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Introduction: The outbreak of COVID-19 in Europe began in early 2020, leading to
the emergence of several waves of infection with varying timings across European
countries. The largest wave of infection occurred in August-September. Croatia,
known for being a hotspot of tourism in theMediterranean region, raised concerns
that it might have played a role in incubating the pandemic during the summer of
2020.

Methods: To investigate this possibility, we conducted a data-driven study to
examine the potential influence of passenger mobility to and within Croatia,
utilizing various modes of transportation. To achieve this, we integrated
observational datasets into the “epidemic Renormalization Group” modeling
framework.

Results: By comparing the models with epidemiological data, we found that in
the case of Croatia in 2020, neither maritime nor train transportation played a
prominent role in propagating the infection. Instead, our analysis highlighted the
leading role of both road and airborne mobility in the transmission of the virus.

Discussion: The proposed framework serves to test hypotheses concerning the
causation of infectious waves, o�ering the capacity to rule out unrelated factors
from consideration.

KEYWORDS

epidemiology, mobility, COVID-19, di�usion, data analysis

1. Introduction

With the growth of human population and its impact on the environment, our societies
are becoming increasingly vulnerable to new diseases, especially from viral infections of
zoonotic origin. At present, just 3% of the land ecosystems are untouched by human
activities (1). Furthermore, human-induced climate change is causing relocation of species
and rapid migration of humans, hence increasing cross-species viral transmission risks
(2). The indirect impact caused by the thawing of the Arctic permafrost also poses the
risk of releasing past viral charges (3). In addition to this, the economic globalization
has increased the mobility of both goods and people across countries and continents,
hence facilitating the global spread of disease carriers. All these factors contribute to the
transmission of viral pathogens from animal species to humans, and their rapid diffusion
within the world population. The COVID-19 pandemic (4, 5) showcased this process (6).
It also dramatically showed the unpreparedness of human society to face the threat of a
pandemic (7) and its inability to efficiently cope with the effects, evident in the emergence of
multiple epidemiological waves (8).

Hence, it has become of paramount importance to define and introduce protocols and
preparedness measures that help governments, private companies, and individual citizens
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to face a new viral pandemic in its early phases. In this
context, human mobility plays a crucial role in determining
the transmission of the pathogens, highlighting the importance
of restriction measures at the beginning of a pandemic (9–13).
Examples include lockdowns,mobility limitations within countries,
and border closures. Travel between countries and geographical
regions, in fact, may have played a crucial role in the diffusion
of epidemic waves within and among continents, e.g., causing
multiple waves in Europe right after the lockdowns were lifted (14,
15). This effect was not widely expected in the scientific community,
as diverse scenarios for the short and long term evolution of
the pandemic were on the table (16). Also, it was found that
diffusion of the infection within a community was mainly driven
by specific superspreader locations (17), where more intense social
interactions occur.

The fact that people mobility plays a crucial role in the
diffusion of an infectious disease is widely accepted in the scientific
community, and it has led to the development of mobility models,
such as GLEAM (18). In the very early stages, when COVID was
not yet labeled as a pandemic, the danger for various countries
presented by the new respiratory disease observed in Wuhan
was first evaluated using mobility models (19). Similarly, people
mobility is at the root of the early diffusion in China (9) and
other countries (6, 20, 21). Remarkably, diffusion models based
on people mobility have also been employed at the microscopic
level, to understand the infection spread in a closed room (22–25).
The role of mobility has also been recognized in regional instances
and for the impact on isolated communities (26). However, it
remains not clear what is the specific role played by different
transportation vectors. While airplanes could explain the diffusion
at long distance, among far away countries and continents, at
a more local regional level many vectors may play a significant
role: in particular, terrestrial transportation via cars and trains,
and maritime passenger traffic. The main objective of this work is
to establish a methodology to quantitatively measure the impact
of different passenger vectors on the early diffusion of infections,
using COVID-19 as a case study. Answering this research question
can help guiding decision makers to determine the first responses
to a new pandemic, hence improving the preparedness of the
whole society.

