynapthalene, 
2-Hydroxynapthalene, 3-Hydroxyfluorene, and 2-Hydroxyfluorene in 
2005–2010 NHANES waves were also replicated in 2011–2016 
NHANES waves (Supplementary Table S6).

Association between multiple PAH 
metabolites with sleep health

The WQS was employed to derive the combined effect of 
metabolites on SSD prevalence and self-reported trouble sleeping 
(Figure  3). The results revealed that mixed exposure to PAH 
metabolites had a significant positive link to the SSD prevalence (OR: 
1.019; 95% CI: 1.006, 1.032, p = 0.004), with the 3-hydroxyfluorene 
having the highest weight (weight = 0.627) (Figure 4A). In addition, 
WQS results revealed that increased mixed exposure of PAH 
metabolites was linked to the higher prevalence of self-reported 
trouble sleeping (OR: 1.031; 95% CI: 1.018, 1.044, p < 0.001), and the 
1-hydroxypyrene had the highest weights (weight = 0.382) (Figure 4B).

Discussion

The current research is thought to determine the link between 
urinary PAH levels and the prevalence of sleep health. The study 
observed that all single and multiple PAH metabolites were positively 
linked to the prevalence of SSD and self-reported trouble sleeping.

A previous study conducted using data from NHANES 2005–2006 
discovered significant associations between higher urine levels  
of polyaromatic hydrocarbons, including 2-hydroxyfluorene, 
9-hydroxyfluorene, 1-hydroxypyrene, 2-hydroxyphenanthrene and leg 
cramps during sleep. Additionally, urinary 2-hydroxyfluorene, 
3-hydroxyfluorene, and 1-hydroxypyrene were observed to have a 

substantial link to leg jerks during sleep (54). On the contrary, the 
current study focused on sleep health concerning self-reported trouble 
sleeping and SSD. Moreover, it involved a relatively large sample size 
obtained from the NHANES database from 2005 to 2016. Besides, 
Zhang et al. explored the relationship between polycyclic aromatic 
hydrocarbons exposure and sleep quality in workers from a coking 
plant. A total of 632 employed workers in the coking plant were set as 
the exposed group, and 477 employed workers in the water-pump plant 
as the control group. They found the concentration of 12 polycyclic 
aromatic hydrocarbons in the peripheral blood of the exposure group 
was significantly higher than that of the control group. Besides, the 
detection rate of sleep disorder in the exposure group was higher than 
that in the control group (55). Unlike the above study, our study 
focused the linear and non-linear association between urinary PAHs 
with SSD and self-reported trouble sleeping in the general US. adults.

Numerous factors can impact sleep, including sleep environment, 
stress and anxiety, diet and exercise, and genetics (56). In addition to 
these factors, it has been reported that air pollution and exposure to 
certain chemicals can significantly affect sleep patterns and cause 
sleep disorders. For instance, higher annual NO2 and PM2.5 
exposure levels have been linked to greater odds of sleep apnea (57). 
According to a population-based study carried out in the urban areas 
of Northern Taiwan, PM2.5 has been confirmed to be associated with 
sleep-disordered breathing (58). Notably, children who are exposed 
to traditional biomass fuel stoves display sleep apnea-related 
symptoms more frequently (59). Furthermore, exposure to specific 
chemicals has emerged as a topic of concern for sleep health. The 
central nervous system has been shown to be  impacted by heavy 
metal exposure, including lead, mercury, antimony, and cadmium, 
which can also disturb the sleep–wake cycle. Higher levels of these 
metals in human bodies make individuals more susceptible to sleep 
disorders (17, 54, 60, 61). Additionally, exposure to certain pesticides 
has been associated with difficulty falling asleep, frequent night 
awakenings, and decreased overall sleep quality (19, 62–64). This 
study focused on the correlation between urinary PAH metabolites 
with self-reported sleep problems and SSD.

FIGURE 4

The weights of each urinary PAH metabolite in positive WQS model regression index for the prevalence of (A) short sleep duration; (B) self-reported 
trouble sleeping. Model adjusted for age, gender, race/ethnicity, educational status, family poverty income ratio, and general health. 
Hydroxynapthalene1, 1-Hydroxynapthalene; Hydroxynapthalene2, 2-Hydroxynapthalene; Hydroxyfluorene3, 3-Hydroxyfluorene, Hydroxyfluorene2, 
2-Hydroxyfluorene; Hydroxyphenanthrene1, 1-Hydroxyphenanthrene; Hydroxypyrene1, 1-Hydroxypyrene.
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The underlying mechanisms behind the inverse relationship 
between urinary PAH metabolites and sleep health need to 
be  investigated further. First, exposure to PAH is associated with 
higher levels of tumor necrosis factor-alpha and interleukin-1 beta 
(65–67). It has been observed that these two cytokines indirectly and 
directly impact the regulation of sleep architecture and duration by 
acting on neurons and stimulating the activity of molecules including 
gonadotropin-releasing hormone receptor, adenosine, and 
prostaglandin D2 (68, 69). Second, exposure to PAH is linked to 
elevated levels of nitric oxide (NO) and NO production (67, 70, 71). 
NO has been reported to play a role in the homeostatic regulation of 
REM sleep and, to a lesser extent, slow-wave sleep (72). Third, being 
exposed to PAHs has been linked to oxidative stress (73–75), which 
can disrupt sleep homeostasis through several mechanisms including 
the oxidative inactivation of cGMP which is responsible for mediating 
the influence of NO, inactivating the key proteins involved in sleep 
regulation, the modulation of ATP exocytosis from astrocytes, and 
NMDA-mediated neurotransmission (68, 76, 77). However, these 
mechanisms need to be  confirmed further using in vitro and in 
vivo experiments.

Furthermore, the current research exhibited multiple 
strengths. First, a considerably large sample size was used in this 
investigation, contributing to the consistency of the results. 
Second, this was the first investigation to determine the link 
between PAH exposure with SSD and self-reported trouble 
sleeping. Last, several methods, including survey-weighted 
generalized logistic regressions, RCS curves, and WQS regression 
models, were employed for exploring the individual and overall 
impacts of PAH exposure on sleep health. This study also had 
some limitations. First, the data on urinary PAH metabolites were 
single measurements, which may not reflect the effects of 
participants’ long-term exposure. Second, self-reported trouble 
sleeping was not accurately measured by instruments or scales, 
which might have caused some errors. Third, although many 
potential confounders were enrolled, there remained residual 
confounders. Fourth, although the associations between urinary 
concentrations of PAH metabolites with the prevalence of SSD and 
self-reported trouble sleeping were detected in train datasets 
(2005–2010 NHANES waves) and also replicated in test datasets 
(2011–2016 NHANES waves), there still existed some bias caused 
by multiple NHANES survey rounds. Last, it was difficult to 
determine the directionality of associations for the nature of cross-
sectional studies. However, the study did not intend to investigate 
the influence of sleep health on urinary PAH metabolites.

Conclusion

Urinary concentrations of PAH metabolites exhibited a close 
association with the prevalence of SSD and self-reported trouble 
sleeping in US adults. More emphasis should be  placed on the 
importance of environmental effects on sleep health.
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