As a case study, we considered Croatia, with a special focus
on the impact of maritime transportation. It has been shown that
maritime transportation has been crucially affected by the COVID-
19 pandemic (27), with an impact also on its greenhouse gas
emission (28). The initial cases in Croatia were reported in March-
April 2020. Later on, both a second and third wave of infections
occurred between June and September 2020. As shown in Figure 1,
this coincided with the reopening of the sea-based touristic links.
Hence, it is a natural question to ask if the reopening of maritime
routes can be traced as the main cause of the restart of the infection
exponential increase. Maritime passenger transportation is crucial
for Croatia due to its long and archipelagic coast with more than
one thousand islands on the Adriatic Sea. Regular ferry traffic
between Croatia and Italy is extremely significant and it takes place
via the ports of Split, Zadar, and Dubrovnik (29), connecting them
with the Italian ports of Ancona and Bari. Many tourists reach the
Croatian coasts by this means. For this reason, ferries may have
played the role of a superspreader, triggering the pandemic wave

that hit Europe in the summer of 2020. It is worth noting that the
situation in Croatia in June-August of 2020 is of particular interest,
as it showed an earlier increase of infections after the lockdowns
were lifted, as compared to other European countries (15). We
remark that passenger mobility plays a crucial role in the diffusion
of infections in the early phases of a pandemic, while at later stages
variants due to genetic mutations start becoming the predominant
factor in the emergence of new epidemic waves (30). Knowingmore
about the scenario at stake during this wave could help improve
future measures to reduce efficiently the seed of the spreading and
avoid costly measures with lower impact.

To reach the main objective of this study, we performed a
data-driven analysis that quantifies the impact on the diffusion
of COVID-19 of both terrestrial and maritime passenger
transportation between Croatia and its neighboring countries.
The role, if any, of maritime transportation is not easily assessed
ex-ante. On the one hand, the amount of passengers carried by
sea was smaller than that of other modes of transportation. The
data shows that maritime passengers have been <1% of the car
passengers entering and leaving Croatia in 2020. On the other
hand, ferry passengers were transported in limited volumes for
relatively long times, which might have favored the diffusion of
the virus (31). This is also confirmed by more general studies
in closed rooms (22–25), as often the case on board. The latter
hypothesis would also be suggested by the timing of the infection
diffusion across summer 2020, coinciding with the reopening of
ferry connections across the Adriatic.

The datasets used in this study included the passenger flow
to Croatia via waterborne, airborne, and terrestrial transportation
modes. To connect mobility to the epidemiological data, we
employed a novel approach to infectious disease spreading, the
epidemiological Renormalization Group framework (eRG) (32),
which is inspired by theoretical high energy physics (33, 34). The
eRG offers a computationally inexpensive characterization of a
single wave diffusion in terms of just two constant parameters.
Once extended to a network of semi-isolated populations (14), it
will enable to study the spread of the infectious disease among
regions/countries. This method was pivotal in predicting the 2020
second wave in Europe (15). The main advantage of the eRG
approach is the ability to characterize a single wave in an isolated
region in all its phases, from the initial exponential increase to the
peak and reduction of the new infections, in terms of a simple
logistic function. It is, however, not well-suited for short-term
forecasting (35), for which more traditional compartmental models
are preferable (36). It is noteworthy that the eRG solutions are
related to the simplest compartmental model, based on Susceptible-
Infectious-Removed (SIR), with time-dependent parameters (37).
For our purpose, the eRG offers a reliable handle to quantify the
impact of mobility on the timing of the peak of the third wave in
different regions of Croatia.

Other methods were previously employed to study spreading
of infection diseases through interaction between different
geographical regions. It is worth mentioning the different methods
among which lattice simulation using SIR models with space
extension and interaction using Bayesian maximum entropy theory
(38), lattice spatio-temporal modeling framework integrating
SIR and log-Gaussian Cox process (LGCP) process (39), graph
modelization where policies to curb the spreading are tested by
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removing individuals (40) or agent-based simulations of aerosol
and pedestrian trails to track the spreading at the level of an airport
(41). The eRG method is more economical as it only considers the
total number of infections, and it has been used in conjunction
with airborne traffic to study the early diffusion of COVID-19 in
the United States (42).

The remainder of this paper will outline the methodology,
in Section 2, and the results, in Section 3. Conclusions and
recommendations will be described in Section 4.

2. Methodology

To study the diffusion of the COVID-19 infections in
Croatia, we combined data describing people mobility via various
transportation modes with an epidemiological dataset. The latter
consists of the daily number of newly infected individuals that were
tested positive, during a period of time, in each county (43) of
Croatia. The mobility data comprises the number of individuals
entering Croatia via sea, land or air, provided by various sources
and described in detail in Table 1. The correlation between the
two datasets was studied within the eRG framework, consisting of
a set of coupled differential equations (14). The main advantage
of the mathematical model provided by the eRG is to allow
characterization of epidemiological waves in terms of a limited
number of parameters. The model also includes the diffusion
of an infectious disease within connected regions. Hence, the
position of the peaks, i.e., the timing of the local maxima of new
infections in different regions, can be predicted as a function
of the mobility data. Comparing the predictions of the model
with the actual data allows us to determine the role of various
transportation modes in facilitating the diffusion of COVID-19.
This mechanism is expected to be the dominant mechanism of
diffusion at the beginning of the pandemic. In Croatia, the first
epidemiological wave, characterized by a temporary exponential
increase of the cases, took place in March through April 2020.
After a period when the rate of infections slowed down due to
the lockdowns, a new increase was detected starting toward the
end of June and lasting through the end of July, followed by
another increase in August and September. We identify these
two episodes as the “second” and “third waves,” respectively
(see Figure 1).

The rest of this section provides a detailed presentation of the
datasets used for this research in section 2.1, the procedure for
a geographical aggregation of the data, outlined in section 2.2,
and the application of the eRG framework to this specific data in
section 2.3.

2.1. Datasets

The following datasets for 2020 (see summary in Table 1) were
used for the numerical analyses:

1) Maritime transportation data was obtained from theCroatian
Integrated Maritime Information System (CIMIS). The dataset,
provided by the GUTTA partner “Ministarstvo Mora,
Prometa i Infrastrukture” (MMPI—Ministry of Maritime

Affairs, Transport, and Infrastructure of Croatia), contains
information for each Croatia seaport regarding departures
and arrival times of ferries along with the number of both
embarking and disembarking passengers. We included data
from car-passenger ferry routes, along the routes Ancona-
Zadar, Ancona-Split, and Bari-Dubrovnik.

2) Car traffic data was collected by the University of Rijeka
(UNIRI) by contacting the limited liability company
“Hrvatske Ceste” (44), which has a function of management,
construction and maintenance of state roads. This dataset
provides the number of travelers crossing each Croatian
border control checkpoint per year. Hence, we reconstructed
the average flow between the neighboring countries (Slovenia,
Hungary, Serbia, Bosnia-Herzegovina, Montenegro) and
the considered Croatian regions, both entering and leaving
the country by road. The data also contains the number
of travelers passing various checkpoints along the major
Croatian roads inside the country, however this information
was discarded as it did not allow to reliably reconstruct people
mobility within Croatia.

3) Railway traffic data was extracted from the “Independent
Regulators’ Group” IRG-rail 2021 report (45), provided by
MMPI and from HŽ Infrastruktura. The latter organization
is responsible for the railway system in Croatia. The 2021
report also outlines the impact of the COVID-19 crisis on
the network during the first half of 2020. Data of network
topology, passenger flows, and operational conditions was
taken from the report. The railway traffic was recorded on an
annual basis.

4) Air traffic data was procured by the MMPI from the
Eurocontrol Air Traffic Directorate in Lyon, France. The
dataset consisted of the number of travelers per month per
airport in Croatia for 2020.

5) The COVID-19 epidemiological data was extracted from
an open-source Croatian public resource, “koronavirus.hr”
(46). The dataset includes the cumulative total number of
infections and the number of daily new infected individuals
for each Croatian county. A new infection is counted for each
individual that reported a new positive test. We extracted the
data from the 21st of March, 2020, to the 18th of October,
2021, corresponding to 575 days in total. The raw data was pre-
processed to smooth daily fluctuations by applying a moving
7-day averaging procedure.

We offer a visualization of the mobility data in Figure 2,
subdivided according to the regions of Croatia (“Pannonia,”
“Adriatic,” “Northern,” “Zagreb”) we define in the next section.
In particular, in Figure 2B we show the average number of daily
passengers entering each region from abroad, plotted as stacked
histograms in log scale. This proves that the dominant flow is due
to cars, followed—one order of magnitude below—by the airborne
traffic. The only exception is Zagreb, which is an enclosed region,
hence its only direct connection with other countries is through
airborne transport. The maritime passenger flow is only relevant
for the Adriatic region, where it only constitutes roughly 1% of the
total. Finally, Figure 2C shows a subdivision of the car passengers
by region, as shown in the inner circle, and by neighboring country,
as shown in the outer ring. Note that the angle of each wedge is
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FIGURE 1

COVID-19 new cases (gray line) in Croatia between June and September, 2020, shown as weekly averaged data. As a comparison, we report the
number of maritime passengers arriving or departing from Croatian ports in the same period.

TABLE 1 Description of mobility and epidemiology datasets used in this work.

Vehicles Name Provider Resolution No. of datapoints

Time Space

Maritime Ferries (Ro-Pax) CIMIS MMPI Daily By port 1,360

Terrestrial
Cars Highway data UNIRI Summer Borders 108

Trains Railway data UNIRI Annual Borders 14

Airborne Planes Air traffic data MMPI Monthly Airports 21

Epidemiology − New cases MMPI Daily County 575

For each of the five datasets, the table summarizes the data provider (being the Ministry of maritime affairs, transport, and infrastructure of Croatia—MMPI—and the University of Rijeka—

UNIRI) and the spatial/temporal resolution of the datapoints. In the case of summer and annual resolution, only one point per geographical unit is provided. For terrestrial data, information is

provided for every entry point on the external borders of the country. The last column indicate the number of datapoints used in the study, comprising of both temporal and spatial units. More

details are provided in Section 2.1.

proportional to the number of daily passengers. The inner circle
visualizes the proportion of the total passengers entering Croatia
from the five neighboring countries, divided among the three
relevant Croatian regions (Pannonia, Northern, and Adriatic). The
ring shows the proportion of such passengers from each bordering
country, highlighting the proportional distribution of passengers
from Slovenia to Northern and Adriatic (no significant flow to
Pannonia is observed in the data), from Hungary to Northern and
Pannonia, and finally from Bosnia-Herzegovina to Pannonia and
Adriatic, with addition to Serbia leading only to Pannonia and
Montenegro only to Adriatic.

2.2. NUTS-2 regions and how to deal with
Zagreb

Croatia is a diverse country in terms of geography, population
density, and demography. It consists of an elongated coastal region

of great touristic interest, and an internal region where the capital
city Zagreb is located. Furthermore, it borders with Slovenia and
Hungary in the North, Serbia in the East, Bosnia-Herzegovina, and
Montenegro in the South. It also shares amaritime border with Italy
in the west (across the Adriatic Sea). The main connections with
abroad, therefore, are realized via road and railway, via ferries (with
Italy mainly) and flights.

To characterize the diffusion of the virus within Croatia, we
need to first establish regions within Croatia to be associated to
the eRG equations. One possibility is to consider the Croatian
counties, taking into account the subtlety of the mobility within
counties and with neighboring countries. This corresponds, in
the Eurostat nomenclature (43), to the “NUTS-3” level. However,
for our purposes, this subdivision level would be problematic
for multiple reasons. Firstly, the population of different counties
is highly unequal, ranging from 50,000 inhabitants in Lika-Senj
to 800,000 in Grad Zagreb. This unequal distribution of the
population would amplify, for counties with low population, any
statistical fluctuations in the epidemiological data. Furthermore,
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FIGURE 2

(A) NUTS-2 regions of Croatia, indicating the main mobility axes via land (brown arrows), flights (international airports at Zagreb, Osijek, Rijeka, Pula,
Lošinj, Zadar, Split, Brač, and Dubrovnik) and sea (car-passenger ferry lines in cyan). (B) Partition of the passenger inflow from abroad to the four
NUTS-2 regions. The histograms are stacked in log scale, showing a clear dominance of road passenger flow. (C) Partition of the road passenger flow
among Croatian regions and the neighboring countries. The outer ring shows the flow from each country, proportionally distributed to the regions.

the unequal weight of different counties can bias the numerical
output of the eRG computations. Secondly, it is challenging to
quantify the mobility flows between counties due to the small
size of these territorial units. Access to the flow data along main
highways was provided by the MMPI. However, this data would
not be sufficient to provide a reliable estimate at county level.
In fact, drivers passing through the checkpoints on the main
roads may drive across several counties, where possible contacts
with infected individuals could take place. As a consequence, we
deemed this level of geographical granularity to be inappropriate
for our purposes.

We instead opted for the 2021 NUTS-2 level, where Croatia is
subdivided into four statistical regions as shown in Figure 2A:

• Pannonia (HR02, Panonska Hrvatska): 1, 054, 000 inhabitants,
stretching to the East and adjoining Hungary, Serbia and
Bosnia-Herzegovina.

• Adriatic (HR03, Jadranska Hrvatska): 1, 372, 000 inhabitants,
comprising of the coastal region and bordering Slovenia,
Bosnia-Herzegovina and Montenegro, including Italy via sea.

• Northern (HR06, Sjeverna Hrvatska): 813, 000 inhabitants, in
the north and bordering Slovenia and Hungary.

• Zagreb (HR05, Grad Zagreb): 800, 000 inhabitants, enclosed
within the Northern region.

This division is much more uniform in terms of population,
hence minimizing the statistical uncertainties of the data. It is also
more suitable for studying the diffusion of the infectious disease,

as each region has its own specificity that makes its role unique.
For instance, Adriatic is the only region that is connected by
maritime transportation as it encompasses all the ports of Croatia.
Furthermore, the main international airports are in Adriatic (Split)
and Zagreb. All regions except Zagreb are connected to neighboring
countries via border road and train connections.

The above information highlights an issue with the mobility
data related to Zagreb: the absence of a region border with abroad.
However, the traffic to the capital city is expected to be of major
importance. To consider this missing information, in the numerical
results, we “re-routed” part of the road and train flow across
boundaries to the Zagreb region. By this it is meant that part of
the passengers traveling via car (or train) from abroad to, e.g.,
Pannonia are supposed to end up their journey not in Pannonia but
in the Zagreb region. Same goes for Northern and Adriatic. This
is justified by the fact that highways and railway lines connect the
boundaries directly to Zagreb, while crossing any of the other three
NUTS-2 regions of Croatia. We will investigate a few scenarios
where a fixed fraction of the road and railway traffic from the
surrounding regions is attributed to Zagreb.

2.3. Applying the epidemic Renormalization
Group framework

The eRG framework (32) was formulated as a simple
mathematical tool to describe the exponential increase in the
number of new infections, followed by a reduction back to
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approximately zero. We will refer to this phenomenon as a “wave.”
As seen from Figure 1, Croatia experienced three waves of COVID-
19 between March and September 2020. More waves followed,
showing larger numbers of infected individuals. It should be
remarked, however, that the absolute number of cases in each
wave cannot be completely trusted, as it depends on both the
number of people that are subjected to tests and on biases in the
testing strategies (e.g., correlations with hospitalizations, presence
of asymptomatic cases, etc.).

For a single isolated region, with constant population during
the spread of a single wave, the eRG framework provides a
first-order differential equation to describe the time-evolution of
the number of individuals that contracted the disease. The eRG
equation reads

dα

dt
= γ α

(

1−
α

A

)

, (1)

where t is time and α is a non-dimensional function of the
cumulative number of infected individuals in the region, Ic(t).
Hence, α(t) is a function of time only, where the spatial dependence
has been integrated in. In principle, α can be any monotonic
function of Ic, however comparison with data for COVID-19 and
SARS showed that an optimal fit can be obtained for the natural
logarithm (32)

α(t) = ln
Ic(t)

Nm
≡ ln In(t) , (2)

where we normalized the number of infections by the population
of the region in millions, Nm. Hence, In measures the number of
infections per million inhabitants. The eRG Equation (1) depends
on two constant parameters, γ and A, which embed different
characteristics of an epidemiological wave:

- The γ parameter is an effective infection rate, measured in
units of t−1. It describes how quickly the infectious disease
spreads within the population of the region, and it does
not depend on the effective number of total infections. As
such, γ values from different regions can be compared. The
numerical value of γ encodes all the effects that influence the
diffusion speed: the transmissibility of the virus, social, and
behavioral effects (47), and pharmaceutical interventions like
vaccinations (42). All these effects are captured by a single and
constant value over the development of a specific wave.

- The A parameter corresponds to the value of α at the
end of the wave, hence it is a measure of the normalized
number of infections in the region at the end of the wave.
In fact, A = α(∞) = ln In(∞). The significance of this
parameter is affected by biases in the data collection in each
region: for instance, the testing rates and policies. However,
as long as these biases remain approximately constant during
the development of a wave, the eRG approach can be
effectively applied.

Note that γ does not depend on the number of infected
individuals. As such, it does not suffer from biases coming from
the number of available test kits, nor from testing policies adopted
during various phases of the pandemic, nor on any possible
regional differences. Hence, γ offers a reliable characterization of
the severity of each wave in different regions and at different times.

An advantage of the method lies in the fact that just two parameters
(γ , A) suffice to characterize the wave, and they remain practically
constant over the evolution of a single wave (42, 47). The values
of γ and A can be obtained by fitting the epidemiological data
in a specific region with the solution of Equation 1, which is the
following logistic function:

α(t) =
Aeγ (t−t0)

1+ eγ (t−t0)
, (3)

where t0 is an integration constant setting the overall timing of the
wave.

In previous works, the eRG framework was extended to include
mobility of people among different regions, as long as the flow
only involves a small fraction of the region inhabitants (14). This
extension allowed to study the relation between the emergence of
epidemiological waves in different regions, along with the mobility
of people among regions. In particular, the timing of the wave
peaks could directly be related to the mobility flow, providing a
handle to quantify the impact of various transportation modes on
the COVID-19 diffusion.

This feature of the multi-region eRG equations allows us to
quantify the impact of the various transportation modes on the
diffusion of the infection in the regions of Croatia. The eRG now
provides a set of coupled differential equations, one for each i-th
region under consideration (14, 15):

dαi

dt
= γi αi

(

1−
αi

Ai

)

+
∑

j

kij
Nm,i

(

eαi−αj − 1
)

, αk = ln
Ik(t)

Nm,k
,

(4)
where kij represents the number of travelers per million inhabitants
going from region i to region j. The second term in Equation 4
describes the change in the number of infections in the i-th region
due to the travelers leaving and entering the region. It is assumed
that the rate of infected individuals among the travelers is the same
as in their region of origin, leading to the proportionality to the
number of infected Ik(t) in the two connected regions, expressed
in Equation 4 in the exponential form. The above set of equations
also permits the addition of a source region, i.e., a population of
infected individuals that ignites the spread of the infections in the
set of regions under consideration (15).

In the case of Croatia, the value of the parameters kij can be
estimated by use of the mobility datasets in Table 1.

To quantify the impact of the mobility datasets listed in Table 1
on the diffusion of the third wave in Croatia, we adopted the
following procedure:

• We subdivide Croatia into four regions, chosen to match the
Eurostat 2021 NUTS-2 classification.

• For each wave, we fit the eRG parameters on the available
epidemiological data in each region. For this study, we focus
on the second and third waves, occurring between June and
September 2020. The parameters γi and Ai are extracted
from least-square fits and are listed in Table 2, where we also
indicate the date where the peak occurred, as modeled by the
eRG solution.

• We use the eRG equations, together with the fitted parameters,
to numerically calculate the diffusion of the third wave to the
different regions.
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TABLE 2 Parameters A and γ (see Equation 3) extracted from the fits of

the second and third wave in the four Croatian regions and used in the

model in Equation (4).

Second wave Third wave

Region A γ tpeak A γ tpeak

Pannonia 6.62 0.20 July 4 7.01 0.13 August 26

Adriatic 6.41 0.10 July 15 7.93 0.14 August 26

Zagreb 6.59 0.19 July 2 7.58 0.15 August 23

Northern 5.00 0.23 July 3 6.64 0.16 August 26

We also indicate the peak timing tpeak from the eRGmodeling of the waves. They correspond

to the peaks of the dashed lines in Figure 3. One can see that the third wave has a higher

total number of cases for all regions at the end of the wave as can be easily seen in Figure 1,

but smaller infection rate than the second wave. We also see that the four regions had more

diverse infection rates during the first wave: this may be due to the different level of application

of the mitigation measures imposed by the Croatian government in the early phases of

the pandemic. Such differences became smaller for the third wave, when people were more

accustomed with the measures.

• As source regions, we use the neighboring countries (including
Italy for the maritime transport) by coupling the eRG
equations of the Croatian regions to their epidemiological
data. For the flight transportation, we use the epidemiological
data of the whole world as a source.

• We define and study specific scenarios where the different
mobility datasets are included with a weight. The latter
parameterizes the effective impact of the actual transportation
modes on the virus diffusion. In practice, this weight
corresponds to the probability of finding infected individuals
among the passengers of that specific transportation vector.

• We compare the result of the numerical equations to the
observed data, to establish which configuration offers the best
fit to the timing of the third wave in the different regions. As
an example, Figure 3 shows the third wave obtained by the
eRG equations when all transportation passenger are included
unweighted. As a quantifier of the model performance, we
make use of the shift between the predicted wave peak and that
of the epidemiological data, cf. Equation (5).

Figure 3 shows that in some regions, like Pannonia and
Northern regions, a peak of infections is not readily identified from
the data. This is mainly due to the limited statistics available in
these regions, while at national level (and in other regions of the
world) it was apparent that the COVID-19 diffusion has a wave-
like character. Hence, we identified peaks in the data by using the
logistic function suggested by the eRG framework (Equation 3),
and using the beginning of August as an initial time (t = 0). The
resulting curves are shown in dashed lines in Figure 3, with the tpeak
listed in Table 2. Then we compute the shift in the peak prediction
from the mobility data as

1tpeak = tpeak
∣

∣

eRG − tpeak , (5)

as indicated in Figure 3 for Zagreb. Hence, positive1tpeak indicates
that the mobility data predicts a delayed peak as compared to
the data, while an optimal modeling is achieved if 1tpeak ∼ 0.
The numerical computations have been performed on a personal
computer, using the Wolfram’s softwareMathematica.

3. Results

The results obtained via the eRG framework consider various
configurations of the mobility data. In this way, two main
research questions could be addressed: the role (if any) of cross
border passenger flow via the maritime links and the estimation
of the road traffic to and from Zagreb (Section 3.1). Both
answers are established by studying the individual impact of each
transportation mode. Finally, we study the combined effect of
all mobility data and determine the optimal configuration to
reproduce the epidemiological data (Section 3.2). In practice, given
a set of mobility data, which feeds into the values of kij in the
eRG equations, we compute the timing of the third wave in the
four Croatian regions. To quantify the strength of the numerical
solution, we compute the time difference between the peak in
the solution and the peak observed in the data (obtained via the
eRG modeling). We will see what configurations are best suited to
represent the epidemiological data, and we will interpret the results
in terms of the relevance of the various transportation modes.
From previous work (14), we know that varying the weight of the
passenger number can move the peak time by up to a week, hence
empirically we consider an agreement to be good if the location of
the peak (1tpeak) is captured within 5 days.

3.1. Single transportation modes and role
of maritime mode

Our aim is to establish what are the main effects of each type
of mobility on the infection diffusion. To achieve this, we solved
the eRG equations with a single transportation type (“Train,” “Sea,”
“Flight,” “Road”) to understand how the data can be reproduced
by only using them one at time. To quantify the fitness of the eRG
calculation, in Figure 4 we show the peak time differences, in days,
in each of the four regions, indicated by the solid dots. Figure 4A
refers to results obtained including a single dataset, where the
missing points indicate regions where a wave start was not triggered
by use of just a single specific transport mode.

The results show that none of the transportation modes alone
can reproduce the data. In particular, “Road” data fails to ignite
the wave in Zagreb due to the lack of borders with abroad. Flights
play an important role for both Adriatic and Zagreb, where the
major international airports are located, while maritime and train
transport do not play any significant role in the diffusion of
infections. It is important to highlight that we also report with
a square symbol the cumulative data for the whole of Croatia.
This was obtained by solving the eRG equations for Croatia as a
single region. These results clearly indicate that both railway and
maritime passengers had a negligible impact on the diffusion of
COVID-19 in Croatia.

As a second step, we tested the effect of rerouting a fixed
percentage of the road data from the other regions (Adriatic,
Pannonia, and Northern) to Zagreb. While Adriatic is quite
far from Zagreb, we consider that a major road connection to
Slovenia (and Italy) goes through the border of the Adriatic region,
connecting Zagreb with Rijeka.
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FIGURE 3

Comparison of the data (bands with statistical error), eRG modeling of the third wave (dashed curves), and the result of the eRG equations with
mobility data (solid curves). The eRG computation includes all mobility data without relative weight in the number of passengers. The statistical error
is computed following a Poissonian distribution on the number of daily new infections, giving an error of σ =

√
N for a count of N new cases. The

peak mismatch metric 1tpeak is shown with its orientation for the case of the Zagreb region.

FIGURE 4

Results of the eRG computation when including only one transportation mode, with each column corresponding to a di�erent combination of data.
The region of acceptable peak mismatch (±5 days) is etched in yellow. In (A) one transportation mode is included: Train, Sea, Flight, and Road data.
Missing points correspond to regions where no wave is ignited if just the transportation mode in parenthesis is considered: Pannonia (Sea), Zagreb
(Train and Sea), Northern (Sea and Flights). Flights only marginally reproduce Zagreb and Adriatic, where the main international airports are located,
while road transportation (without rerouting) fully misses Zagreb. In (B), road data only is considered, with the indicated percentage of passengers
rerouted from all other regions to Zagreb.

The results are shown in Figure 4B, and are labeled by the
percentage of rerouting. It is seen that a rerouting level between
10 and 40% can well reproduce the epidemiological data for all
regions of Croatia (|1tpeak| < 4 days). This shows that the diffusion

of the virus during the third wave in Croatia can be well-modeled
by using road-only data. In the next section we analyse a more
realistic scenario where all transportation modes are included, with
the main goal of validating the main conclusions of this analysis.
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FIGURE 5

Results including all transportation modes, with a given rerouting from Adriatic, Northern, and Pannonia to Zagreb of the road passengers. The
inclusion of all transportation passengers improves the results for Pannonia and Adriatic as compared to Figure 4.

3.2. Combined analysis and optimal tra�c
diversion onto Zagreb

Having investigated the possibility of having a dominant
mobility mode for the infection in Croatia, we can clearly see that
road traffic is the main factor of virus propagation. As argued in
Section 2.2, we had to assume that a percentage of the car traffic
going from abroad to Croatia was directly rerouted to Zagreb.
We simulated, therefore, a scenario where all mobility data are
included, while a certain percentage of the road traffic is rerouted
to Zagreb from the Adriatic, Pannonia, and Northern regions.
This includes the impact of air traffic which can be relevant for
both the Adriatic and Zagreb regions. The results are shown in
Figure 5. It is still found that a rerouting in the range of 10–40%
can optimally reproduce the epidemiological data in all regions of
Croatia, but with smaller mismatches with respect to the results
shown in Figure 4B.

We observe amarginal improvement for Pannonia andAdriatic
compared to the road-only case, mainly due to the impact of
airborne traffic. Considering Pannonia, Adriatic, and Zagreb, the
best scenario is based on a 30% road traffic diversion to Zagreb,
where we observe |1tpeak| < 2 days for those regions. Note that the
Northern region is systematically delayed compared to the peak in
the data: this could be due to airborne passengers landing in Zagreb
but eventually directed to theNorthern region. Another reasonmay
be the poor modeling of the epidemiological data, where a clear
peak is not well-visible for this region, as shown in Figure 3.

4. Conclusions

We have quantitatively analyzed mobility data along with
epidemiological data during the period of June–September of
2020 in Croatia. The eRG framework was used to model the
epidemiological data and numerically correlate them to the
mobility data. The main goal was to establish the impact of various
mobility vectors on the diffusion of the COVID-19 infections,

at the origin of the third wave in Croatia between August and
September 2020.

Our results show that, although the timing coincided with the
restart of the maritime traffic from Italy after the first lockdown,
maritime or train transportation did not play any significant
role in the onset of the third wave in August 2020. Instead, we
demonstrated that road mobility was the main contributor, as
the car passenger fluxes, when integrated in the eRG framework,
successfully reproduce the timing of the waves in all NUTS-
2 regions of Croatia. However, to optimally reproduce the
epidemiological data, we assumed that a fraction of the cross-
border road passengers were directed to Zagreb, a region which
does not have direct borders with neighboring countries. The
inclusion of airborne passengers yields to optimally matching the
data for the Pannonia, Adriatic, and Zagreb regions. This means
that epidemic wave peaks are reproduced within an error of 3 days
when about 30% of the car passengers are redirected to Zagreb.
The Northern region of Croatia always features a delay in the eRG
prediction, limited within the acceptable range of 5 days.

These results provide a further validation of the eRG method
to combine mobility data with a fast and accurate prediction of the
next epidemiological wave. However, due to lack of data, internal
mobility within Croatia was not considered. This gap also relates to
the cross-border passengers directed to Zagreb while crossing the
other regions. Hence, the eRG results could be greatly improved if
aggregated internal mobility data were provided, for instance based
on smartphone usage and tracking (47).

Nevertheless, our study allowed us to deduce a couple of
important lessons on the effect of various transportation modes
for the diffusion of an infectious disease. First and foremost, the
study warns about simplistic association of nearly simultaneous
signals during a pandemic. Differently from what could be naively
expected, no causal link between the ferry traffic and the onset of
the third wave of COVID-19 in Croatia could be assessed. Instead,
and this is our second finding, road traffic was found, during those
early phases of the pandemic, to be the leading driver of the virus
diffusion in Croatia. This points toward land border control as one
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of themost effective ways to limit the spread of an infectious disease
in its early stages. However, this approach can be effective only if
timely implemented (14). The eRG-based modeling approach in
combination with proper mobility datasets can thus provide the
means to rule out non-causal relationships, supporting decision-
makers in recognizing the most effective actions at the beginning of
a pandemic.
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